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ABSTRACT: We report the synthesis and reactivity of Zr com-
plexes supported by a 9,10-anthracenediyl-linked bisphenoxide lig-
and, L. ZrIVLBn2 (1) undergoes facile photolytic reduction with 
concomitant formation of bibenzyl and ZrIVL(THF)3 (2), which dis-
plays a two-electron reduced anthracene moiety. Leveraging lig-
and-stored reducing equivalents, 2 promotes the oxidative coupling 
of internal and terminal alkynes to isolable zirconacyclopentadiene 
complexes, demonstrating the reversible utilization of anthracene 
as a redox reservoir. With diphenylacetylene under CO, cyclopen-
tadienone is formed stoichiometrically. 2 is competent for the cat-
alytic formation of pyrimidines from alkynes and nitriles. Mecha-
nistic studies suggest that selectivity for pyrimidine originates from 
preferred formation of an azazirconacyclopentadiene intermediate, 
which reacts preferentially with nitriles over alkynes.  

The use of redox-active ligands has expanded the reaction 
toolkit for chemists, mediating challenging multi-electron 
chemical transformations not usually observed in their ab-
sence.1 At early metals such as Zr, for which redox-neutral pro-
cesses like olefin polymerization are prevalent, redox-active 
ligands can facilitate new reactivity.2 Typically, transfor-
mations involving redox non-innocent ligands result in formal 
changes of the ligand redox state without substantial changes in 
ligand coordination mode. Ligands that may change coordina-
tion environment around the metal are expected to result in 
more facile reactivity if adapted to the electronic and steric 
demands of the metal center. Our group and others have demon-
strated the utility of labile and redox non-innocent pendant 
arene ligands in the development of new chemical reactivity, 
including CO cleavage and coupling, metal phosphide for-
mation and coupling, metal nitride CO coupling, cross-coupling 
chemistry, and CO2 activation.3 In most of these systems, the 
arene ligands are based on substituted benzene, requiring very 
negative potentials for formal reduction. Due to a smaller loss 
of aromaticity in its π-system,4 anthracene displays a more ac-
cessible reduction potential,5 allowing for formation of a dian-
ionic state that coordinates metal ions at the bridgehead  

 

Figure 1. Non-innocent anthracene moiety facilitating reductive 
elimination. 

positions,6 though such transition metal complexes are very 
rare.7  We envisioned that the anthracene motif will promote 
novel reactivity by functioning as a reductively non-innocent 
ligand at milder potentials than benzene, facilitating redox 
chemistry at the pendant arene. Additionally, the formation of 
new bonds to the metal filling coordination sites opened during 
reactions such as reductive elimination is expected to facilitate 
reaction turnover and catalysis (Figure 1). 

Syn-9,10-anthracenediyl-linked bisphenol (LH2) was synthe-
sized from commercially available starting materials in six steps 
(see SI).  Protonolysis of tetrabenzyl zirconium (ZrBn4) with 
LH2 provides bisbenzyl complex 1. Single-crystal X-ray dif-
fraction (XRD) studies (Figure 2) reveal long distances between 
Zr and the anthracene group which correlate with the C-C dis-
tances in the arene to suggest no significant interaction of the 
metal with the anthracene π-system. 

Toward promoting reductive elimination from 1, photolysis 
was investigated. After 18 h irradiation, 1H NMR spectroscopy 
shows the loss of the benzylic signal in 1, and the formation of 

Scheme 1. Synthesis and reactivity of bisphenoxide zirco-
nium complexes with pendant anthracene 
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Figure 2. Solid-state structures of 1, 2, and 3a and central ring bond metrics of 1 and 2. Bond distances in Å. Thermal ellipsoids 

shown at 50% probability. Solvent molecules and hydrogen atoms omitted for clarity. 

bibenzyl and a new species, 2 (Scheme 1). The solid-state struc-
ture of 2 (Figure 2) shows coordination to Zr of the two phe-
noxide donors, three THF molecules and the anthracene linker. 
The anthracene motif binds in an η4 fashion via C1, C2, C7, and 
C8, with Zr–C distances in the range of 2.432(1)–2.525(1) Å 
indicative of strong interactions. These are slightly longer than 
the Zr-benzyl distances in 1 (2.257(2)-2.272(2) Å). Significant 
lengthening of the C1–C2, C1–14, C7–C8 and C8–C9 bonds 
suggests disruption of aromaticity in the arene. Overall, the 
structural parameters observed are consistent with a two-elec-
tron reduced anthracene motif.6a-e Although oxidatively or pho-
tolytically induced C–C reductive eliminations have been re-
ported at Zr(IV),2d,8 such transformations are rare, and the re-
duced metal species can undergo undesired side reactivity such 
as CH activation.8e 

Complex 2, although formally displaying a Zr(IV) center, 
stores two reducing equivalents in the anthracene motif.  The 
possibility of 2 performing anthracene-based redox chemistry 
was investigated towards the oxidative cyclometallation of al-
kynes, a reaction with precedent for Zr(II).9 Heating a solution 
of 2 with diphenylacetylene (two equiv.) at 90 °C led to a red-
to-yellow color change and formation of a 1:2 Zr:alkyne species 
(3a) by 1H NMR spectroscopy. The solid-state structure of 3a 
shows the formation of a zirconacyclopentadiene by the oxida-
tive coupling of two alkynes with two reducing equivalents 
originating from the ligand (Figure 2). Within the zirconacyclo-
pentadiene ring, localized double bonds at C58–C59 (1.357(2) 
Å) and C60–C61 (1.354(3) Å) are observed.  

With examples of both reductive and oxidative C–C bond 
formation involving redox at the pendant anthracene, we probed 
substrates with potential for regeneration of a masked Zr(II) 
complex. Extended heating of 3a in the presence of excess di-
phenylacetylene did not effect further reactivity, likely due to 
steric constraints. Treatment of in situ-generated 3a with CO at 
90 °C results in the formation of a new major species assigned 
as 4, a 1:1 adduct between zirconium and a tetraphenylcyclo-
pentadienone (CPD) molecule (Scheme 1). Independent synthe-
sis by mixing one equiv. CPD with 2, resulting in a matching 
1H NMR spectrum, support this assignment. The synthesis of 
cyclopentadienones via [2+2+1] coupling of two alkynes and 
CO has been reported but is limited to mid-to-late transition 
metal complexes.10 CO insertion into zirconacyclopentadiene 
has not been reported, to our knowledge, though related systems 
involving CO-alkyne chemistry are known for Zr.11 Conceptu-
ally related, the catalytic aza-Pauson-Khand reaction involving 
Ti-imido complexes and alkynes to afford pyrroles, with di-
azenes acting as a nitrene source has been reported.12 Although 
turnover was not achieved for CPD formation, this reaction 
demonstrates that coupling of three substrates is possible, with 

an overall process that requires both oxidation and reduction of 
the anthracene moiety.  

To examine if a sterically more open zirconacyclopentadiene 
promotes further reactivity, terminal alkyne phenylacetylene 
was tested. Addition of phenylacetylene (two equiv.) to 2 in 
benzene at room temperature led to a rapid red-to-yellow color 
change. The new species (3b) was assigned as a zirconacyclo-
pentadiene complex structurally analogous to 3a (1H NMR 
spectroscopy). Coupling of terminal alkynes by zirconium is 
rare,13 primarily attributed to incompatibility of the acidic acet-
ylenic proton with low-valent Zr(II) species and/or precursors.14 

Heating 3b in benzene to 90 °C in the presence of excess phe-
nylacetylene did not result in further insertion. However, heat-
ing of 3b in the presence of one equiv. of p-tolunitrile (TolCN) 
and two equiv. of phenylacetylene led to the almost complete 
consumption of TolCN after one hour, with complex 3b still 
present (1H NMR spectroscopy). GC-MS analysis showed the 
formation of a mixture of homo- and heterotrimerized products, 
suggesting that 2 may be a competent precatalyst for the cotri-
merization of alkynes and nitriles.  

To further investigate this reactivity, benzonitrile and phe-
nylacetylene were chosen as model substrates. A mixture of al-
kyne was heated at 90 °C with excess nitrile (7.5 equiv.), to dis-
favor alkyne trimerization,15 in the presence of 5 mol% of 2. 
After two hours, highly selective formation of 2,4,6-tri-
phenylpyrimidine (6a) was observed, in 53% yield (Table 1, en-
try 1). GC-MS and NMR analysis showed no detectable for-
mation of triphenylbenzene or triphenyltriazine, and less than 
2% of triphenylpyridine. Pyrimidines feature in a wide variety 
of active pharmaceuticals and natural products, and as ligands 
in coordination complexes.16 Syntheses of pyrimidines via the 
highly efficient and atom-economical [2+2+2] cycloaddition 
route17 have been scarce.18 This has been attributed to the diffi-
culty in incorporation of multiple nitrogen atoms via cycloaddi-
tion due to the more reactive nature of alkynes compared to ni-
triles,19 even when employing the nitrile as solvent.20 Of those, 
many are either stoichiometric or require high catalyst loadings 
(20%),18d-g the use of nitriles as a solvent,18h,18i or tethered al-
kyne-nitrile substrates.18j The observation of catalytic cycload-
dition involving a nitrile is particularly notable for an early 
metal. Although there are several systems for pyridine synthesis 
based on Zr in combination with Ni21 or Cu,22 and Ti,23 these 
reactions are not catalytic, likely due to the strong binding of 
the nitrogen moiety to the highly Lewis acidic metal center. For 
the present catalyst, the propensity of the anthracene moiety to 
accept reducing equivalents is proposed to facilitate reductive 
cyclization, promoting turnover. 

Increasing the reaction temperature to 105 °C in toluene led 
to quantitative yields of 6a, with longer reaction times leading 

1 2 3a 

C9C14

C8

C7C2

C1
1.408(2)

1.400(2)1.406(2)

1.408(2)

1.437(2)

1.431(2)

Zr

1

Zr-C1: 3.757(2)
Zr-C2: 3.560(2)
Zr-C7: 3.529(2)
Zr-C8: 3.684(2)
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to triazine formation after alkyne substrate has been consumed 
(Table 1, entries 2 and 3). The nitrile excess can be reduced 
without appreciable loss in selectivity, but results in slower con-
versions (entries 4 and 5). At 2:1 PhCN:PhCCH, high selectiv-
ity for pyrimidine (94%) is retained, albeit with a lower yield of 
~80% (entry 6). Notably, even excess alkyne (1:5 
PhCN:PhCCH), the pyrimidine is favored over pyridine. Cata-
lyst loading can be lowered to 3 mol%, while providing simi-
larly high yields and selectivities after five hours (entry 8). Con-
trol experiments ran with simple Zr complexes (ZrBn4, ZrCl4 
and ZrBn2Cl2) reduced by Mg(THF)3(anthracenide), or with 
KC8 or photolytically in the presence of anthracene, did not re-
sult in catalysis (see SI). 

Using the optimized conditions (Table 1, entry 4), the scope 
of pyrimidine synthesis was explored (Table 2). Internal dialkyl 
alkyne 5-decyne provides 6b quantitatively, while diphenyla-
cetylene is not competent. Terminal alkyl alkynes (Table S1) 
did not produce any cotrimerized products detectable by GC-
MS, with the exception of trimethylsilylacetylene, which quan-
titatively afforded 6c. A variety of nitriles were also found to be 
competent for catalysis (Table 2, 6d, 6e and 6f) though arylni-
triles with O or N-containing substituents and alkyl nitriles (Ta-
ble S2) did not lead to cyclotrimerized products. Addition of an 
equimolar amount of acetonitrile to PhCN under optimized con-
ditions completely shuts down generation of 6a, suggesting that 
it acts as a strong inhibitor, likely through competitive binding 
to the metal. 

To gain insight into the mechanistic basis of product selectiv-
ity, the synthesis of azazirconacycle 5, a potential catalytic in-
termediate, was targeted. Addition of two equiv. TolCN fol-
lowed by one equiv. PhCCH to 2 results in the formation of 
azazirconacycle 5. XRD studies took advantage of the distinct 
aryl groups to unambiguously assign N-coordination to Zr and 
2,4-diaryl substitution (Figure S37). Although we could not rule 
out the initial reversible formation of a nitrile-nitrile coupled 
complex24 of the type previously reported for group IV metals,25 
in the presence of both nitrile and alkyne, complex 5 is the ma-
jor Zr product. Stoichiometric reactions carried out from the 
isolated (aza)zirconacycles, 3b and 5, provide insight into cata-
lytically relevant pathways (Scheme 2). Reaction of 3b or 5 at  

Table 1. Cycloaddition of phenyl acetylene with benzonitrile 
under various conditions 

2

toluene
105 °C

PhCCH
(1 equiv.)

+ N

N Ph

Ph

Ph

PhCN

6a

N Ph

Ph

Ph

6a'

N N

N Ph

Ph

Ph

6a"

entry [2]/mol 
% 

nitrile 
(equiv.) 

time/h aPhCCH 
consumed/ 

% 

b,cselectivity/% 

6a 6a' 6a" 

1d 5 7.5 2 53 98 2 nd 

2 5 7.5 1 >99 59 1 40 

3 5 7.5 0.5 >99 99 1 nd 

4 5 6 1 >99 99 1 nd 

5 5 3 5 98 97 3 nd 

6 5 2 8 79 95 5 nd 

7 5 0.2 8 7 55 45 nd 

8 3 6 5 95 98 2 nd 
abased on GC-MS analysis, averaged over 2 runs; bbased on 1H NMR 
integration, averaged over 2 runs; cnd: not detected by GC-MS; drun at 
90 °C in benzene 

Table 2. Substrate scope of cycloaddition of alkynes with ni-
triles to pyrimidines 

2 (5 mol %)

toluene
105 °C

R1CCR2

(1 equiv.)
+

N

N

R3R3

R1

R2

R3CN

(6 equiv.)

6  
aProducts (6) and yields/% 

 
aisolated yields averaged over 2 runs 

90 °C with PhCN results in pyridine or pyrimidine formation, 
respectively, while neither complex reacts in the presence of ad-
ditional PhCCH (vide supra). GC-MS analysis of the reaction 
of 5 with PhCN showed predominantly the formation of pyrim-
idine with mixed aryl substituents, with minor formation of 
2,4,6-triphenylpyrimidine and 6-phenyl-2,4-di(tolyl)pyrimi-
dine, indicating that the coupling of alkyne and nitrile is reversi-
ble, but is slow relative to pyrimidine formation. Based on the 
selectivity in catalysis, pathway B is strongly favored over path-
way A, leading to the high selectivities observed. The prefer-
ence for the formation of 5 rather than 3b from a mixture of 
nitrile and alkyne is likely due to the precoordination of nitrile. 
The small amount of pyridine byproduct results from the for-
mation of 3b as a minor component through Pathway A. 

In summary, we have synthesized and characterized a series 
of zirconium complexes supported by a bisphenoxide ligand 
displaying a 9,10-anthracenediyl motif. The ligand exhibits 
both redox non-innocence and hemilability, facilitating two-
electron chemistry at a Zr(IV) center such as the photolytic 
reductive elimination of bibenzyl, oxidative coupling of unsatu-
rated organic substrates such as alkynes and nitriles and 

Scheme 2. Stoichiometric reactions involving catalytically 
relevant species.   
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their subsequent reductive elimination to CPD or N-containing 
heterocycles. We have demonstrated an efficient Zr-catalyzed 
three-component [2+2+2] cycloaddition of alkynes and arylni-
triles to selectively afford tri- and tetra-substituted pyrimidines. 
The catalyst displays excellent selectivity even without the use 
of excess nitrile. The ability of this Zr catalyst to turnover, in 
contrast to other early metal systems is proposed to stem from 
the ability of the anthracene motif to promote redox chemistry 
and product dissociation. Given the established efficient stoi-
chiometric oxidative coupling chemistry characteristic of 
Zr,9b,26 the development of new types of catalysis based on it is 
of interest for a variety of applications. 
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