

TBAF-Catalyzed Cyclization Reactions of *o*-(Alkynyl)phenyl Propargyl Alcohols with Malonate Esters: A Possible Cation-π Interaction as The Activation Approach

Yulei Zhao,*^[a] Xuqiang Guo,^[a] Zongkang Wang,^[a] Duyi Shen,*^[a] Tingting Chen,^[a] Nan Wu,^[a] Shina Yan,^[a] and Jinmao You^[a,b]

Dedication ((optional))

Abstract: An efficient method has been devised for the synthesis of dihydroisobenzofuran derivatives through the reaction of *in situ* generated ynones with potentially *C*-nucleophilic malonate esters. All of the products are capable to be prepared by applying the tandem strategy at room temperature. The reaction was realized through a combination of the pivotal TBAF-catalyzed conjugate addition and selective *O*-nucleophilic cyclization. As revealed by the control experiments, both the basicity of fluoride anion and ammonium cation- π interaction with alkyne unit might play crucial roles in the cyclization.

Introduction

Tetrabutylammonium fluoride (TBAF), known as a soluble source of fluoride,^[1] has been widely applied as fluorinated reagent,^[2] reagent for the cleavage of silvl ethers,^[3] basic catalyst,^[4] etc.^[5-7] The application of TBAF is primarily dependent on the effect of fluoride anion. However, due to its noticeable catalytic activity for the cyclization of alkyne, the effect of tetraalkylammonium ion has recently drawn increasing attention for research.^[8] In 2011, Lepore et al. reported a unique cyclization of β-alkynyl hydrazines to synthesize azaproline derivatives, which was mediated by nonmetal ammonium cation catalysts.^[8b] Subsequently, they came up with the direct evidence for ammonium cation- π interaction with a nonconjugated alkyne by Raman spectroscopy.^[8a] As demonstrated by their study on the homogeneous systems, the ammonium agent is conducive to the formation of nitrogen-carbon bond^[8b] (cyclization process) through a cation- π interaction with the alkyne unit.^[8a] In 2017, Lepore's group further developed a TBAF-catalyzed approach to the synthesis of isoxazolines and pyrazolines through the cyclization of alkyne substrates.^[8c] Although cation- π interaction is known as a sort of force,^[9] intermolecular this cation binding force was systems.[10] demonstrated more in aromatic For the

[a] Dr. Y. Zhao, X. Guo, Z. Wang, Dr. D. Shen, T. Chen, N. Wu, S. Yan, Prof. Dr. J. You. School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China E-mail: <u>zhaoyulei86@126.com</u> <u>shendy@gfnu.edu.cn</u>

[b] *Prof. Dr. J. You*, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810001, China

Supporting information for this article is given via a link at the end of the document.((Please delete this text if not appropriate))

characteristics of ammonium cation- π interaction with alkyne, experimental exploration remains limited.

Scheme 1. Construction of dihydroisobenzofuran structures.

Dihydroisobenzofuran is key structural subunit and widely present in a variety of different biologically active structures.[11] Despite advances, the synthetic routes to dihydroisobenzofuran derivatives are primarily concentrated on high temperatures^[12] or precious metal-catalyzed^[13] approaches (Scheme 1a and 1b). It remains essential to explore new convenient procedures to synthesize dihydroisobenzofuran derivatives using accessible starting materials and low-cost catalyst under mild conditions. Enaminone, exhibiting high N-[14], C-[15] and O-nucleophilicity[16], shows a wide range of synthetic applications^[17]. Based on our research on tandem reactions,^[18] a bifunctional TBAF catalyzed selective O-nucleophilic cyclization of enaminone was reported recently for the synthesis of dihydroisobenzofuran derivatives (Scheme 1c),^[19] wherein a cation- π interaction as the activated process might be necessitated. In this intramolecular isomerization reaction, the nitrogen atom of enaminone acts as an electron-donor to initiate the nucleophilic cyclization to intramolecular alkyne moiety. Accordingly, it is speculated that an appropriate independent C-nucleophile is also suited to the construction of dihydroisobenzofuran derivatives. Herein, the intermolecular cyclization reaction of o-(alkynyl)phenyl propargyl alcohols with potentially C-nucleophilic malonate esters is

EtO₂C

developed to construct dihydroisobenzofurans through a possible ammonium cation- π interaction process (Scheme 1d).

Results and Discussion

Our initial efforts focused on the reaction of *o*-(alkynyl)phenyl propargyl alcohol^[20] **1a** and diethyl malonate **2a** using 2-lodoxybenzoic acid (IBX) as the oxidant and TBAF as the subsequent catalyst (Scheme 2). Nevertheless, it was inevitable for all the attempts to partly result in intramolecular [4+2] cycloaddition^[21]. Acidic IBX has a potential to promote the occurrence of this side reaction. In order to inhibit the undesired cycloaddition, pyridinium dichromate (PDC) was taken as the oxidant. To our delight, when PDC was employed, only an extremely small amount of [4+2] cycloaddition was detected as the oxidation process proceeded. This result encouraged us to optimize the reaction conditions with **1a** and **2a** as model substrates (Table 1).

Scheme 2. Initial exploration with IBX as oxidant.

Firstly, a variety of different catalysts were examined for the subsequent addition-cyclization process (Table 1, entries 1-9). When the reaction occurred in the presence of 2.0 equiv of TBAF as the catalyst at room temperature, the desired product 3a was obtained in 91% yield within 2 hours (entry 1). Nevertheless, other quaternary ammonium salt represented by tetrabutylammonium bromide (TBAB), tetrabutylammonium chloride (TBAC) and tetrabutylammonium iodide (TBAI) were identified as ineffective for the formation of 3a (entries 2-4). As demonstrated by these results (entry 1 vs entries 2-4), the basicity offered by fluoride anion may play a significant role. Based on this discovery, the alkaline Bu₄NOH was employed, and 3a was obtained in 64% yield (entry 5). When TBAF·3H₂O was taken as the catalyst, 88% yield could be achieved within 2 hours (entry 6). Despite the investigation conducted into other common Brønsted base (such as, sodium carbonate, triethylamine or potassium hydroxide), no significant catalytic activity was observed for the cyclization process (entries 7-9). Secondly, different varieties of solvents (such as, ethyl acetate, dichloromethane, toluene and acetonitrile) were screened, only resulting in 78-84% yields for the desired dihydroisobenzofuran (entries 10-13). Finally, the optimization usage of reagents was scheduled. When the amount of TBAF declined from 2.0 equiv to 0.5 equiv, the yield of 3a was found to be slightly up-regulated to 91% (entry 14). When the amount of 2a was reduced to 1.2 equiv from 2.0 equiv, 91% yield could also be achieved (entry 15). Further reduce the dosage of TBAF to 0.2 equiv led to a slightly raised yield (entry 16, 92%). Without TBAF, no 3a was

detected (entry 17), which suggested that TBAF was requisite for the cyclization process to take place. In addition, it is worth noting that the slight [4+2] cycloaddition as the side reaction exists in most investigations catalyzed by TBAF. X-ray crystallography was performed to confirm the structure of **3a**.^[22] **Table 1.** Optimization of the reaction conditions^[a]

OF	ł		510.0	00.51		² CO ₂ Et		
\wedge		PDC (3.0 eq.)	2a		~	Ph		
	`Ph ≳	DCM, RT, 5 h	Cat., S	olvent, Time		\diamond		
1a (0.2	Ph mmol)		R	Г, in air	39	L _{Ph}		
Tu (0.2	minory	-			Ja	1.0		
Entry	Cat.		Solvent	2 (x eq.)	Time (h)	Yield (%)		
1	TBAF	(2 eq.)	THF	2	2	91		
2	TBAE	3 (2 eq.)	THF	2	2	0		
3	TBAC	C (2 eq.)	THF	2	2	0		
4	TBAI	(2 eq.)	THF	2	2	0		
5	Bu ₄ N	OH ^[b] (2 eq.)	THF	2	2	64		
6	TBAF	• 3H ₂ O (2 eq.)	THF	2	2	88		
7	Na ₂ C	O ₃ (2 eq.)	THF	2	2	0		
8	Et ₃ N	(2 eq.)	THF	2	2	0		
9	кон	(2 eq.)	THF	2	2	ND		
10	TBAF	(2 eq.)	EtOAc	2	2	84		
11	TBAF	(2 eq.)	DCM	2	2	78		
12	TBAF	(2 eq.)	PhMe	2	2	81		
13	TBAF	(2 eq.)	MeCN	2	2	83		
14	TBAF	(0.5 eq.)	THF	2	2	91		
15	TBAF	(0.5 eq.)	THF	1.2	2	91		
16	TBAF	(0.2 eq.)	THF	1.2	3	92		
17	TBAF	(0 eq.)	THF	1.2	20	0		
^[a] TBAF (1 mol/L in THF) was used. RT = room temperature. ND = no desired product was detected. ^[b] 50wt.% in water.								

With the optimal reaction conditions established (Table 1, entry 16), the scope and generality of this methodology was then explored (Table 2). Firstly, an investigation was conducted into the effect of different malonate esters. It was discovered that dimethyl malonate or dibenzyl malonate substrates underwent the reaction smoothly to afford 3b and 3c in 87% and 74% yield, respectively. When sterically-hindered diisopropyl malonate was involved in for the reaction, the corresponding product 3d could also be derived in 65% yield as well. Next, the electronic effect of R² substituents was closely examined. The substrates with electron-withdrawing (e.g., 3e, $R^2 = 6-F$, 93%) or electrondonating (e.g., 3f, $R^2 = 5,6$ -dimethoxy, 94%) groups were all tolerable to furnish the corresponding products in excellent vields. Then, the electronic effect of R³ was explored. Substrates with both p-CIPh and p-OMePh groups were suitable for the reaction, thus offering the desired isobenzofuran diesters in moderate to good yields (3g, 72%; 3h, 66%). When R³ was 2naphthyl group, the corresponding 3i was formed in 90% yield. n-Butyl also exhibited an excellent compatibility, thus offering the corresponding product 3j in 94% yields. For R⁴, the p-CIPh, p-OMePh, and 2-naphthyl were all well tolerated, furnishing 3k-3n

WILEY-VCH

in 70-86% yields. However, alkyl-substituted (R^4 = n-butyl) propargyl alcohol failed to give the desired product. Additionally, trimethylsilyl (R⁴) was compatible to generate the corresponding terminal olefin 3o in 81% yield (In this reaction, 1.5 equiv of TBAF·3H₂O was taken both as the catalyst and as the reagent for the cleavage of C-Si bond).

^[8] Reaction conditions: (1) 1 (0.2 mmol) and PDC (0.6 mmol) in DCM (4.0 mL) at RT for 8 h; (2) 2 (0.24 mmol), TBAF (0.04 mmol, 40 uL, 1 mol/L in THF) and THF (2.0 mL) was used. Isolated yield. RT 0.5 eq. of TBAF (1 mol/L in THF) was used. $^{\rm [c]}$ 1.5 eq. of TBAF-3H_2O was used.

When R¹ substituent was sterically hindered t-butyl group, no desired diester product was observed. Interestingly, when TBAF-3H₂O was taken as the catalyst, ketone 4 was obtained instead (Scheme 3, 45%). In the absence of di-tert-butyl malonate (2d), 4 could also be generated in a moderate yield (44%). These results showed in Scheme 3 indicated a possibility that ketone 4 is derived from a certain amount of H₂O and propargyl alcohol 1b. A similar reaction between ynones and water is under investigation in our laboratory. In addition, the scalability of this method was demonstrated in the reaction occurring between propargyl alcohol 1a and diethyl malonate 2a, thus providing a gram quantity of the dihydroisobenzofuran 3a with a good yield (Scheme 4, 87%).

Scheme 4. Gram-Scale Preparation.

In order for deepened understanding as to the reaction mechanism, a series of control experiments were conducted using propargyl alcohol 1a and diethyl malonate 2a (Table 3). Under the standard reaction conditions, 3a was obtained in 91% yield (entry 1). Nevertheless, no further O-nucleophilic cyclization reaction occurred only with TBAC as the sole catalyst (entry 2), indicating that fluoride anion was vital for the onset of the cyclization reaction (entry 2 vs 1). It is noteworthy that an excessively long reaction time could result in slightly undesired intramolecular [4+2] cycloaddition from ynone 1a' (Scheme 2). When the reaction was carried out with NaF (0.5 equiv) as the base, intermediate 1a' was isolated in 84% yield but no 3a was detected (entry 3). It was initially suspected that the failure of NaF could be attributable to its poor solubility in THF. In order to improve the solubility of sodium salt, 15-crown-5 was introduced. However, no desired O-nucleophilic cyclization reaction was observed to take place in the presence of 15-crown-5 (0.5 eq.) and NaF (0.5 eq.) (entry 4), which implied that the ammonium salt not only played a single role in phase transfer catalysis, but also promoted an additional catalytic activity for subsequent cyclization process (entry 4 vs 1). To further validate our hypothesis, the reaction was carried out by using TBAC (0.5 eq.), 15-crown-5 (0.5 eq.) and NaF (0.5 eq.) as the catalyst, based on which 3a could be isolated in 28% yield (entry 5). These mentioned above results (entries 1-5) implied that both the fluoride anion and ammonium cation might play the significant roles in the efficient tandem cyclization. In addition, it has also been proved that acidic conditions are ineffective for the cyclization reaction (entries 6-8).

Table 3. Control experiments.

OH 1a (0.2 m	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	O ₂ CCC 2a (1.2 ed t., THF, Tin	D_2Et $q_{,)}$ he, RT	Ph 3a Ph
Entry	Catalyst	Time (h)	Yield of 1a' (%)) Yield of 3a (%)
1 ^[a]	TBAF (0.5 eq.)	2	0	91
2	TBAC (0.5 eq.)	30	82	0
3	NaF (0.5 eq.)	30	84	0
4	NaF (0.5 eq.), 15-crown-5 (0.5 eq.)	30	89	0
5	NaF (0.5 eq.), 15-crown-5 (0.5 eq.), TBAC (0.5 eq.)	30	57	28
6	HF (0.5 eq.)	24	91	0
7	TsOH (0.5 eq.)	10	92	0
8	HF (0.5 eq.), TBAC (0.5 eq.)	10	91	0

^[a] TBAF (0.5 eq., 100 uL, 1 mol/L in THF) was used in the reaction.

On the basis of all the above controlled experiments and the previous literature^[23], a plausible reaction mechanism has been proposed (Scheme 5). Initially, propargyl alcohol 1a is oxidized by PDC to generate ynone intermediate 1a'. Then, a nucleophilic attack of deprotonated diethyl malonate 2a' to 1a' gives rise to intermediate A (path a). Subsequently, A is further

converted to the oxygen anion intermediate **B** *via* a deprotonation-rearrangement process (**A** to **B**). Under a possible activation initiated by cation- π interaction,^[8a] the formed oxygen anion launched attacks on the intramolecular alkyne moiety (**B** to **C**, 5-exo-dig) to furnish **C**. Tetrabutylammonium cation was also speculated to serve as a noncoordinating cation to stabilize oxygen anion intermediate **B**. Finally, the desired product **3a** was obtained after the protonation process. Alternatively, allenoate ion **A'** could be formed by nucleophilic attack of **2a'** to **1a'** (path b). Then, the produced allenoate ion can directly attack to the activated alkyne moiety (**B'** to **C'**). The resulting anion **C'** can be protonated and tautomerized to furnish the product **3a**.

Scheme 5. The possible reaction mechanism.

Conclusions

In conclusion, an efficient method has been developed to construct dihydroisobenzofuran derivatives starting from malonate esters and *o*-(alkynyl)phenyl propargyl alcohols. All resulting products can be prepared by applying this tandem strategy at room temperature. These dihydroisobenzofuran diesters were selectively formed *via* the oxidation process of propargyl alcohols, and the subsequent bifunctional TBAF catalyzed conjugate addition and selective O-nucleophilic cyclization processes. This methodology is characterized by fluoride anion as a Brønsted base and a possible cation- π interaction as the approach to activation.

Experimental Section

General Methods. All reactions were carried out in air except noted. The TBAF (1 mol/L in THF) was purchased from Sigma-Aldrich Co. and Sun Chemical Technology (Shanghai) Co., Ltd. Unless noted, all commercial reagents were used without further purification. Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel (300~400 mesh). ¹H NMR spectra were recorded at 500 or 300 MHz, ¹³C NMR spectra were recorded at

125 MHz, and in CDCl₃ or (CD₃)₂SO (containing 0.03% TMS) solutions. ¹H NMR spectra were recorded with Me₄Si (δ = 0.00) as the internal reference and ¹³C NMR spectra were recorded with CDCl₃ (δ = 77.00) or DMSO-*d*₆ (δ = 39.52) as the internal reference. High-resolution mass spectra were obtained using a Bruker Maxis Impact mass spectrometer with a TOF (for ESI) analyzer. Single crystal X-ray diffraction data was collected in Bruker SMARTAPEX diffractiometers with molybdenum cathodes. The compounds **1** are known compounds and are prepared according to the reported literature methods.^[24]

A typical procedure for the synthesis of dihydroisobenzofurans 3

To a well-dried 25 mL Schlenk tube containing a magnetic stirring bar was added PDC (225 mg, 0.6 mmol). Then, the vessel was evacuated and refilled with N₂ for three times. Under a stream of N₂, to this vessel were added DCM (4 mL) and propargyl alcohol **1** (0.2 mmol). The mixture was stirred at room temperature till **1** disappeared by TLC analysis (about 8 hours). The resulting mixture was then filtered and washed with DCM (about 20 mL). The filtrate was concentrated under reduced pressure and transferred to a vial using THF (2 mL). Subsequently, to the vial was added 1,3-dicarbonyl compound **2** (0.24 mmol) and TBAF (the corresponding amount of TBAF, see: Table 2). The mixture was stirred at room temperature till ynone intermediate **1'** disappeared by TLC analysis. The resulting mixture was concentrated under reduced pressure and subjected to column chromatography for purification directly, using petroleum ether/ethyl acetate (20:1-10:1) as the eluent.

diethyl 2-(2-((*Z*)-3-((*Z*)-benzylidene)isobenzofuran-1(3*H*)-ylidene)-1-phenylethylidene)malonate (3a): Yellow solid; 92% yield (86 mg); mp 141-143 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.77 (d, *J* = 7.5 Hz, 1H), 7.57 (d, *J* = 7.3 Hz, 1H), 7.48-7.42 (m, 7H), 7.25 (s, 1H), 7.16-7.12 (m, 3H), 6.78 (d, *J* = 6.5 Hz, 2H), 6.03 (s, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 3.94 (q, *J* = 7.1 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H), 0.98 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 167.0, 164.6, 157.6, 151.3, 150.6, 139.2, 134.9, 133.7, 133.1, 130.6, 129.2, 129.0, 128.7, 128.5, 128.4, 128.3, 126.6, 123.6, 121.2, 119.5, 102.2, 97.0, 61.0, 60.9, 14.2, 13.7; IR (KBr): 2972, 2901, 1622, 1406, 1394, 1250, 1066, 880, 759 cm⁻¹; HRMS (ESI) calcd for C₃₀H₂₇O₅ [M+H]*: 467.1853, found 467.1849.

dimethyl 2-(2-((*Z*)-3-((*Z*)-benzylidene)isobenzofuran-1(3*H*)-ylidene)-1-phenylethylidene)malonate (3b): Yellow solid; 87% yield (76 mg); mp 121-122 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.80 (d, *J* = 7.4 Hz, 1H), 7.58 (d, *J* = 7.3 Hz, 1H), 7.49-7.43 (m, 7H), 7.30 (s, 1H), 7.14-7.12 (m, 3H), 6.79-6.77 (m, 2H), 6.04 (s, 1H), 3.83 (s, 3H), 3.45 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 167.7, 164.9, 158.0, 152.2, 150.6, 139.1, 134.9, 133.7, 133.0, 130.7, 129.3, 129.1, 128.7, 128.4, 128.3, 128.3, 126.7, 122.6, 121.3, 119.6, 102.3, 96.8, 52.1, 52.0; IR (KBr): 2970, 1630, 1210, 1081, 755, 584 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₃O₅ [M+H]⁺: 439.1540, found 439.1546.

dibenzyl 2-(2-((*Z*)-3-((*Z*)-benzylidene)isobenzofuran-1(3*H*)-ylidene)-1-(4-chlorophenyl)ethylidene) malonate (3c): Yellow solid; 74% yield (93 mg); mp 130-132 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.60-7.56 (m, 2H), 7.48-7.45 (m, 1H), 7.41-7.32 (m, 8H), 7.31-7.26 (m, 5H), 7.18-7.17 (m, 4H), 7.10-7.08 (m, 2H), 6.80-6.79 (m, 2H), 6.05 (s, 1H), 5.29 (s, 2H), 4.92 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 166.6, 164.2, 158.1, 150.7, 150.4, 137.4, 135.8, 135.1, 135.1, 134.9, 133.5, 132.8, 130.9, 129.9, 129.3, 128.7, 128.6, 128.6, 128.5, 128.4, 128.3, 128.1, 127.9, 127.1, 122.8, 121.3, 119.6, 102.7, 96.5, 67.1, 66.6; IR (KBr): 2980, 1724, 1626, 1549, 1187, 1005, 762, 699 cm⁻¹; HRMS (ESI) calcd for C₄₀H₃₀ClO₅ [M+H]*: 625.1776, found 625.1782.

10.1002/ejoc.201901790

WILEY-VCH

diisopropyl 2-(2-((*Z*)-3-((*Z*)-benzylidene)isobenzofuran-1(3*H*)ylidene)-1-(4-chlorophenyl)ethylidene) malonate (3d): Yellow solid; 65% yield (69 mg); mp 151-152 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.76 (d, *J* = 7.4 Hz, 1H), 7.58 (d, *J* = 7.6 Hz, 1H), 7.48-7.38 (m, 6H), 7.24-7.18 (m, 4H), 6.82 (d, *J* = 6.9 Hz, 2H), 6.05 (s, 1H), 5.20-5.15 (m, 1H), 4.89-4.84 (m, 1H), 1.32 (d, *J* = 6.2 Hz, 6H), 1.07 (d, *J* = 6.3 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 166.2, 164.0, 157.5, 150.5, 149.0, 137.7, 134.8, 133.6, 133.0, 130.7, 130.1, 129.3, 128.5, 128.5, 127.0, 124.6, 121.1, 119.6, 102.3, 96.5, 68.6, 68.5, 21.8, 21.3; IR (KBr): 2942, 1630, 1210, 1081, 756, 584 cm⁻¹; HRMS (ESI) calcd for C₃₂H₃₀ClO₅ [M+H]⁺: 529.1776, found 529.1781.

diethyl 2-(2-((*Z*)-3-((*Z*)-benzylidene)-6-fluoroisobenzofuran-1(3*H*)ylidene)-1-phenylethylidene) malonate (3e): Yellow solid; 93% yield (90 mg); mp 129-130 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.73 (dd, *J* = 8.5, 4.6 Hz, 1H), 7.47-7.43 (m, 5H), 7.22-7.21 (m, 2H), 7.15-7.12 (m, 4H), 6.77-6.76 (m, 2H), 5.98 (s, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 3.94 (q, *J* = 7.2 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H), 0.98 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 167.0, 164.6, 164.5 (d, *J*_{C-F} = 249.6 Hz), 156.8, 151.1, 149.7 (d, *J*_{C-F} = 4.6 Hz), 139.1, 136.9 (d, *J*_{C-F} = 9.9 Hz), 133.3, 129.2, 129.0, 128.9, 128.5, 128.4, 128.3, 127.0, 123.7, 123.2 (d, *J*_{C-F} = 9.6 Hz), 117.6 (d, *J*_{C-F} = 24.6 Hz), 106.0 (d, *J*_{C-F} = 24.5 Hz), 103.2, 96.8, 61.0, 61.0, 14.2, 13.7; IR (KBr): 2928, 1718, 1618, 1534, 1479, 1298, 1192, 1011, 768, 692 cm⁻¹; HRMS (ESI) calcd for C₃₀H₂₆FO₅ [M+H]⁺: 485.1759, found 485.1764.

diethyl 2-(2-((*Z*)-3-((*Z*)-benzylidene)-5,6-dimethoxyisobenzofuran-1(*3H*)-ylidene)-1-phenylethylidene) malonate (*3*f): Yellow solid; 94% yield (99 mg); mp 182-183 °C; ¹H NMR (500 MHz, CDCI₃): δ 7.47-7.42 (m, 5H), 7.15-7.09 (m, 5H), 6.95 (s, 1H), 6.76-6.74 (m, 2H), 5.89 (s, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 4.00 (s, 3H), 3.99 (s, 3H), 3.93 (q, *J* = 7.2 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H), 0.98 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCI₃): δ 167.2, 164.8, 158.1, 152.6, 151.9, 151.4, 150.6, 139.5, 133.9, 128.9, 128.7, 128.5, 128.4, 128.2, 126.3, 126.2, 122.5, 101.9, 100.9, 100.6, 95.8, 60.9, 60.8, 56.4, 56.3, 14.2, 13.7; IR (KBr): 2931, 1701, 1618, 1499, 1310, 1213, 1024, 829, 697 cm⁻¹; HRMS (ESI) calcd for C₃₂H₃₁O₇ [M+H]*: 527.2064, found 527.2059.

diethyl 2-(2-((*Z*)-3-((*Z*)-benzylidene)isobenzofuran-1(3*H*)-ylidene)-1-(4-chlorophenyl)ethylidene) malonate (3g): Red solid; 72% yield (72 mg); mp 135-137 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.75 (d, *J* = 7.5 Hz, 1H), 7.57 (d, *J* = 7.6 Hz, 1H), 7.48-7.38 (m, 6H), 7.22-7.18 (m, 4H), 6.82-6.81 (m, 2H), 6.05 (s, 1H), 4.31 (q, *J* = 7.2 Hz, 2H), 3.98 (q, *J* = 7.2 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H), 1.04 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 166.8, 164.5, 157.8, 150.4, 149.8, 137.7, 134.9, 134.8, 133.5, 132.9, 130.8, 130.0, 129.3, 128.6, 128.5, 128.5, 127.0, 123.7, 121.2, 119.6, 102.5, 96.4, 61.1, 61.0, 14.2, 13.7; IR (KBr): 2926, 1707, 1620, 1491, 1366, 1207, 760, 700 cm⁻¹; HRMS (ESI) calcd for C₃₀H₂₆ClO₅ [M+H]⁺: 501.1463, found 501.1460.

diethyl 2-(2-((*Z*)-3-((*Z*)-benzylidene)isobenzofuran-1(3*H*)-ylidene)-1-(4-methoxyphenyl)ethylidene) malonate (3h): Yellow solid; 66% yield (66 mg); mp 133-135 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.95-7.90 (m, 2H), 7.64-7.57 (m, 2H), 7.33 (d, *J* = 8.5 Hz, 2H), 7.20-7.10 (m, 3H), 7.05 (d, *J* = 8.5 Hz, 2H), 6.95 (s, 1H), 6.91-6.80 (m, 2H), 6.47 (s, 1H), 4.22 (q, *J* = 7.0 Hz, 2H), 3.95 (q, *J* = 7.0 Hz, 2H), 3.76 (s, 3H), 1.22 (t, *J* = 7.1 Hz, 3H), 0.98 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 167.4, 164.8, 160.2, 157.5, 151.2, 150.6, 134.8, 133.7, 133.2, 131.5, 130.6, 130.0, 129.2, 128.8, 128.3, 126.7, 123.0, 121.2, 119.6, 113.8, 102.0, 97.4, 60.9, 60.8, 55.1, 14.2, 13.8; IR (KBr): 2978, 1708, 1624, 1480, 1444, 1193, 1069, 1014, 768, 698 cm⁻¹; HRMS (ESI) calcd for C₃₁H₂₉O₆ [M+H]⁺: 497.1959, found 497.1955. diethyl 2-(2-((*Z*)-3-((*Z*)-benzylidene)isobenzofuran-1(3*H*)-ylidene)-1-(naphthalen-2-yl)ethylidene) malonate (3i): Red solid; 90% yield (93 mg); mp 141-143 °C; ¹H NMR (500 MHz, CDCI₃): δ 8.01 (s, 1H), 7.93-7.92 (m, 1H), 7.85-7.81 (m, 3H), 7.57-7.54 (m, 4H), 7.50-7.44 (m, 2H), 7.36 (s, 1H), 6.77-6.74 (m, 1H), 6.46 (d, *J* = 7.7 Hz, 2H), 6.18-6.15 (m, 2H), 5.98 (s, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 3.83 (q, *J* = 7.1 Hz, 2H), 1.34 (t, *J* = 7.1 Hz, 3H), 0.81 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCI₃): δ 167.1, 164.6, 157.7, 151.1, 150.4, 137.0, 134.8, 133.6, 133.2, 133.1, 133.0, 130.6, 129.2, 128.5, 128.3, 128.0, 128.0, 127.8, 127.4, 126.5, 126.4, 126.3, 123.8, 121.1, 119.5, 102.2, 96.6, 60.9, 60.9, 14.2, 13.5; IR (KBr): 3061, 2974, 1695, 1619, 1544, 1212, 1107, 1013, 760, 670 cm⁻¹; HRMS (ESI) calcd for C₃₄H₂₉O₅ [M+H]⁺: 517.2010, found 517.2016.

diethyl 2-(1-((*Z*)-3-((*Z*)-benzylidene)isobenzofuran-1(3*H*)ylidene)hexan-2-ylidene)malonate (3j): Yellow oil; 94% yield (84 mg); ¹H NMR (500 MHz, CDCl₃): δ 7.73 (d, *J* = 7.8 Hz, 2H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.64 (d, *J* = 7.7 Hz, 1H), 7.48-7.45 (m, 1H), 7.43-7.41 (m, 1H), 7.39-7.36 (m, 2H), 7.26-7.23 (m, 1H), 7.12 (s, 1H), 6.23 (s, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 4.27 (q, *J* = 7.1 Hz, 2H), 3.02 (t, *J* = 7.9 Hz, 2H), 1.68-1.62 (m, 2H), 1.46-1.39 (m, 2H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.32 (t, *J* = 7.1 Hz, 3H), 0.85 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 167.0, 165.3, 156.0, 153.2, 151.1, 134.4, 134.1, 133.5, 130.4, 129.3, 128.7, 128.5, 127.1, 122.3, 121.0, 119.6, 101.7, 96.3, 61.0, 60.7, 32.7, 32.0, 22.9, 14.1, 14.1, 14.0; IR (KBr): 2959, 1726, 1621, 1561, 1210, 1012, 759, 691 cm⁻¹; HRMS (ESI) calcd for C₂₈H₃₁O₅ [M+H]⁺: 447.2166, found 447.2162.

diethyl 2-(2-((Z)-3-((Z)-4-chlorobenzylidene)isobenzofuran-1(3H)ylidene)-1-phenylethylidene) malonate (3k): Yellow solid; 86% yield (86 mg); mp 143-144 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.74 (d, *J* = 7.2 Hz, 1H), 7.52 (d, *J* = 7.2 Hz, 1H), 7.46-7.41 (m, 7H), 7.24 (s, 1H), 7.07 (d, *J* = 8.5 Hz, 2H), 6.66 (d, *J* = 8.5 Hz, 2H), 5.94 (s, 1H), 4.31 (q, *J* = 7.2 Hz, 2H), 3.95 (q, *J* = 7.1 Hz, 2H), 1.33 (t, *J* = 7.2 Hz, 3H), 0.99 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 166.9, 164.6, 157.4, 151.0, 150.9, 139.2, 134.6, 133.2, 132.3, 132.1, 130.7, 129.9, 129.5, 129.0, 128.5, 128.5, 128.3, 123.9, 121.2, 119.6, 100.8, 97.3, 61.0, 61.0, 14.2, 13.7; IR (KBr): 2977, 1702, 1623, 1546, 1489, 1206, 1068, 752, 696 cm⁻¹; HRMS (ESI) calcd for C₃₀H₂₆ClO₅ [M+H]⁺: 501.1463, found 501.1469.

diethyl 2-(2-((Z)-3-((Z)-4-chlorobenzylidene)isobenzofuran-1(3*H*)ylidene)-1-(4-chlorophenyl) ethylidene)malonate (3I): Red solid; 71% yield (76 mg); mp 149-151 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.77 (d, *J* = 7.2 Hz, 1H), 7.57 (d, *J* = 7.2 Hz, 1H), 7.50-7.44 (m, 2H), 7.41 (s, br, 4H), 7.23 (s, 1H), 7.17 (d, *J* = 8.5 Hz, 2H), 6.74 (d, *J* = 8.5 Hz, 2H), 6.01 (s, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 3.99 (q, *J* = 7.2 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H), 1.05 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 166.7, 164.5, 157.6, 150.8, 149.6, 137.6, 135.1, 134.6, 133.0, 132.6, 132.1, 130.9, 130.0, 129.6, 129.5, 128.7, 128.6, 124.0, 121.3, 119.6, 101.1, 96.8, 61.2, 61.1, 14.2, 13.7; IR (KBr): 2980, 1727, 1617, 1489, 1203, 1013, 843, 759 cm⁻¹; HRMS (ESI) calcd for C₃₀H₂₅Cl₂O₅ [M+H]⁺: 535.1074, found 535.1082.

diethyl 2-(2-((*Z*)-3-((*Z*)-4-methoxybenzylidene)isobenzofuran-1(3*H*)ylidene)-1-phenylethylidene) malonate (3m): Red solid; 70% yield (70 mg); mp 143-145 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.76 (d, *J* = 7.6 Hz, 1H), 7.53 (d, *J* = 7.7 Hz, 1H), 7.49-7.38 (m, 7H), 7.24 (s, 1H), 6.73-6.67 (m, 4H), 5.99 (s, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 3.93 (q, *J* = 7.2 Hz, 2H), 3.81 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 3H), 0.97 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 167.1, 164.7, 158.4, 157.9, 151.5, 149.2, 139.2, 135.0, 132.8, 130.6, 130.2, 128.9, 128.8, 128.5, 128.2, 126.6, 123.1, 121.2, 119.2, 113.9, 102.0, 96.4, 60.9, 60.9, 55.2, 14.2, 13.7; IR (KBr): 2982, 1701, 1625, 1510, 1210, 1109, 761, 697 cm⁻¹; HRMS (ESI) calcd for C₃₁H₂₉O₆ [M+H]⁺: 497.1959, found 497.1966.

WILEY-VCH

diethyl 2-(2-((1*Z*,3*Z*)-3-(naphthalen-2-ylmethylene)isobenzofuran-1(*3H*)-ylidene)-1-phenylethylidene) malonate (3n): Red solid; 75% yield (77 mg); mp 127-129 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.79-7.72 (m, 3H), 7.63-7.60 (m, 2H), 7.53-7.41 (m, 10H), 7.19 (s, 1H), 6.72 (d, *J* = 8.6 Hz, 1H), 6.22 (s, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 3.98 (q, *J* = 7.1 Hz, 2H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.00 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 167.1, 164.7, 157.6, 151.2, 150.8, 139.1, 134.9, 133.2, 133.1, 132.2, 131.8, 130.6, 129.3, 129.1, 128.6, 128.3, 128.2, 128.1, 127.9, 127.5, 126.0, 125.9, 125.8, 123.7, 121.2, 119.6, 102.4, 97.2, 61.0, 61.0, 14.2, 13.7; IR (KBr): 2923, 1720, 1619, 1535, 1443, 1199, 1073, 815, 761 cm⁻¹; HRMS (ESI) calcd for C₃₄H₂₉O₅ [M+H]⁺: 517.2010, found 517.2017.

diethyl (*Z*)-2-(2-(3-methyleneisobenzofuran-1(3*H*)-ylidene)-1-phenylethylidene)malonate (30): Yellow solid; 81% yield (63 mg); mp 91-92 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.89-7.87 (m, 1H), 7.84-7.82 (m, 1H), 7.60-7.56 (m, 2H), 7.43-7.37 (m, 3H), 7.25 (d, *J* = 6.5 Hz, 2H), 6.72 (s, 1H), 5.05 (d, *J* = 2.7 Hz, 1H), 4.38 (d, *J* = 2.7 Hz, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 3.87 (q, *J* = 7.1 Hz, 2H), 1.20 (t, *J* = 7.1 Hz, 3H), 0.86 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 175.9, 174.5, 166.7, 166.2, 159.5, 149.0, 143.2, 142.6, 140.4, 138.5, 138.1, 137.9, 133.5, 131.2, 106.4, 95.7, 70.6, 70.5, 23.9, 23.4; IR (KBr): 2976, 1701, 1561, 1230, 1195, 827, 768, 704 cm⁻¹; HRMS (ESI) calcd for C₂₄H₂₃O₅ [M+H]⁺: 319.1540, found 319.1543.

Compound $1a^{\prime}$ and 4 was prepared according to the general procedure for 3.

3-phenyl-1-(2-(phenylethynyl)phenyl)prop-2-yn-1-one (1a'): Yellow oil; The corresponding yields, see Table 2; ¹H NMR (300 MHz, CDCl₃): δ 8.22 (d, *J* = 7.7 Hz, 1H), 7.71 (d, *J* = 7.1 Hz, 1H), 7.65-7.61 (m, 3H), 7.60-7.56 (m, 2H), 7.52-7.44 (m, 2H), 7.39 (d, *J* = 7.5 Hz, 2H), 7.35-7.33 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 177.5, 138.2, 134.3, 133.0, 132.4, 131.9, 131.5, 130.6, 128.5, 128.2, 127.9, 123.1, 123.0, 120.1, 95.4, 93.3, 88.2, 88.1; IR (KBr): 3059, 2196, 1644, 1491, 1442, 994, 756, 689 cm⁻¹; HRMS (ESI) calcd for C₂₃H₁₅O [M+H]*: 307.1117, found 307.1121.

2-((Z)-3-((Z)-benzylidene)isobenzofuran-1(3H)-ylidene)-1-(4-

chlorophenyl)ethan-1-one (4): Yellow solid; 45% yield (32 mg); mp 168-169 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.97 (d, *J* = 8.4 Hz, 2H), 7.91 (d, *J* = 7.7 Hz, 2H), 7.80 (d, *J* = 7.8 Hz, 1H), 7.74 (d, *J* = 7.8 Hz, 1H), 7.62-7.59 (m, 1H), 7.52-7.42 (m, 5H), 7.31-7.28 (m, 1H), 6.62 (s, 1H), 6.38 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 187.6, 162.3, 150.5, 138.4, 138.2, 135.8, 133.7, 132.0, 129.5, 129.5, 129.4, 128.9, 128.8, 127.9, 121.5, 120.0, 105.2, 93.6; IR (KBr): 2953, 1629, 1611, 1465, 1279, 1003, 832, 763, 692 cm⁻¹; HRMS (ESI) calcd for C₂₃H₁₆ClO₂ [M+H]⁺: 359.0833, found 359.0837.

Acknowledgments ((optional))

We thank the Natural Science Foundation of Shandong Province (ZR2018BB026, ZR2019BB021), the National Natural Science Foundation of China (21802084) and the Doctoral Start-Up Scientific Research Foundation of Qufu Normal University.

Keywords: TBAF • cation-π interaction • dihydroisobenzofuran • malonate ester • cyclization reaction

[1] J. H. Clark, Chem. Rev. 1980, 80, 429.

- [2] a) B. Yang, K. Chansaenpak, H. Wu, L. Zhu, M. Wang, Z. Li, H. Lu, *Chem. Commun.* 2017, 53, 3497; b) Zhao, M. L. Ming, J. Tang, X. Zhao, *Org. Lett.* 2016, *18*, 416; c) M. A. C. González, P. Nordeman, A. B. Gómez, D. N. Meyer, G. Antoni, M. Schou, K. J. Szabó, *Chem. Commun.* 2018, *54*, 4286.
- a) T. W. Greene, P. G. Wuts, *Protective Groups in Organic Synthesis*;
 3rd ed; Wiley: New York, 1999 pp 113-149; b) E. J. Corey, B. B. Snider,
 J. Am. Chem. Soc. 1972, 94, 2549.
- [4] a) R. Devi, J. Das, B. Sarma, S. K. Das, *Org. Biomol. Chem.* 2018, *16*, 5846; b) K. Pandurangan, A. B. Aletti, D. Montroni, J. A. Kitchen, M. Martínez-Calvo, S. Blasco, T. Gunnlaugsson, E. M. Scanlan, *Org. Lett.* 2017, *19*, 1068; c) K. Ermanis, Y.-T. Hsiao, U. Kaya, A. Jeuken, P. A. Clarke, *Chem. Sci.* 2017, *8*, 482.
- [5] For cyclization reactions, see: a) X. Huang, A. Bugarin, *Chem. Eur. J.* **2016**, *22*, 12696; b) K. Hiroya, R. Jouka, M. Kameda, A. Yasuhara, T. Sakamoto, *Tetrahedron* **2001**, *57*, 9697.
- [6] For reduction reactions, see: a) X.-F. Liu, R. Ma, C. Qiao, H. Cao, L.-N. He, *Chem. Eur. J.* 2016, 22, 16489; b) S. Das, D. Addis, L. R. Knçpke, U. Bentrup, K. Junge, A. Brückner, M. Beller, *Angew. Chem. Int. Ed.* 2011, *50*, 9180.
- [7] For elimination reactions, see: a) C. Souli, N. Avlonitis, T. Calogeropoulou, A. Tsotinis, G. Maksay, T. Bíró, A. Politi, T. Mavromoustakos, A. Makriyannis, H. Reis, M. Papadopoulos, *J. Med. Chem.* 2005, 48, 5203; b) M. Okutani, Y. Mori, *J. Org. Chem.* 2009, 74, 442.
- [8] a) E. Nagy, E. S. Germain, P. Cosme, P. Maity, A. C. Terentis, S. D. Lepore, *Chem. Commun.* 2016, *52*, 2311; b) P. Maity, S. D. Lepore, *Angew. Chem. Int. Ed.* 2011, *50*, 8338; c) E. Nagy, S. D. Lepore, *Org. Lett.* 2017, *19*, 3695.
- [9] a) A. S. Mahadevi, G. N. Sastry, Chem. Rev. 2013, 113, 2100; b) D. A. Dougherty, Acc. Chem. Res. 2013, 46, 885.
- [10] a) S. Yamada, Org. Biomol. Chem. 2007, 5, 2903; b) S. Yamada, J. S. Fossey, Org. Biomol. Chem. 2011, 9, 7275.
- [11] a) C. D. Iverson, S. Zahid, Y. Li, A. H. Shoqafi, A. Ata, R. Samarasekera, *Phytochem. Lett.* **2010**, *3*, 207; b) N. Moore, H. Verdoux, B. Fantino, *Int. Clin. Psychopharmacol.* **2005**, *20*, 131; c) B. Verastegui-Omaña, D. Rebollar-Ramos, A. Pérez-Vásquez, A. L. Martínez, A. Madariaga-Mazón, L. Flores-Bocanegra, R. Mata, J. Nat. Prod. **2017**, *80*, 190.
- [12] a) D. Y. Li, X. S. Shang, G. R. Chen, P. N. Liu, Org. Lett. 2013, 15, 3848; b) X. S. Shang, N. T. Li, Z. Q. Guo, P. N. Liu, Dyes and Pigments 2016, 132, 167.
- [13] a) S. K. Pawar, C.-D. Wang, S. Bhunia, A. M. Jadhav, R.-S. Liu, *Angew. Chem. Int. Ed.* 2013, *52*, 7559; b) K. Sekine, A. Takayanagi, S. Kikuchi, T. Yamada, *Chem. Commun.* 2013, *49*, 11320.
- [14] a) Y. Zhao, F. Zhang, W. Yao, C. Wang, Y. Liu, Y. Li, *Eur. J. Org. Chem.* **2015**, 7984; b) A. Saito, T. Konishi, Y. Hanzawa, *Org. Lett.* **2010**, 12, 372.
- [15] a) C. Wang, C. Dong, L. Kong, Y. Li, Y. Li, *Chem. Commun.* 2014, *50*, 2164; b) N. S. V. M. R. Mangina, V. Kadiyala, R. Guduru, K. Goutham, B. Sridhar, G. V. Karunakar, *Org. Lett.* 2017, *19*, 282.
- [16] a) J. Shen, L. Xue, X. Lin, G. Cheng, X. Cui, *Chem. Commun.* **2016**, *52*, 3292; b) G. Cheng, Y. Weng, X. Yang, X. Cui, *Org. Lett.* **2015**, *17*, 3790.
- [17] For reviews, see: a) J. V. Greenhill, Chem. Soc. Rev. 1977, 6, 277; b) A.-Z. A. Elassar, A. A. El-Khair, Tetrahedron 2003, 59, 8463.
- [18] a) Y. Zhao, M. Xu, Z. Zheng, Y. Yuan, Y. Li, *Chem. Commun.* 2017, 53, 3721; b) Y. Zhao, Z.-Y. Cao, X.-P. Zeng, J.-M. Shi, Y.-H. Yu, J. Zhou, *Chem. Commun.* 2016, *52*, 3943; c) Z.-Y. Cao, Y. Zhao, J. Zhou, *Chem. Commun.* 2016, *52*, 2537; d) J. Luo, Y.-B. Fang, X.-Y. Mao, M. Yang, Y.-L. Zhao, Y.-L. Liu, G.-S. Chen, Y.-F. Ji, *Adv. Synth. Catal.* 2019, *361*, 1408.
- [19] Y. Zhao, Z. Zhang, X. Liu, Z. Wang, Z. Cao, L. Tian, M. Yue, J. You, J. Org. Chem. 2019, 84, 1379.

- The application of *o*-(alkynyl)phenyl propargyl alcohol, see: a) Y. Chen,
 G. Li, Y. Liu, *Adv. Synth. Catal.* **2011**, *353*, 392; b) J. Zhao, W. Xu, X.
 Xie, N. Sun, X. Li, Y. Liu, *Org. Lett.* **2018**, *20*, 5461.
- [21] D. Rodríguez, A. Navarro, L. Castedo, D. Domínguez, C. Saá, Org. Lett. 2000, 2, 1497.
- [22] CCDC 1947706

- [23] S. Fustero, B. Fernández, P. Bello, C. del Pozo, S. Arimitsu, G. B. Hammond, Org. Lett. 2007, 9, 4251. And ref. 8.
- [24] a) L.-J. Wang, H.-T. Zhu, L. Lu, F. Yang, X.-Y. Liu, Y.-M. Liang, Org. Lett. 2012, 14, 1990; b) J.-J. Lian, R.-S. Liu, Chem. Commun. 2007, 1337.

10.1002/ejoc.201901790

WILEY-VCH

FULL PAPER

An efficient method has been devised for the synthesis of dihydroisobenzofuran derivatives through the reaction of *in situ* generated ynones with potentially *C*-nucleophilic malonate esters. Both the basicity of fluoride anion and ammonium cation- π interaction with alkyne unit might play a crucial role in the cyclization reaction.

Cation-π interaction

Yulei Zhao,* Xuqiang Guo, Zongkang Wang, Duyi Shen,* Tingting Chen, Nan Wu, Shina Yan, Jinmao You

Page No. – Page No.

TBAF-Catalyzed Cyclization Reactions of o-(Alkynyl)phenyl Propargyl Alcohols with Malonate Esters: A Possible Cation-π Interaction as The Activation Approach