

Contents lists available at ScienceDirect

# Journal of Organometallic Chemistry



# Photocatalytic degradation of methyl orange mediated by a silica coated nanomagnet porphyrin hybrid



Kelly A.D.F. Castro<sup>a,#,\*</sup>, João M.M. Rodrigues<sup>b,#,\*</sup>, M. Amparo F. Faustino<sup>a</sup>, João P.C. Tomé<sup>c</sup>, José A.S. Cavaleiro<sup>a</sup>, Maria da Graça P.M.S. Neves<sup>a,\*</sup>, Mário M.Q. Simões<sup>a,\*</sup>

<sup>a</sup> LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal

<sup>b</sup> CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal

<sup>c</sup> Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

#### ARTICLE INFO

Article history: Received 31 January 2021 Accepted 15 February 2021 Available online 17 February 2021

Keywords: Porphyrin Silica nanomagnetic particles Photocatalysis methyl orange Degradation

# ABSTRACT

The photocatalytic activity of a silica coated nanomagnet porphyrin hybrid (**NPH**) and of the corresponding porphyrin precursors (**H**<sub>2</sub>**P** and **ZnP**) was evaluated in the degradation of the methyl orange dye (**MO**) under visible light irradiation. The catalytic degradation of **MO** was performed under air, in the absence and in the presence of aqueous hydrogen peroxide. The results show that the hybrid **NPH** was the most effective photocatalyst causing the total degradation of **MO** after 270 min of white light irradiation (150 mW cm<sup>-2</sup>) in the presence of hydrogen peroxide. The remarkable photocatalytic activity of this **NPH**, associated with the possibility of its reuse, makes this material a promising photocatalyst.

© 2021 Elsevier B.V. All rights reserved.

# 1. Introduction

Environmental pollution is one of the major and most urgent problems of the modern world requiring a constant and special attention from the scientific community. In particular, wastewater from dyeing industries has become exceptionally worrisome, since the presence of dyes can inhibit sunlight penetration and, consequently, might reduce the photosynthetic process [1,2]. Following these inputs, the scientific community is contributing with the development of novel and economically sustainable methodologies for the detoxification of textile wastewaters, aiming to follow the recommended quality criteria and to close the water cycle [3,4].

The large-scale use of dyes results in the production of large volumes of pollutants, which are often discarded without any previous treatment. Therefore, the development of efficient methodologies in order to minimize the environmental impact caused by industrial effluents is of great interest [5]. Different methodologies have been developed for the degradation and/or scavenging of those dyes, especially azo dyes (the most common synthetic dyes, ca 70% wt.). These methodologies include adsorption, biological oxidation, membrane filtration, ozonation, oxidation using UV/H<sub>2</sub>O<sub>2</sub>, UV/TiO<sub>2</sub>, UV or visible light and catalysis [3,6–9]. The

<sup>#</sup> These two authors contributed equally to this work.

approaches based on catalytic processes appear as important alternatives in the remediation of effluents. In fact, the fundamental pillar of green chemistry is catalysis, generally resulting in significant gains in terms of overall efficiency of a chemical reaction. Porphyrins and analogues are among the catalysts with recognized efficacy for azo dyes (photo)degradation [1,5,10].

Metalloporphyrins and analogues have already proved their efficiency as catalysts, namely for oxidative reactions [11-20]. Porphyrins are also efficient producers of reactive oxygen species (ROS) in the presence of light, such as singlet oxygen  $({}^{1}O_{2})$  [21– 24], thus inducing many photocatalytic reactions [25,26]. The reaction of ROS with the target pollutants is an alternative method for removing organic pollutants [27,28]. From the successful history of photocatalysts, the special attention given to porphyrins and analogues by the scientific community is due to their strong absorption bands in the visible region, versatile chemical structures, and facile tuning of the electronic properties. Besides, the insertion of diverse metals into the core of the macrocycle can modulate the catalytic activity associated with the porphyrins' structure. Additionally, the development of heterogeneous catalysts based on porphyrins represents an important challenge for a sustainable development.

Recently, magnetite nanoparticles ( $Fe_3O_4$ ) have originated a great interest due to their physicochemical characteristics.  $Fe_3O_4$  with different structures has been used in different areas, such as environmental technology, nanotechnology, medicine and catalysis [29–33]. In addition to their exceptional

<sup>\*</sup> Corresponding authors.

*E-mail addresses:* kadfc16@gmail.com (K.A.D.F. Castro), jrodrigues@ua.pt (J.M.M. Rodrigues), gneves@ua.pt (M.d.G.P.M.S. Neves), msimoes@ua.pt (M.M.Q. Simões).

variety of applications, magnetite nanoparticles have the advantage of their possible reuse. For instance, Qin and coworkers studied Fe<sub>3</sub>O<sub>4</sub>/TiO<sub>2</sub> magnetic nanoparticles for photocatalytic degradation of phenol [34]. In another study, it was reported the synthesis and characterization of magnetic nanoparticles functionalized with [5,15-bis(phenyl)-10,20-bis(4methoxycarbonylphenyl)porphyrin]platinum(II) and the photocatalytic activity of the hybrid was tested using 2,4,6-trichlorophenol as the target pollutant [35]. More recently, magnetite nanoparticles with different morphologies (cubic and spherical ones) decorated with the 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin showed to be able to generate <sup>1</sup>O<sub>2</sub> under ultraviolet irradiation. Their study as photocatalysts towards bisphenol A (BPA) disclosed degradation values of 64% (cubic-shaped) and of 90% (spherical shape) in the presence of hydrogen peroxide (H2O2) [36]. Additionally, these materials retained their catalytic features for at least three catalytic cycles.

Following our interest in developing new materials for environmental remediation, in this publication we report the synthesis and characterization of core-shell magnetitesilica nanoparticles functionalized with the Zn(II) complex of a porphyrin obtained from the reaction of 5,10,15,20tetrakis(pentafluorophenyl)porphyrin with tosylethylenediamine. Furthermore, the efficacy of this material to act as photocatalyst was evaluated under white light irradiation (380-750 nm) using methyl orange dye (**MO**) as the target pollutant. The studies were performed under air in the absence and in the presence of aqueous  $H_2O_2$ .

# 2. Experimental

# 2.1. Reagents and Equipment

All chemicals used in this study were purchased from Sigma-Aldrich or Merck and were of analytical grade.

Electronic spectra (UV-Vis) were obtained on a Shimadzu UV-2501PC spectrophotometer, in the 350-800 nm range. The fluorescence emission spectra were recorded in DMF in 1 × 1 cm quartz optical cells at 298 K under normal atmospheric conditions on a computer-controlled Horiba Jobin Yvon FluoroMax-3 spectrofluorimeter. The widths of both excitation and emission slits were set at 2.0 nm. <sup>1</sup>H and <sup>19</sup>F NMR spectra were recorded on a Bruker Avance AMX 300 spectrometer at 300.13 MHz and 282.38 MHz, respectively. Deuterated dimethylsulfoxide was used as solvent and TMS ( $\delta = 0$  ppm) as the internal standard; chemical shifts are reported in ppm ( $\delta$ ) and coupling constants (J) are given in Hz. Mass spectra were acquired on an Applied Biosystems Analyzer mass spectrometer (MALDI TOF/TOF). HRMS-ESI spectra were recorded on VG AutoSpec-M spectrometer.

# 2.2. Preparation of porphyrins $H_2P$ and ZnP

The porphyrins were prepared according to the following steps:

- i) The precursor 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin **[H<sub>2</sub>(TPFPP)]** was synthesized by condensation of pyrrole with pentafluorobenzaldehyde under acidic conditions [11,37].
- ii) The tri-substituted free-base porphyrin  $(H_2P)$  was obtained by structural modification of  $[H_2(TPFPP)]$  in the presence of the nucleophile *N*-tosylethylenediamine, as described in the literature [38].
- iii) The Zn(II) complex of H<sub>2</sub>P (ZnP) was obtained by adding zinc(II) acetate (42.1 mg, 0.32 mmol) to a solution of H<sub>2</sub>P (50.0 mg) in dichloromethane/methanol (2:1, 15 mL) and the resulting mixture was refluxed at 60 °C for 1 h (Scheme 1). After cooling to room temperature, the reaction mixture was washed

with distilled water. The organic phase was dried  $(Na_2SO_4)$  and the solvent was evaporated under reduced pressure. The **ZnP** was obtained in quantitative yield by crystallization in dichloromethane/hexane.

**H**<sub>2</sub>**P**: Yield: 19%; <sup>1</sup>**H NMR** (DMSO-d<sub>6</sub>): δ -3.13 (s, 2H, NH), 2.37 (s, 9H, Ts-CH<sub>3</sub>), 3.18 (q, J = 6.2 Hz, 6H, CH<sub>2</sub>), 3.64 (q, J = 6.2 Hz, 6H, CH<sub>2</sub>), 6.47 (s, 3H, NH-PhF<sub>4</sub>), 7.47 (d, J = 8.2 Hz, 6H, Ts-o-H), 7.81 (d, J = 8.2 Hz, 6H, Ts-*m*-H), 7.90 (t, J = 6.1 Hz, 3H, NH-Ts), 9.24-9.33 (m, 8H, H- $\beta$ ) ppm. <sup>19</sup>**F NMR** (DMSO-d<sub>6</sub>): δ -163.08 to -162.97 (m, 2F, o-F), -166.67 (d, J = 18.4 Hz, 6F, Ts-o-F), -177.52 (t, J = 22.4 Hz, 1F,*p*-F), -183.67 to -183.77 (m, 6F, Ts-*m*-F), -186.43 to -186.25 (m, 2F, *m*-F). **UV-Vis** (CHCl<sub>3</sub>),  $\lambda_{max}$ : (log  $\varepsilon$ ): 421 (5.36), 511 (4.26), 548 (3.64), 586 (3.86), 653 (3.42). **UV-Vis** (DMSO),  $\lambda_{max}$ : 424, 512, 548, 586, 648 nm. **HRMS-ESI:** Calculated for C<sub>71</sub>H<sub>50</sub>F<sub>17</sub>N<sub>10</sub>O<sub>6</sub>S<sub>3</sub> [M+H]<sup>+</sup> 1557.2805; found: 1557.2587.

**ZnP**: <sup>1</sup>**H NMR** (DMSO-d<sub>6</sub>):  $\delta$  2.36 (s, 9H, Ts-CH<sub>3</sub>), 3.16 (q, J = 6.0 Hz, 6H, CH<sub>2</sub>), 3.61 (q, J = 6.0 Hz, 6H, CH<sub>2</sub>), 6.39 (s, 3H, NH-PhF<sub>4</sub>), 7.47 (d, J = 8.2 Hz, 6H, Ts-o-H), 7.81 (d, J = 8.2 Hz, 6H, Ts-*m*-H), 7.91 (t, J = 6.0 Hz, 3H, NH-Ts), 9.07-9.16 (m, 8H,  $\beta$ -H). <sup>19</sup>**F NMR** (DMSO-d<sub>6</sub>):  $\delta$  -162.78 to -162.87 (m, 2F, o-F), -166.22 (d, J = 17.8 Hz, 6F, Ts-o-F), -178.23 (t, J = 22.4 Hz, 1F, *p*-F), -184.06 (dd, J = 17.8 and 10.1 Hz, 6F, Ts-*m*-F), -186.73 to -186.92 (m, 2F, *m*-F). **UV-Vis** (CHCl<sub>3</sub>),  $\lambda_{max}$  (log  $\varepsilon$ ): 418 (5.24), 513 (4.24), 580 (3.43) nm. **UV-Vis** (DMSO),  $\lambda_{max}$ : 420, 520, 586 nm. **MS (MALDI TOF/TOF)** (m/z): 1620.0 [M+H]<sup>+</sup>.

#### 2.3. Preparation of the Nanomagnet Porphyrin Hybrid (NPH) material

The Nanomagnet Porphyrin Hybrid (NPH) material was prepared according to the procedure described in the literature [39]. Briefly, the magnetic cores (magnetite) were synthesized by the coprecipitation method under basic conditions using ammonium hydroxide. Then, the cores after being coated with silica using the silicic acid approach were maintained under stirring for 24 h in the presence of (3-aminopropyl)triethoxysilane (APTS) in order to obtain the desired nanoparticles functionalized with aminopropyl chains. The magnetic aminopropyl silica nanoparticles (Si-NP) were filtered, washed several times with ethanol, followed by magnetic decantation purification. Subsequently, the immobilization of the porphyrin ZnP into Si-NP was performed. For this, a previously prepared ethanol suspension of the Si-NP [39] (13.5 mL, corresponding to 250 mg of Si-NP) were filtered through a polyamide membrane, washed several times with DMSO and re-suspended in DMSO (6 mL). A solution of **ZnP** (20.0 mg, 12.3 umol) in DMSO (2 mL) was added to the previous Si-NP suspension and the resulting mixture was stirred for 24 h at 160°C (Scheme 1). The immobilization of ZnP was easily monitored by thin-layer chromatography since the disappearance of the spot corresponding to ZnP was accompanied by the concomitant appearance of a spot corresponding to the NPH material at the application point. The insoluble material with a violet color was washed several times with appropriate solvents: firstly, dichloromethane and then a mixture of dichloromethane/methanol (90:10) until the Soret band of the ZnP was no longer detected through UV-Vis in the rinsing solvent. The quantification of the non-immobilized ZnP present in the washing solvents allowed to calculate the ZnP loading in the material (based on the  $\varepsilon$  value of the Soret band of **ZnP**). In the washing process, the hybrid material NPH in DMSO was firstly decanted by recurring to a magnet and then filtered under vacuum, using a polyamide membrane on a Büchner funnel. The NPH material was re-suspended and kept in dry DMSO (25 mL), making a stock solution of the NPH photocatalyst for the photocatalytic activity assays. NPH was characterized by UV-Vis and fluorescence spectroscopy.



Nanomagnet Porphyrin Hybrid (NPH)

Scheme 1. Synthetic procedure used to obtain the Nanomagnet Porphyrin Hybrid (NPH) and the structure of methyl orange (MO) used as azo dye model.

#### 2.4. Singlet oxygen generation

Stock solutions of each porphyrin (H<sub>2</sub>P and ZnP) and of 1,3diphenylisobenzofuran (DPiBF) in DMF at 0.1 mM and 10 mM, respectively, were prepared. The reaction mixture containing DPiBF (50  $\mu$ M) and a solution of each photocatalyst (0.5  $\mu$ M) in DMF was irradiated in a quartz cell (3 mL), under magnetic stirring at an irradiance of 10 mW cm<sup>-2</sup> with a homemade LEDs array. The LEDs array is composed of a matrix of 5  $\times$  5 LEDs making a total of 25 light sources with an emission peak centered at 654 nm and a bandwidth at half maximum of  $\pm$  20 nm. During the irradiation period the solutions were stirred at ambient temperature. The DPiBF degradation was monitored by measuring the absorbance decrease at 415 nm at irradiation intervals of 1 min. The percentage of decay of DPiBF absorption is related with the production of singlet oxygen. The quantification was achieved by the difference between the initial and the final absorbance at 415 nm over a given irradiation time. The same strategy was adopted for NPH, but the photocatalyst concentrations used were 0.5, 1.0, 2.0, and 5.0 µM. The results obtained were compared with those obtained in the presence of  $H_2$ TPP (5,10,15,20-tetraphenylporphyrin) and in the absence of any porphyrin (negative control) under similar irradiation conditions.

# 2.5. Photocatalytic activity

The photocatalytic activity of  $H_2P$ , **ZnP** and **NPH** was evaluated in aqueous solutions using methyl orange (**MO**) as model substrate and under visible light irradiation, which was performed with a halogen 500 W lamp at an irradiance of 150 mW cm<sup>-2</sup>. This light source was positioned 10 cm away from the batch reactor and the temperature was kept at *ca* 20 °C under stirring. The reactions were performed under air and in the presence of aqueous  $H_2O_2$ . A stock solution of the dye ([**MO**] =  $8.26 \times 10^{-2} \text{ mol } \text{L}^{-1}$ ) was prepared in milli-Q water. To a 4 mL quartz cuvette, 3.0 mL of water, 200  $\mu$ L of **MO** dye solution and the adequate volume of stock solution of the catalyst (H<sub>2</sub>P or ZnP in DMSO) were added to obtain a final concentration of 0.5 µM. For the reactions carried out in the presence of hydrogen peroxide, 100  $\mu$ L of aqueous H<sub>2</sub>O<sub>2</sub> (30%, w/w) were added. In the case of the heterogeneous photocatalyst (NPH), the solution was stirred in the dark (30 min) before irradiation in order to obtain an equilibrium point of initial physical adsorption of **MO** over the surface of the photocatalyst. All photocatalytic experiments were accomplished under similar conditions. The photocatalytic performance was monitored indirectly by relating the decrease in the absorbance of MO at 464 nm in solution with its degradation. The photocatalytic reactions in the presence of hydrogen peroxide were also performed in the presence of mannitol. The production of <sup>•</sup>OH radicals was investigated indirectly by degradation of terephthalic acid (TA) [40]. The reaction mixture containing TA (1 mM) and a solution of each photocatalyst (0.5 µM H<sub>2</sub>P, 0.5 µM ZnP and 5.0 µM of ZnP in NPH in PBS solutions (pH = 7.0) with 1% DMSO and 100  $\mu$ L of aqueous H<sub>2</sub>O<sub>2</sub> (30%, w/w) was irradiated in a quartz cell (4 mL) with white light at an irradiance of 150 mW cm<sup>-2</sup>. The reaction mixture was stirred in the dark (30 min) before irradiation. The TA degradation was monitored by measuring the emission at 450 nm ( $\lambda_{exc} = 315$  nm) for 60 min of irradiation. Dark controls were included.

# 3. Results and Discussion

# 3.1. Synthesis and characterization of the photocatalysts

The synthetic methodology used in the preparation of the homogeneous and the heterogeneous photocatalysts is summarized in Scheme 1. The porphyrin derivative  $H_2P$  was prepared by a



Fig. 1. UV-Vis spectra of H<sub>2</sub>P, ZnP and NPH in DMSO.

controlled nucleophilic substitution of three of the *p*-fluorine atoms in **H**<sub>2</sub>(**TPFPP**) with *N*-tosylethylenediamine, according to the procedure reported previously by our group [38]. The subsequent reaction of **H**<sub>2</sub>**P** with zinc(II) acetate in dichloromethane:methanol (2:1) at 60 °C afforded the corresponding **ZnP** complex (Scheme 1). The structural confirmation of both derivatives **H**<sub>2</sub>**P** and **ZnP** was performed by recurring to adequate spectroscopic techniques namely <sup>1</sup>H NMR, mass spectrometry (Figures S1-S5 in the Supporting information) and UV-Vis spectroscopy.

The covalent immobilization of **ZnP** onto the core-shell magnetite silica nanoparticles (**Si-NP**) functionalized with amino groups occurred via nucleophilic substitution of the *p*-fluorine atom at the C<sub>6</sub>F<sub>5</sub> group and was performed in DMSO at 160 °C for 24 h; the functionalized nanoparticles **Si-NP** were obtained by reacting the magnetic cores covered with silica with APTS according with literature procedures [39,41]. After the immobilization step, the obtained violet nanoparticles were thoroughly washed with appropriate solvents affording the desired **NPH**, the **ZnP** loading in the **NPH** found was  $3.37 \times 10^{-4}$  mol g<sup>-1</sup>. This loading was determined by quantifying the amount of the non-immobilized **ZnP** by UV-Vis in the rinsing solutions. Then, the **NPH** was re-suspended in DMSO and the success of the immobilization was confirmed by UV-Vis and fluorescence spectroscopy.

The UV-Vis spectra of  $H_2P$ , ZnP and of the NPH suspension in DMSO are displayed in Fig. 1. The non-immobilized porphyrin derivatives  $H_2P$  and ZnP show the typical Soret band at 424 and 420 nm, respectively, accompanied by the less intense Q bands at 512, 548, 586, and 648 nm for  $H_2P$  and at 520 and 586 nm for ZnP; this decrease in the number of the Q bands after metalation is related to the alteration in the micro symmetry of the porphyrin macrocycle. In the magnetic hybrid NPH the presence of ZnP complex was promptly confirmed by the appearance of the Soret band at 419 nm and of the corresponding Q-bands at 515 and 580 nm. These features validated the success of the immobilization and the UV-Vis spectrum profile is similar to that obtained for the nonimmobilized ZnP in solution. Additionally, the UV-Vis spectra were also acquired in a mixture of DMSO: $H_2O$  and are shown in the SI (Figure S6). As it is expected the spectrum of the silica nanoparti-



Fig. 2. Emission spectra of Si-NP and NPH in DMSO solution.

cles (**Si-NP**) did not present bands in the region of 400 nm (Figure S6).

The presence of **ZnP** in the hybrid was also confirmed by the emission spectrum obtained of the **NPH** material in DMSO solution upon excitation at 410 nm (Fig. 2). The strong emission band observed in the red region at *ca*. 594 nm [ $\lambda > Qx(0,0)$ ] can only be due to immobilized **ZnP** since the **Si-NP** did not present any emission band upon 410 nm excitation. Similar results were observed for other porphyrin derivatives when immobilized [42].

#### 3.2. Singlet oxygen generation

The ability of photocatalysts to generate ROS, namely singlet oxygen ( ${}^{1}O_{2}$ ), superoxide anion radical ( $O_{2}^{\bullet-}$ ), hydrogen peroxide ( $H_{2}O_{2}$ ) and hydroxyl radical ( ${}^{\bullet}OH$ ) is considered a crucial feature regarding their efficiency in photocatalysis [43]. In general, when porphyrin derivatives are used as photocatalysts,  ${}^{1}O_{2}$  is the major ROS involved [25]. The production of  ${}^{1}O_{2}$  was assessed by an indirect chemical method using 1,3-diphenylisobenzofuran (DPiBF) as a probe. As other furans, this compound is able to react as a diene in a [4+2] process with  ${}^{1}O_{2}$  as the dienophile affording the colorless o-dibenzoylbenzene; with this quencher, exclusively  ${}^{1}O_{2}$  is detected [44].

So, the photodegradation of DPiBF mediated by **H**<sub>2</sub>**P**, **ZnP**, **NPH** and also by **H**<sub>2</sub>**TPP** (used as reference) was qualitatively assessed by monitoring its absorbance decay at 415 nm as a function of the irradiation time with red light ( $654 \pm 20$  nm). The results in Fig. 3 show that the absorbance of DPiBF at 415 nm decreased in the presence of all porphyrin derivatives under irradiation as a function of time through a 1<sup>st</sup> kinetic order. Comparing the photodecomposition slope promoted by each porphyrin is observed that **H**<sub>2</sub>**P** was the best <sup>1</sup>O<sub>2</sub> generator, being even better than the reference (**H**<sub>2</sub>**TPP**), followed by **ZnP** and **NPH**. For **NPH**, a significant increase of <sup>1</sup>O<sub>2</sub> production was observed when its concentration was increased from 0.5 to 5  $\mu$ M.

This observation was important in order to establish the amount of material required for the photocatalytic reactions. This reduction in  ${}^{1}O_{2}$  production is in accordance with other studies involving silica nanoparticles or others nanoplatforms where the  ${}^{1}O_{2}$  production by the porphyrin immobilized is significantly reduced [45].

The photostability and the solubility of the catalyst in solution are important for homogeneous catalysis. The photostability of  $H_2P$ , ZnP and NPH were investigated by UV-Vis, monitoring the absorbance of the corresponding Soret band after different times of



**Fig. 3.** Time dependent photodecomposition of DPiBF (50  $\mu$ M) in DMF upon irradiation with red light (654 ± 20 nm) in the absence (DPiBF) or in the presence of **H**<sub>2</sub>**P**, **ZnP** and **NPH** (0.5  $\mu$ M for **H**<sub>2</sub>**P**, **ZnP** and **H**<sub>2</sub>**TPP** and 0.5, 1.0, 2.0 and 5.0  $\mu$ M of **ZnP** on **NPH**). **H**<sub>2</sub>**TPP** was used as reference. Note: Small bars are overlapped by the symbols.



**Fig. 4.** UV-Vis spectroscopy study of **H2P**, **ZnP** and **NPH** at a concentration of 5.0  $\mu$ M in DMSO/water before and after white light irradiation at an irradiance of 150 mW cm<sup>-2</sup> at different irradiation times (0 - 240 min).

irradiation (Fig. 4). In all cases, a good photostability was observed under the photocatalytic studies conditions.

#### 3.3. Photocatalytic activity

The photocatalytic activity of  $H_2P$ , **ZnP** and **NPH** was evaluated using **MO** as an azo dye model due to its resistance to environmental degradation. The experiments were performed under white light irradiation (380-750 nm) under air, and in the absence or in the presence of aqueous  $H_2O_2$  as oxidant. The degradation of **MO** in the presence of **H\_2P**, **ZnP** and **NPH** was monitored by measuring the decay of **MO** absorbance band at 464 nm. The photocatalytic efficiency of the different materials was expressed using the following equation:  $(A_0-A_t)/A_0$ , where  $A_0$  is the absorbance of **MO**  in the reaction mixture at time zero and  $A_t$  is the **MO** absorbance at an established time (t).

The catalysts **H**<sub>2</sub>**P**, **ZnP** and **NPH** showed significant differences (p < 0.05) in terms of dye degradation efficiency when the irradiations were performed without H<sub>2</sub>O<sub>2</sub> (Fig. 4). **NPH** was the most efficient photocatalyst causing a reduction of 54% in **MO** dye concentration after 240 min of irradiation when compared with **H**<sub>2</sub>**P** and **ZnP** which attained a maximum of ca 12% under the same irradiation period. In addition, the catalytic reactions were carried out in the absence of white light irradiation (dark conditions), and the **MO** degradation was not observed in the presence of none of the photocatalysts (**H**<sub>2</sub>**P**, **ZnP** and **NPH**) under dark conditions, as well as for both controls (dark and light).

The results obtained when the experiments were repeated in the presence of  $H_2O_2$  are summarized in Figs. 6 and 7, in the dark



**Fig. 5.** Photocatalytic degradation of methyl orange (**MO**) under air at different photoreaction times under light irradiation (150 mW cm<sup>-2</sup>): in the presence of 0.5  $\mu$ M of **H**<sub>2</sub>**P** (red shape) and **ZnP** (green shape); 5.0  $\mu$ M of **ZnP** in **NPH** (purple shape) and in the absence of catalyst (Control, blue shape). The absorption of **MO** was monitored at 464 nm. Note: Small bars are overlapped by the symbols (n = 3).



**Fig. 6.** Degradation of methyl orange (**MO**) under dark conditions at different reaction times: in the presence of aqueous  $H_2O_2$  (0.25 mol  $L^{-1}$ ) and 0.5  $\mu$ M of  $H_2P$  (red bars); 0.5  $\mu$ M of **ZnP** (green bars); 5.0  $\mu$ M of **ZnP** in **NPH** (purple bars) and with no catalyst (Control, blue bars). The **MO** absorbance was monitored at 464 nm. Note: Small bars are overlapped by the symbols. Note: Small bars are overlapped by the symbols (n = 3).

and after being irradiated, respectively. The results in show that in the absence of light (dark conditions) and after 90 min of reaction in the presence of any of the catalysts and  $H_2O_2$  only 7% of **MO** was oxidized. After 270 min of reaction this value reached 13% for **ZnP** and **NPH** while for **H\_2P** the value remains almost constant (*ca* 8%) and was similar to that observed for the control assay (reaction performed in the presence of  $H_2O_2$  only). These results indi-

cate that there is no remarkable difference between the different catalysts when dye degradation is performed in the presence of  $H_2O_2$  but in the absence of light.

The results in Fig. 6 show that the profile of these reactions in the presence of aqueous  $H_2O_2$  is totally different when carried out under light irradiation. In fact, the action of light was particularly relevant for improving the rate of oxidation mediated by **NPH** 



**Fig. 7.** Photocatalytic degradation of methyl orange (**MO**) in the presence of aqueous  $H_2O_2$  (0.25 mol  $L^{-1}$ ) at different irradiation times (irradiation with white light at an irradiance of 150 mW cm<sup>-2</sup>) in the presence of 0.5  $\mu$ M of  $H_2P$  (red bars); 0.5  $\mu$ M of **ZnP** (green bars); 5.0  $\mu$ M of **ZnP** in **NPH** (purple bars) and in the absence of any catalyst (Control, blue shape). The **MO** absorbance was monitored at 464 nm. Note: Small bars are overlapped by the symbols. Note: Small bars are overlapped by the symbols (n = 3).



**Fig. 8.** Photocatalytic degradation of methyl orange (**MO**) in the presence of aqueous  $H_2O_2$  (0.25 mol  $L^{-1}$ ) and mannitol (0.1 mol  $L^{-1}$ ) at different irradiation times (irradiation with white light at an irradiance of 150 mW cm<sup>-2</sup>) mediated by 0.5  $\mu$ M of  $H_2P$  (red bars), 0.5  $\mu$ M of **ZnP** (green bars) and 5.0  $\mu$ M of **ZnP** in **NPH** (purple bars). The blue bars represent the control reaction (only hydrogen peroxide and mannitol). The band of **MO** was monitored at 464 nm. Note: Small bars are overlapped by the symbols (n = 3).

(100% after 270 min) and **ZnP** (75% after 270 min). When compared with the photoreactions performed under light irradiation but in absence of  $H_2O_2$  (Fig. 5), an increment of *ca* 46% in catalytic activity was achieved for **NPH**, 56% for **ZnP** and 12.5% for **H\_2P**. So, the beneficial effect of  $H_2O_2$  in **MO** photodegradation is obvious when the results are compared with those obtained in its absence (Figs. 5 and Fig. 7).

The photodegradation of **MO** in the presence of **ZnP**, **NPH** and  $H_2O_2$  showed to be time-dependent. This time dependence was also observed for **NPH** in the absence of  $H_2O_2$ . In fact, a longer contact time with the photocatalyst can facilitate the interaction of **MO** with the oxidation promoting species. The pathway responsible for **MO** photodegradation after photocatalyst activation by white light in the presence of molecular oxygen ( $O_2$ ) can involve



**Fig. 9.** Emission spectra ( $\lambda_{exc} = 315 \text{ nm}$ ) obtained during the photolysis of TA (1.0 mM) at different irradiations times in the presence of  $H_2O_2$  (0.25 mol  $L^{-1}$ ) and (A) 0.5  $\mu$ M **H**<sub>2</sub>**P**, (B) 0.5  $\mu$ M **ZnP** and (C) 5.0  $\mu$ M of **ZnP** in **NPH**; all the irradiations were performed under white light at an irradiance of 150 mW cm<sup>-2</sup> in PBS solutions (pH = 7.0) with 1% DMSO. (D) Evolution of HTA formation during the photolysis of TA for 60 min in the presence of 0.5  $\mu$ M **H**<sub>2</sub>**P**, 0.5  $\mu$ M **ZnP** and 5.0  $\mu$ M of **ZnP** in **NPH**.

ROS such as hydrogen peroxide, superoxide and hydroxyl radicals (type I photochemical pathway) and/or singlet oxygen (photochemical pathway type II). Additionally, the decomposition of  $H_2O_2$  through a Fenton-like reaction can be facilitated in the presence of **NPH** affording hydroxyl radicals [46]. The results show that the photocatalytic activity of **H\_2P**, **ZnP** and **NPH** cannot be justified only by their efficiency to produce  ${}^{1}O_2$  (**H\_2P** > **ZnP** > **NPH**) and probably other highly reactive species such as hydroxyl radical (•OH) are also involved. In order to verify if the production of •OH is also involved in the photocatalytic degradation of **MO**, the reactions in the presence of  $H_2O_2$  were carried out in the presence of mannitol, an effective radical scavenger for •OH (Fig. 8) [47].

In fact, the photocatalytic efficacy of **ZnP** and **NPH** was strongly affected by the presence of mannitol confirming the role of  $^{\circ}$ OH radicals in **MO** photodegradation (Fig. 8). These results obtained with hydrogen peroxide in the presence of mannitol are similar to the ones obtained when the reactions were performed without hydrogen peroxide (see Fig. 5).

Terephthalic acid (TA) has been used to indirectly measure the production of  $^{\circ}$ OH by fluorescence. The  $^{\circ}$ OH radical species react with TA to yield an intensely fluorescent mono-hydroxylated derivative (HTA). Fig. 9 shows the production of HTA in a phosphate buffer solution (PBS, pH = 7.0) with H<sub>2</sub>O<sub>2</sub> in the presence of H<sub>2</sub>P, ZnP and NPH under white light irradiation at different periods of irradiation. Upon irradiation, hydroxyl radicals are produced, yielding a high HTA fluorescence signal. All the photocatalysts are able to generate  $^{\circ}$ OH radical in the presence H<sub>2</sub>O<sub>2</sub> and under light, as indicated by the oxidation of the TA probe. Several studies [46] have shown that the TA probe have strong affinity for

iron oxide surfaces resulting in lower concentration of the highly fluorescent HTA (Fig. 9D). The fluorescence pattern observed during the irradiation of TA in the presence of **NPH** (Fig. 9C) is due to the interaction between the nanoparticles' surface and TA. It is worth to mention that in the absence of hydrogen peroxide, the HTA signal is not observed.

These results suggest that the photocatalytic mechanism involves mainly two ROS species, namely singlet oxygen and hydroxyl radical. At the end of the photocatalytic reaction using **NPH**, when total degradation of **MO** was observed, fresh solutions of **MO** and  $H_2O_2$  were added to the reaction and subjected to the same reaction conditions of the first use. Again, total degradation of **MO** was observed after 240 min. Indeed, it was possible to reuse **NPH** at least three times without any loss of catalyst activity.

#### 4. Conclusions

Core-shell magnetite-silica nanoparticles decorated with a porphyrin bearing meso-aryl groups with *N*-tosylethylenediamine residues can be considered an excellent photocatalyst to be used for dyes degradation. The **NPH** material turned out to be an effective photocatalyst, with higher photostability and the advantage of possible reuse. Additionally, the photocatalytic activity was improved with the addition of aqueous hydrogen peroxide. In this case, two mechanisms (type I and type II) can be involved in the **MO** photodegradation. The efficacy of this new photocatalytic material in the photodegradation of other dyes will be evaluated in future work.

# **Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

#### Acknowledgements

Thanks are due to CNPg (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). The authors also acknowledge the University of Aveiro and FCT/MCTES (Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) and European Union (COMPETE and FEDER programs) for the financial support of UIDB/50006/2020 (LAQV-REQUIMTE), UIDB/50011/2020 & UIDP/50011/2020 (CICECO) and UIDB/00100/2020 (CQE) research units and to the project COP2P (PTDC/QUI-QOR/30771/2017), through national funds and, when applicable, co-financed by FEDER-Operational Thematic Program for Competitiveness and Internationalization-COMPETE 2020, within the PT2020 Partnership Agreement. K. A. D. F. Castro thanks CNPq for her post-doctoral scholarship (Process 201107/2014-7) and J. M. M. Rodrigues acknowledges funding in the form of a Junior Researcher Contract under the scope of the project COP2P (PTDC/QUI-QOR/30771/2017).

#### Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem.2021. 121751.

#### References

- [1] P. Zucca, C.M.B. Neves, M.M.Q. Simões, Maria da Graça P.M.S. Neves, G. Cocco, E. Sanjust, Immobilized Lignin Peroxidase-Like Metalloporphyrins as Reusable Catalysts in Oxidative Bleaching of Industrial Dyes, Molecules 21 (7) (2016) 964.
- [2] M. Bartolomeu, M. Neves, M.A.F. Faustino, A. Almeida, Wastewater chemical contaminants: remediation by advanced oxidation processes, Photochem. Photobiol. Sci. 17 (11) (2018) 1573–1598.
- [3] M.A. Al-Ghouti, M.A.M. Khraisheh, S.J. Allen, M.N. Ahmad, The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth, J. Environ. Manag. 69 (3) (2003) 229–238.
- [4] R. Bonnett, M.A. Krysteva, I.G. Lalov, S.V. Artarsky, Water disinfection using photosensitizers immobilized on chitosan, Water Res 40 (6) (2006) 1269–1275.
- [5] T.K. Saha, H. Frauendorf, M. John, S. Dechert, F. Meyer, Efficient Oxidative Degradation of Azo Dyes by a Water-Soluble Manganese Porphyrin Catalyst, ChemCatChem 5 (3) (2013) 796–805.
- [6] W. Przystas, E. Zablocka-Godlewska, E. Grabinska-Sota, Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports, Braz. J. Microbiol. 49 (2) (2018) 285–295.
- [7] S. Farias, D. Oliveira, A.A.U. Souza, S.M.A. Guelli U. de Souza, A.F. Morgado, Removal of reactive blue 21 and reactive red 195 dyes using horseradish peroxidase as catalyst, Braz. J. Chem. Eng. 34 (2017) 701–707.
- [8] C. Galindo, P. Jacques, A. Kalt, Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2: Comparative mechanistic and kinetic investigations, J. Photochem. Photobiol. A 130 (1) (2000) 35–47.
- [9] R. Raliya, C. Avery, S. Chakrabarti, P. Biswas, Photocatalytic degradation of methyl orange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures and their composites under visible light irradiation, Appl. Nanosci. 7 (5) (2017) 253–259.
- [10] V.P. Barros, M.D. Assis, Iron porphyrins as biomimetical models for disperse azo dye oxidation, J. Braz. Chem. Soc. 24 (2013) 830–836.
  [11] K.A.D.F. Castro, S. Silva, P.M. Pereira, M.M.Q. Simões, Maria da Graça
- [11] K.A.D.F. Castro, S. Silva, P.M. Pereira, M.M.Q. Simões, Maria da Graça P.M.S. Neves, J.A.S. Cavaleiro, F. Wypych, J.P. Tomé, S. Nakagaki, Galactodendritic porphyrinic conjugates as new biomimetic catalysts for oxidation reactions, Inorg. Chem 54 (9) (2015) 4382–4393.
- [12] S. Nakagaki, K.A.D.F. Castro, Maria da Graça P.M.S. Neves, M.A. Faustino, Y. lamamoto, The Research on Porphyrins and Analogues in Brazil: A Small Review Covering Catalytic and other Applications since the Beginning at Universidade de São Paulo in Ribeirão Preto until the Joint Venture between Brazilian Researchers and Colleagues from Universidade de Aveiro, Portugal, J. Braz. Chem. Soc. 30 (12) (2019) 2501–2535.

- [13] M.M.Q. Simões, I.C.M.S. Santos, Maria da Graça P.M.S. Neves, A.M.V. Cavaleiro, J.A.S. CavaleiroA,J.L. Pombeiro (Ed.), Functionalization of sp2 and sp3 Carbon Centers Catalyzed by Polyoxometalates and Metalloporphyrins, Advances in Organometallic Chemistry and Catalysis (2013) 59–71.
- [14] K.C.M. Westrup, R.M. da Silva, K.M. Mantovani, L. Bach, J.F. Stival, P.G.P. Zamora, F. Wypych, G.S. Machado, S. Nakagaki, Light-assisted cyclohexane oxidation catalysis by a manganese(III) porphyrin immobilized onto zinc hydroxide salt and zinc oxide obtained by zinc hydroxide salt hydrothermal decomposition, Appl. Catal. A 602 (2020) 117708.
- [15] M.M.Q. Simões, S.M.G. Pires, Maria da Graça P.M.S. Neves, J.A.S. Cavaleiro, Oxidative Transformations of Organic Compounds Mediated by Metalloporphyrins as Catalysts, Handbook of Porphyrin Science, pp. 197-306.
- [16] S.L.H. Rebelo, A.M.N. Silva, C.J. Medforth, C. Freire, Iron(III) Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions, Molecules 21 (4) (2016) 481.
- [17] F.S. Vinhado, M.E.F. Gandini, Y. Iamamoto, A.M.G. Silva, M.M.Q. Simões, Maria da Graça P.M.S. Neves, A.C. Tomé, S.L.H. Rebelo, A.M.V.M. Pereira, J.A.S. Cavaleiro, Novel Mn(III)chlorins as versatile catalysts for oxyfunctionalisation of hydrocarbons under homogeneous conditions, J. Mol. Catal. A Chem. 239 (1-2) (2005) 138–143.
- [18] S.L.H. Rebelo, S.M.G. Pires, M.M.Q. Simões, C.J. Medforth, J.A.S. Cavaleiro, Maria da Graça P.M.S. Neves, A Green and Versatile Route to Highly Functionalized Benzofuran Derivatives Using Biomimetic Oxygenation, ChemistrySelect 3 (5) (2018) 1392–1403.
- [19] S.M.G. Pires, M.M.Q. Simões, I.C.M.S. Santos, S.L.H. Rebelo, M.M. Pereira, Maria da Graça P.M.S. Neves, J.A.S. Cavaleiro, Biomimetic oxidation of organosulfur compounds with hydrogen peroxide catalyzed by manganese porphyrins, Appl. Catal. A 439-440 (2012) 51–56.
- [20] S.L.H. Rebelo, M.M.Q. Simões, Maria da Graça P.M.S. Neves, A.M.S. Silva, J.A.S. Cavaleiro, An efficient approach for aromatic epoxidation using hydrogen peroxide and Mn(iii) porphyrins, Chem. Commun. (5) (2004) 608–609.
- [21] K.A.D.F. Castro, G.T.P. Brancini, L.D. Costa, J. Biazzoto, M.A. Faustino, A. Tomé, Maria da Graça P.M.S. Neves, A. Almeida, M.R. Hamblin, R.S. da Silva, G. Braga, Efficient photodynamic inactivation of Candida albicans by a porphyrin and potassium iodide co-encapsulated in micelles, Photochem. Photobiol. Sci. 19 (2020) 1063–1071.
- [22] L.D. Costa, J.A. Silva, S.M. Fonseca, C.T. Arranja, A.M. Urbano, A.J. Sobral, Photophysical Characterization and in Vitro Phototoxicity Evaluation of 5,10,15,20-Tetra(quinolin-2-yl)porphyrin as a Potential Sensitizer for Photodynamic Therapy, Molecules 21 (4) (2016) 439.
- [23] K.A.D.F. Castro, N.M.M. Moura, M.M.Q. Simões, J.A.S. Cavaleiro, M.A.F. Faustino, Â. Cunha, F.A. Almeida Paz, R.F. Mendes, A. Almeida, C.S.R. Freire, C. Vilela, A.J.D. Silvestre, S. Nakagaki, Maria da Graça P.M.S. Neves, Synthesis and characterization of photoactive porphyrin and poly(2-hydroxyethyl methacrylate) based materials with bactericidal properties, Appl. Mater. Today 16 (2019) 332–341.
- [24] R.W. Redmond, J.N. Gamlin, A compilation of singlet oxygen yields from biologically relevant molecules, Photochem. Photobiol. 70 (4) (1999) 391–475.
- [25] J.C. Barona-Castaño, C.C. Carmona-Vargas, T.J. Brocksom, K.T. de Oliveira, Porphyrins as Catalysts in Scalable Organic Reactions, Molecules 21 (3) (2016) 310.
- [26] C.M.B. Neves, O.M.S. Filipe, N. Mota, S.A.O. Santos, A.J.D. Silvestre, E.B.H. Santos, Maria da Graça P.M.S. Neves, M.M.Q. Simões, Photodegradation of metoprolol using a porphyrin as photosensitizer under homogeneous and heterogeneous conditions, J. Hazard Mater. 370 (2019) 13–23.
- [27] L. Fernandez, V.I. Esteves, A. Cunha, R.J. Schneider, J.P.C. Tomé, Photodegradation of organic pollutants in water by immobilized porphyrins and phthalocyanines, J. Porphyrins Phthalocyanines 20 (1-4) (2016) 150– 166.
- [28] O.M.S. Filipe, E.B.H. Santos, M. Otero, E.A.C. Gonçalves, Maria da Graça P.M.S. Neves, Photodegradation of metoprolol in the presence of aquatic fulvic acids. Kinetic studies, degradation pathways and role of singlet oxygen, OH radicals and fulvic acids triplet states, J. Hazard. Mater. 385 (2020) 121523.
- [29] H. He, Y. Zhong, X. Liang, W. Tan, J. Zhu, C.Y. Wang, Natural Magnetite: an efficient catalyst for the degradation of organic contaminant, Sci. Rep. 5 (2015) 10139.
- [30] M. Godoi, D.G. Liz, E.W. Ricardo, M.S.T. Rocha, J.B. Azeredo, A.L. Braga, Magnetite (Fe3O4) nanoparticles: an efficient and recoverable catalyst for the synthesis of alkynyl chalcogenides (selenides and tellurides) from terminal acetylenes and diorganyl dichalcogenides, Tetrahedron 70 (20) (2014) 3349–3354.
- [31] H. Alina Maria, G. Alexandru Mihai, G. Monica Cartelle, M. Laurentiu, M. George Dan, Novel Drug Delivery Magnetite Nano-systems Used in Antimicrobial Therapy, Curr. Org. Chem. 18 (2) (2014) 185–191.
- [32] G. Unsoy, U. Gunduz, O. Oprea, D. Ficai, M. Sonmez, M. Radulescu, M. Alexie, A. Ficai, Magnetite: from synthesis to applications, Curr. Top. Med. Chem. 15 (16) (2015) 1622–1640.
- [33] I.L. Ardelean, L.B.N. Stoencea, D. Ficai, A. Ficai, R. Trusca, B.S. Vasile, G. Nechifor, E. Andronescu, Development of Stabilized Magnetite Nanoparticles for Medical Applications, J. Nanomater. 2017 (2017) 6514659.
- [34] J. Chang, Q. Zhang, Y. Liu, Y. Shi, Z. Qin, Preparation of Fe3O4/TiO2 magnetic photocatalyst for photocatalytic degradation of phenol, J. Mater. Sci. Mater. Electron. 29 (10) (2018) 8258–8266.
- [35] K.-H. Choi, K.-K. Wang, E.P. Shin, S.-L. Oh, J.-S. Jung, H.-K. Kim, Y.-R. Kim, Water-Soluble Magnetic Nanoparticles Functionalized with Photosensitizer for Photocatalytic Application, J. Phys. Chem. C 115 (8) (2011) 3212– 3219.

- [36] M. Neamţu, C. Nădejde, V.D. Hodoroaba, R.J. Schneider, U. Panne, Singlet oxygen generation potential of porphyrin-sensitized magnetite nanoparticles: Synthesis, characterization and photocatalytic application, Appl. Catal. B: Environ. 232 (2018) 553–561.
- [37] A.M.R. Gonsalves, J.M.T.B. Varejão, M.M. Pereira, Some new aspects related to the synthesis of meso-substituted porphyrins, J. Heterocycl. Chem. 28 (3) (1991) 635–640.
- [38] J.M. Rodrigues, A.S. Farinha, P.V. Muteto, S.M. Woranovicz-Barreira, F.A. Almeida Paz, Maria da Graça P.M.S. Neves, J.A. Cavaleiro, A.C. Tomé, M.T. Gomes, J.L. Sessler, J.P.C. Tomé, New porphyrin derivatives for phosphate anion sensing in both organic and aqueous media, Chem. Commun. 50 (11) (2014) 1359–1361.
- [39] C.M.D. Carvalho, E. Alves, L. Costa, J.P.C. Tomé, M.A.F. Faustino, Maria da Graça P.M.S. Neves, A.C. Tomé, J.A.S. Cavaleiro, A. Almeida, Â. Cunha, Z. Lin, J. Rocha, Functional cationic nanomagnet-porphyrin hybrids for the photoinactivation of microorganisms, ACS Nano 4 (12) (2010) 7133–7140.
- [40] L. Huang, G. Szewczyk, T. Sarna, M.R. Hamblin, Potassium Iodide Potentiates Broad-Spectrum Antimicrobial Photodynamic Inactivation Using Photofrin, ACS Infect. Dis. 3 (4) (2017) 320–328.
- [41] P. Battioni, E. Cardin, M. Louloudi, B. Schöllhorn, G.A. Spyroulias, D. Mansuy, T.G. Traylor, Metalloporphyrinosilicas: a new class of hybrid organic-inorganic materials acting as selective biomimetic oxidation catalysts, Chem. Commun. (17) (1996) 2037–2038.

- [42] K.A.D.F. Castro, F. Figueira, R.F. Mendes, F.A. Almeida Paz, Maria da Graça P.M.S. Neves, J.A.S. Cavaleiro, S. Nakagaki, J.P.C. Tomé, M.M.Q. Simões, Porphyrinic coordination polymer-type materials as heterogeneous catalysts in catechol oxidation, Polyhedron 158 (2019) 478–484.
- [43] J.L. Clark, J.E. Hill, I.D. Rettig, J.J. Beres, R. Ziniuk, T.Y. Ohulchanskyy, T.M. Mc-Cormick, M.R. Detty, Importance of Singlet Oxygen in Photocatalytic Reactions of 2-Aryl-1,2,3,4-tetrahydroisoquinolines Using Chalcogenorosamine Photocatalysts, Organometallics 38 (12) (2019) 2431–2442.
- [44] W. Spiller, H. Kliesch, D. Wöhrle, S. Hackbarth, B. Röder, G. Schnurpfeil, Singlet oxygen quantum yields of different photosensitizers in polar solvents and micellar solutions, J. Porphyrins Phthalocyanines 2 (2) (1998) 145– 158.
- [45] M.Q. Mesquita, José C.J.M.D.S. Menezes, S.M.G. Pires, Maria da Graça P.M.S. Neves, M.M.Q. Simões, A.C. Tomé, J.A.S. Cavaleiro, Â. Cunha, A.L. Danielda-Silva, A. Almeida, M.A.F. Faustino, Pyrrolidine-fused chlorin photosensitizer immobilized on solid supports for the photoinactivation of Gram negative bacteria, Dyes Pigments 110 (2014) 123–133.
- [46] G. Lyngsie, L. Krumina, A. Tunlid, P. Persson, Generation of hydroxyl radicals from reactions between a dimethoxyhydroquinone and iron oxide nanoparticles, Sci. Rep. 8 (1) (2018) 10834.
- [47] B. Shen, R.G. Jensen, H.J. Bohnert, Mannitol Protects against Oxidation by Hydroxyl Radicals, Plant Physiol 115 (2) (1997) 527–532.