Tetrahedron 70 (2014) 2118-2121

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Copper-mediated trifluoromethylation of potassium alkynyltrifluoroborates with Langlois' reagent

Tetrahedror

Srinivas Reddy Dubbaka^{*}, Shashidhar Nizalapur, Azmi Reddy Atthunuri, Manohar Salla, Thresen Mathew

Department of Medicinal Chemistry, Albany Molecular Research Singapore Research Centre, Pte Ltd, 61 Science Park Road, #05-01 Galen, Science Park II, Singapore 117525, Singapore

A R T I C L E I N F O

Article history: Received 17 December 2013 Received in revised form 20 January 2014 Accepted 3 February 2014 Available online 7 February 2014

Dedicated to Professor Pierre Vogel on the occasion of his 70th birthday

Keywords: Terminal alkynes Trifluoromethylation Potassium alkynyltrifluoroborates Copper Langlois' reagent

1. Introduction

Trifluoromethyl-substituted compounds are increasingly important structural motifs in pharmaceuticals, agrochemicals, and organic materials due to their unique properties imparted by the trifluoromethyl group, such as high electron density, steric hindrance, and solubility.¹ The importance of incorporation of a trifluoromethyl group into aryl, alkenyl-, alkynyl motifs is evident from their elaborate use in material and medicinal chemistry.² The development of efficient methods for preparing trifluoromethylated arenes, alkenes, and acetylenes has been a topic of increasing importance in organic synthesis.³ The trifluoromethyl group is incorporated into organic molecules by several methods, including nucleophilic,⁴ electrophilic,⁵ or radical reactions.⁶

Copper in catalytic/stoichiometric amounts is widely used in nucleophilic, electrophilic, and radical reactions. A trifluoromethyl group is installed by the reaction between a nucleophilic CF₃⁻ source (Ruppert reagent (CF₃SiMe₃),⁷ K[CF₃B(OMe)₃],⁸ CF₃H,⁹ (FSO₂CF₂SO₂Me, ClCF₂CO₂Me, CF₃CO₂Na, etc.)^{3e}), and aryl halides/

ABSTRACT

Synthesis of trifluoromethylated acetylenes by copper-mediated trifluoromethylation of potassium alkynyltrifluoroborates with CF₃ radicals generated from NaSO₂CF₃ and *tert*-butyl hydroperoxide (TBHP) is communicated. The trifluoromethylated acetylenes were obtained in good to moderate yields. The presented method tolerates a wide range of aromatic, heteroaromatic, and aliphatic potassium alkynyltrifluoroborates.

© 2014 Elsevier Ltd. All rights reserved.

triflates. A trifluoromethyl group is also incorporated via electrophilic CF₃⁺ sources (Umemoto's reagent,¹⁰ and Togni's reagent¹¹) with aryl/heteroaryl boronic acids. Besides, oxidative coupling reactions also have been applied.¹² Langlois reported of the use of CF₃SO₂Na to generate CF₃ radicals by the reaction with *tert*-butyl hydroperoxide (TBHP), and its subsequent incorporation into aryl and heteroaryl motifs.¹³ The latter method is further elaborated into Cu-catalyzed/mediated reactions with boronic acids.^{14,15}

Recently, groups of Buchwald,¹⁶ Wang,¹⁷ and others¹⁸ developed Cu-catalyzed trifluoromethylation of unactivated olefins by using Togni's reagent. Pd-catalyzed cross-coupling is typically employed in the synthesis of trifluoromethylated acetylenes.^{19,20} Direct C–H bond trifluoromethylation of terminal alkynes provides trifluoromethylated acetylenes in a straightforward fashion.^{21–23} Research groups of Qing, Weng, and Fu made use of Cu in catalytic/stoichiometric amounts in the trifluoromethylation of terminal alkynes using Ruppert, Togni or Umemoto reagents. While these methods deliver an equitable protocol to trifluoromethyl alkynes, they still require excess amounts of reagents and/or base and high reaction temperatures, leaving behind a forcing need for further development of methods towards competent formation of such molecules. Recently, Huang and Weng reported copper-catalyzed trifluoromethylation of potassium

^{*} Corresponding author. Tel.: +65 63950975; fax: +65 63985511; e-mail address: dubbaka.srinivasreddy@amriglobal.com (S.R. Dubbaka).

^{0040-4020/\$ –} see front matter @ 2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2014.02.005

alkynyltrifluoroborates with Togni's reagent.²⁴ However, Langlois' reagent (NaSO₂CF₃) has not been explored as a trifluoromethylating agent with potassium alkynyltrifluoroborates. Very recently, we reported copper-mediated trifluoromethylation of potassium aryland alkenyltrifluoroborates with Langlois' reagent.²⁵

Herein we report the synthesis of trifluoromethylated acetylenes by the reaction of potassium alkynyltrifluoroborates with Langlois' reagent and TBHP in a copper-mediated trifluoromethylation (Scheme 1).

Scheme 1. Cu-mediated trifluoromethylation of potassium alkynyltrifluoroborates with Langlois' reagent.

2. Results and discussion

The potassium alkynyltrifluoroborates **2a–o** used in this study were prepared from the corresponding acetylenes **1a–o** (Scheme 2). The acetylenes were deprotonated with *n*-BuLi in THF at -78 °C. After 60 min, addition of trimethoxyborane (1.5 equiv, -30 °C, 60 min), followed by KHF₂ (6.0 equiv) in H₂O resulted in the formation of alkynyltrifluoroborates **2a–o** in good yields (Scheme 2) and their structures were confirmed by ¹H, and ¹⁹F NMR analyses.²⁶ Interestingly, the triisopropylsilyl group was not removed by KHF₂ and compound **2m** was obtained in 55% yield. Furthermore, we prepared enyne trifluoroborate **2o** in 50% yield.

	a) <i>n-</i> BuLi, –78 °C, THF, 1 h
	b) B(OMe) ₃ , –30 °C, THF, 1 h
R	= c) 4.5 M aq. KHF ₂ , -20 to 23 °C, 2 h
1 a-o	2 a-o
	2 a: R = Ph (75%); 2 b: R = 4-OMePh (72%);
	2 c: R = 4-MePh (60%); 2 d: R = 4-EtPh (58%);
	2 e: R = 4-PrPh (62%); 2 f: R = 4-BuPh (68%);
	2 g: R = 4-PhPh (75%); 2 h: R = 3-MePh (72%);
	2 i: R = 2-MePh (80%); 2 j: R = 4-CO ₂ EtPh (40%);
	2 k: R = 3-Thi (54%); 2 l: R = Bn (71%);
	2 m: R = Tips (55%); 2 n: R = Bu (65%);
	2 o: R = PhCH=CH (50%)

Scheme 2. Preparation of alkynyltrifluoroborates 2a-o; for structures, see Table 1.

In this study of preparing trifluoromethylated alkynes from potassium alkynyltrifluoroborates, we directly applied the previously optimized conditions for the preparation of trifluoromethylated arenes and alkenes, i.e., (trifluoroborate (1.0 equiv, 0.25 mmol), CuCl (1.0 equiv), NaHCO₃ (1.0 equiv), NaSO₂CF₃ (3.0 equiv), TBHP (5.0 equiv) in CH₂Cl₂/MeOH/H₂O at 0-23 °C). Subsequently we explored the substrate scope of this method. Aromatic, heteroaromatic, and aliphatic potassium alkynyltrifluoroborates were selected for the trifluoromethylation reaction. We found that electron-rich substrates gave good yields in most of the cases whereas electron-withdrawing substrates gave only poor yield (Table 1). Ethynylarenetrifluoroborates bearing electron-donating substituents (methoxy, methyl, ethyl, propyl, butyl, and phenyl) underwent trifluoromethylation in good yields (Table 1, 3b, 60%; 3c, 58%; 3d, 56%; 3e, 55%; 3f, 50%; 3g, 51%). Trifluoromethylation of an electron-deficient substrate produced the

Table 1

Copper-mediated trifluoromethylation of aryl and aliphatic alkynyltrifluoroborates^{a,b}

^a Reaction conditions: Trifluoroborate (1.0 equiv, 0.25 mmol), CuCl (1.0 equiv), NaHCO₃ (1.0 equiv), NaSO₂CF₃ (3.0 equiv), TBHP (5.0 equiv) in CH₂Cl₂/MeOH/H₂O at 0 to 23 °C for 6-12 h. ^b Isolated yield. ^c For volatile products, yields were determined by ¹⁹F NMR with 4-fluorobenzonitrile as an internal standard added after the reaction.

desired trifluoromethylated product in poor yield (Table 1, **3j**, 20%). Our protocol also accommodates *meta* and *ortho*-substituted aryl ethynyltrifluoroborate (**2h**, **2i**) affording acceptable yields (Table 1, **3h**, 60%; **3i**, 61%). We also employed a heterocycle, 3-ethynyl thiophenetrifluoroborate **2k** that gave moderate yield (Table 1, **3k**, 55%). Additionally, we tested aliphatic alkynyltrifluoroborates under our reaction conditions to give the corresponding trifluoromethylated products in good yield (Table 1, **3l**, 61%; **3m**, 42%; **3n**, 50%). Under our reaction conditions, we could engage enyne trifluoroborate (**2m**) for trifluoromethylated enynes are considered as quite valuable synthetic intermediates.²⁷

Based on the above observations, we envisioned that the CF₃ radical generated from the reaction of TBHP with NaSO₂CF₃ oxidizes Cu(I) to a Cu(II)- or Cu(III)-complex. The Cu(II)- or Cu(III)-complex then undergoes transmetallation with the alkynyltrifluoroborate to form an alkynyl–Cu(II) or –Cu(III) intermediate. Reductive elimination then follows to produce the trifluoromethylated product.²⁸ Electron-withdrawing group results in a slower transmetallation of potassium alkynyltrifluoroborate, which might account for their poorer yields.^{14,15,25}

3. Conclusions

In summary, we report a convenient Cu-mediated trifluoromethylation of aryl-, heteroaryl, alkenyl, and aliphatic alkynyltrifluoroborates,²⁹ using less expensive and stable CF₃SO₂Na as the CF₃ source by in situ generation of CF₃⁻ as the active trifluoromethylating agent. The protocol is quite robust and the reactions work in water and CH₂Cl₂/MeOH at room temperature.

4. Experimental

4.1. General information

¹H NMR spectra, ¹⁹F NMR, and ¹³C NMR were recorded on Bruker 400 MHz or 300 MHz instruments in the solvents indicated; chemical shifts are reported in units (parts per million) by assigning CHCl₃ resonance in the ¹H spectrum as 7.26 ppm and CDCl₃ resonance in the ¹³C spectrum as 77.0 ppm. ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as internal standard and are measured proton decoupled. All coupling constants (*J* values) were reported in Hertz (Hz). GC and GC–MS spectra were measured on Shimadzu. Column chromatography was performed on silica gel 200–300 mesh on Combiflash. If not specially mentioned, all the solvents and reagents were used as purchased and without further purification.

4.2. General procedure for preparation of potassium alkynyltrifluoroborates (Scheme 2)

n-BuLi (4.70 mL, 1.6 M in hexane, 7.57 mmol, 1.0 equiv) was added dropwise to a solution of acetylene (7.57 mmol, 1.0 equiv) in 7.6 mL of dry THF at -78 °C under a nitrogen atmosphere. After 60 min at this temperature, trimethylborate (1.10 g, 11.3 mmol, 1.5 equiv) was added dropwise at -30 °C. The mixture was stirred at this temperature for 60 min and slowly allowed to warm to room temperature within another 60 min. A saturated 4.5 M aqueous solution of potassium hydrogen difluoride (KHF₂) (10.1 mL, 45.3 mmol, 6.0 equiv) was added at -20 °C to the vigorously stirred solution. The resulting mixture was continued to stir for 60 min at -20 °C after which it was allowed to warm to room temperature for 60 min. The solvent was removed under reduced pressure, and the resulting white solid was dried under high vacuum to remove water. The solid was washed first with acetone and then with hot acetone. The solution was concentrated to afford a white solid. The solid was dissolved in minimum amount of hot acetone, precipitated by adding methyl tert-butyl ether (MTBE), after which the solution was cooled to -20 °C to complete precipitation of the solid. The product was collected as an off white solid **2a–o** in 40–80% yield.

4.3. General procedure for copper-catalyzed trifluoromethylation of potassium alkynyltrifluoroborates with Langlois' reagent (Table 1)

A mixture of the potassium alkynyltrifluoroborate (0.25 mmol, 1.0 equiv), CuCl (24.8 mg, 0.25 mmol, 1.0 equiv), NaSO₂CF₃ (117 mg, 0.75 mmol, 3.0 equiv), NaHCO₃ (21.0 mg, 0.25 mmol, 3.0 equiv) in CH₂Cl₂ (1.5 mL), MeOH (1.5 mL), and H₂O (1.2 mL) was cooled to 0 °C, and TBHP (70% solution in water, 172 μ l, 5.0 equiv, 1.25 mmol) was added under vigorous stirring. The resulted reaction mixture was stirred for 6–12 h at room temperature. The organic phase was separated, the aqueous phase was extracted with CH₂Cl₂ (3×10 mL). The combined organic phases were dried over anhydrous Na₂SO₄, the solvent was removed at 1 atm and the residue was purified by column chromatography on Combiflash with hexanes to afford desired compound.

The volatile products were not isolated (**3n** and **3o**) and their yields were determined only by ¹⁹F NMR of the reaction mixture. For the compounds reported with ¹⁹F NMR yields, 4-fluorobenzonitrile (0.25 mmol) was added as reference to the reaction mixture, stirred for 5 min, an aliquot of the organic phase was withdrawn for the ¹⁹F NMR measurement in CDCl₃.

Analytical data of isolated products 3a,^{21a} 3b,^{21a} 3c,²² 3d,²² 3e,²² 3f,²⁴ 3g,^{21c} 3h,²² 3j,²¹ 3k,^{21a} 3l,²² and 3m²³ are identical to those given in literature. The purity of isolated products was determined by GC and was >96%.

4.3.1. (3,3,3-*Trifluoroprop-1-ynyl*)*benzene* (**3***a*).^{21a} ¹H NMR (400 MHz, DMSO-*d*₆): δ ppm 7.32–7.19 (m, 5H); ¹⁹F NMR (400 MHz, DMSO-*d*₆): δ ppm –50.00 (s, 3F); GC–MS *m*/*z* 170 (M⁺).

4.3.2. 1-Methoxy-4-(3,3,3-trifluoroprop-1-ynyl)benzene (**3b**).^{21a} ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, *J*=8.7 Hz, 2H), 6.89 (d, *J*=9.0 Hz, 2H), 3.84 (s, 3H); ¹⁹F NMR (CDCl₃, 282 MHz): δ –49.41 (s, 3F); GC–MS *m*/*z* 200 (M⁺).

4.3.3. 1-Methyl-4-(3,3,3-trifluoroprop-1-ynyl)benzene (**3c**).²² ¹H NMR (400 MHz, CDCl₃): δ ppm 7.43 (d, *J*=7.9 Hz, 2H), 7.20 (d, *J*=7.9 Hz, 2H), 2.39 (s, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ ppm –50.40 (s, 3F); GC–MS *m/z* 184 (M⁺).

4.3.4. 1-Ethyl-4-(3,3,3-trifluoroprop-1-ynyl)benzene (**3d**).²² ¹H NMR (400 MHz, CDCl₃): δ ppm 7.47 (d, J=8.3 Hz, 2H), 7.22 (d, J=8.2 Hz, 2H), 2.69 (q, J=7.7 Hz, 2H), 1.24 (t, J=7.8 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ ppm -49.57 (s, 3F); GC-MS *m*/*z* 198 (M⁺).

4.3.5. 1-Propyl-4-(3,3,3-trifluoroprop-1-ynyl)benzene (**3e**).²² ¹H NMR (400 MHz, CDCl₃): δ ppm 7.46 (d, *J*=7.9 Hz, 2H), 7.20 (d, *J*=7.9 Hz, 2H), 2.61 (t, *J*=7.5 Hz, 2H), 1.66–1.61 (m, 2H), 0.95 (t, *J*=7.5 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ ppm –50.58 (s, 3F); GC–MS *m*/*z* 212 (M⁺).

4.3.6. *1-Butyl-4-(3,3,3-trifluoroprop-1-ynyl)benzene* (**3***f*).²⁴ ¹H NMR (400 MHz, CDCl₃): δ ppm 7.45 (d, *J*=7.9 Hz, 2H), 7.21 (d, *J*=7.9 Hz, 2H), 2.73–2.53 (m, 2H), 1.61–1.58 (m, 2H), 1.35–1.31 (m, 2H), 0.95 (t, *J*=7.5 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ ppm –50.77 (s, 3F). GC–MS *m/z* 226 (M⁺).

4.3.7. 4-(3,3,3-Trifluoroprop-1-yn-1-yl)-1,1'-biphenyl (**3g**).^{21c} ¹H NMR (400 MHz, CDCl₃): δ ppm 7.68–7.55 (m, 6H), 7.48–7.43 (m, 2H), 7.41–7.38 (m, 1H); ¹⁹F NMR (377 MHz, CDCl₃): δ ppm –49.69 (s, 3F); GC–MS *m*/*z* 246 (M⁺).

4.3.8. 1-Methyl-3-(3,3,3-trifluoroprop-1-ynyl)benzene (**3h**).²² ¹H NMR (400 MHz, CDCl₃): δ ppm 7.37–7.35 (m, 2H), 7.30–7.29 (m, 2H), 2.37 (s, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ ppm –49.73 (s, 3F); GC–MS *m*/*z* 184 (M⁺).

4.3.9. 1-Methyl-2-(3,3,3-trifluoroprop-1-ynyl)benzene (**3i**).²² ¹H NMR (400 MHz, CDCl₃): δ ppm 7.50 (d, *J*=6.8 Hz, 1H), 7.50 (d, *J*=7.7 Hz, 1H), 7.32–7.19 (m, 1H), 7.17–7.12 (m, 1H), 2.49 (s, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ ppm –49.70 (s, 3F); GC–MS *m/z* 184 (M⁺).

4.3.10. Ethyl 4-(3,3,3-trifluoroprop-1-yn-1-yl)benzoate (**3***j*).^{21a} ¹H NMR (400 MHz, CDCl₃): δ ppm 8.12 (d, *J*=7.9 Hz, 2H), 7.65 (d, *J*=7.9 Hz, 2H), 4.42 (q, *J*=6.3 Hz, 2H), 1.45 (t, *J*=6.3 Hz, 3H); ¹⁹F NMR (377 MHz, CDCl₃): δ ppm -49.71 (s, 3F). GC–MS *m/z* 242 (M⁺).

4.3.11. 3-(3,3,3-*Trifluoroprop-1-yn-1-yl*)*thiophene* (**3***k*).^{21a} ¹H NMR (300 MHz, CDCl₃): δ ppm 7.58 (dd, *J*=3.1, 1.5 Hz, 1H), 7.28 (dd, *J*=5.3, 3.0 Hz, 1H), 7.17 (dd, *J*=5.0 Hz, 1.1 Hz, 1H); ¹⁹F NMR (377 MHz, CDCl₃): δ ppm -49.41 (s, 3F); GC-MS: 176 (M⁺).

4.3.12. (4,4,4-Trifluorobut-2-yn-1-yl)benzene (**31**).²² ¹H NMR (300 MHz, CDCl₃): δ ppm 7.38–7.31 (m, 2H), 7.32–7.27 (m, 3H), 3.73 (d, *J*=3.6 Hz, 1H), 3.71 (d, *J*=3.6 Hz, 1H); ¹⁹F NMR (377 MHz, CDCl₃): δ ppm –49.7 (s, 3F); GC–MS: 184 (M⁺).

4.3.13. *Triisopropyl*(3,3,3-*trifluoroprop-1-yn-1-yl*)*silane* (**3m**).²³ ¹H NMR (400 MHz, CDCl₃): δ ppm 1.25–1.05 (m, 3H), 1.10 (d, *J*=6.0 Hz,

18H); ¹⁹F NMR (377 MHz, CDCl₃): δ ppm –50.48 (s, 3F); GC–MS: 207 (M⁺-43 (CH(CH₃)₂)).

Acknowledgements

We thank Dr. Anian Charkrabarti for his support of this manuscript.

References and notes

- 1. (a) Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432; (b) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881; (c) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359; (d) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305; (e) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
- 2. (a) Brisdon, A. K.; Crossley, I. R. Chem. Commun. 2002, 2420; (b) Konno, T.; Daitoh, T.; Noiri, A.; Chae, J.; Ishihara, T.; Yamanaka, H. Org. Lett. 2004, 6, 933; (c) Zhang, X.-G.; Chen, M.-W.; Zhong, P.; Hu, M.-L. J. Fluorine Chem. 2008, 129, 335; (d) Shimizu, M.; Higashi, M.; Takeda, Y.; Murai, M.; Jiang, G.; Asai, Y.; Nakao, Y.; Shirakawa, E.; Hiyama, T. Future Med. Chem. 2009, 1, 921; (e) Konno, T.; Kinugawa, R.; Morigaki, A.; Ishihara, T. J. Org. Chem. 2009, 74, 8456; (f) Gunay, A.; Muller, C.; Lachicotte, R. J.; Brennessel, W. W.; Jones, W. D. Organometallics 2009, 28, 6524; (g) Kawatsura, M.; Namioka, J.; Kajita, K.; Yamamoto, M.; Tsuji, H.; Itoh, T. Org. Lett. 2011, 13, 3285.
- (a) Furuya, T.; Kamlet, A. S.; Ritter, T. *Nature* **2011**, 473, 470; (b) Lundgren, R. J.; 3 Stradiotto, M. Angew. Chem., Int. Ed. 2010, 49, 9322; (c) Grushin, V. V. Acc. Chem. Res. 2010, 43, 160; (d) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475; (e) Roy, S.; Gregg, B. T.; Gribble, G. W.; Le, V.-D.; Roy, S. Tetrahedron **2011**, 67, 2161; (f) Wu, X.-F.; Neumann, H.; Beller, M. Chem.—Asian J. 2012, 7, 1744; (g) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214; (h) Chen, P.: Liu, G. Svnthesis 2013, 45, 2919.
- 4. For nucleophilic trifluoromethylation, see: (a) Singh, R. P.; Shreeve, J. M. Tetrahedron 2000, 56, 7613; (b) Ma, J.-A.; Cahard, D. Chem. Rev. 2004, 104, 6119.
- 5. For electrophilic trifluoromethylation, see: (a) Koller, R.; Stanek, K.; Stolz, D.; (b) Mace, Y.; Niedermann, K.; Togni, A. Angew. Chem., Int. Ed. 2009, 48, 4332;
 (b) Mace, Y.; Raymondeau, B.; Pradet, B. C.; Blazejewski, J. C.; Magnier, E. Eur, J. Org. Chem. 2009, 1390; (c) Wiehn, M. S.; Vinogradova, E. V.; Togni, A. J. Fluorine Chem. 2010, 131, 951.
- 6. For radical trifluoromethylation, see: (a) Wakselman, C.; Tordeux, M. J. Chem. Soc., Chem. Commun. 1987, 1701; (b) Laglois, B. R.; Laurent, E.; Roidot, M. Tetrahedron Lett. 1991, 32, 7525; (c) Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem.
- *Soc.* **2009**, *131*, 10875; (d) Studer, A. *Angew. Chem., Int. Ed.* **2012**, *51*, 8950. (a) Oishi, M.; Kondo, H.; Amii, H. *Chem. Commun.* **2009**, 1909; (b) Kondo, H.; Oishi, M.; Fujikawa, K.; Amii, H. *Adv. Synth. Catal.* **2011**, *353*, 1247; (c) Pd-cata-7. lyzed trifluoromethylation, see: Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. *Science* **2010**, 328, 1679.
- 8. Khan, B. A.; Buba, A. E.; Gooßen, L. J. Chem.—Eur. J. 2011, 17, 2689.

- 9. Novàk, P.; Lishchynskyi, A.; Grushin, V. V. Angew. Chem., Int. Ed. 2012, 51, 7767.
- 10. (a) Xu, J.; Luo, D. F.; Xiao, B.; Liu, Z. J.; Gong, T. J.; Fu, Y.; Liu, L. Chem. Commun. 2011, 4300; (b) Zhang, C.-P.; Cai, J.; Zhou, C.-B.; Wang, X.-P.; Zheng, X.; Gu, Y.-C.; Xiao, J.-C. Chem. Commun. 2011, 9516.
- 11. (a) Liu, T. F.; Shen, O. L. Org. Lett. 2011, 13, 2342; (b) Liu, T. F.; Shao, X. X.; Wu, Y. M.; Shen, Q. L. Angew. Chem., Int. Ed. 2012, 51, 540.
- (a) Chu, L. L.; Qing, F. L. Org. Lett. 2010, 12, 5060; (b) Senecal, T. D.; Parsons, A. T.; 12 Buchwald, S. L. J. Org. Chem. **2011**, 76, 1174; (c) Litvinas, N. D.; Fier, P. S.; Hartwig, I. F. Angew. Chem., Int. Ed. 2012, 51, 536.
- 13. (a) Nagib, D. A.; MacMillan, D. W. C. *Nature* **2011**, 480, 224; (b) Ji, Y.; Brueckl, T.; Baxter, R. D.: Fujiwara, Y.: Seiple, I. B.: Su, S.: Blackmond, D. G.: Baran, P. S. Proc. *Natl. Acad. Sci. U.S.A.* **2011**, *108*, 14411; (c) Clavel, J. -L.; Laurent, E.; Langlois, B. R.; Roidot, N. Eur. Pat. Appl. EP0458684 A1, 1991, 18 pp.
- Ye, Y.; Künzi, S. A.; Sanford, M. S. Org. Lett. 2012, 14, 4979.
 Li, Y.; Wu, Y.; Neumann, H.; Beller, M. Chem. Commun. 2013, 2628.
- 16. Parson, A. T.; Buchwald, S. L. Angew. Chem., Int. Ed. **2011**, 50, 9120.
- Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410.
- (a) Zhang, C.-P.; Wang, Z.-L.; Chen, Q.-Y.; Zhang, C.-T.; Gu, Y.-C.; Xiao, I.-C. An-18 gew. Chem., Int. Ed. 2011, 50, 1896; (b) Iqbal, N.; Choi, S.; Kim, E.; Cho, E. J. J. Org. *Chem.* **2012**, 77, 11383; (c) Janson, P. G.; Ghoneim, I.; Ilchenko, N. O.; Szabó, K. J. *Org. Lett.* **2012**, 14, 2882; (d) Wang, X.-P.; Lin, J.-H.; Zhang, C.-P.; Xiao, J.-C.; Zheng, X. Beilstein J. Org. Chem. 2013, 9, 2635.
- (a) Yoneda, N.; Matsuoka, S.; Miyaura, N.; Fukuhara, T.; Suzuki, A. Bull. Chem. 19 Soc. Jpn. 1990, 63, 2124; (b) Umemoto, T.; Ishihara, S. J. Am. Chem. Soc. 1993, 115, 2156
- 20 Klyuchinskii, S. A.: Zavgorodnii, V. S.: Lebedev, V. B.: Petrov, A. A. Zh. Obshch. Khim. 1986, 56, 1663.
- (a) Chu, L; Qing, F.-L J. Am. Chem. Soc. **2010**, 132, 7262; (b) Jiang, X.; Chu, L; Qing, F.-L J. Org. Chem. **2012**, 77, 1251; (c) Zhang, K.; Qiu, X.-L; Huang, Y.; Qing, 21 F.-L. Eur. J. Org. Chem. 2012, 58.
- 22. Weng, Z.; Li, H.; He, W.; Yao, L.-F.; Tan, J.; Chen, J.; Yuan, Y.; Huang, K.-W. Tetrahedron 2012, 68, 2527.
- 23. Luo, D.-F.; Xu, J.; Fu, Y.; Guo, Q.-X. Tetrahedron Lett. 2012, 53, 2769.
- Zheng, H.; Huang, Y.; Wang, Z.; Li, H.; Huang, K.-W.; Yuan, Y.; Weng, Z. Tetra-24. hedron Lett. 2012, 53, 6646.
- Dubbaka, S. R.; Salla, M.; Bolisetti, R.; Nizalapur, S. RSC Adv. 2014, 4, 6496. 25
- 26. (a) Darses, S.; Genêt, J.-P. Eur. J. Org. Chem. 1999, 1875; (b) Molander, G. A.; Katona, B. W.; Machrouhi, J. J. Org. Chem. 2002, 67, 8416.
- 27. (a) Smith, N. D.; Mancuso, J.; Lautens, M. Chem. Rev. 2000, 100, 3257; (b) Sato, F.; Urabe, H.; Okamoto, S. Chem. Rev. 2000, 100, 2835.
- 28. There might other unforeseen reaction mechanisms exist.
- We attempted to generate phenylethynylboronic acid (4a) from potassium 29 phenylethynyltrifluoroborate (**2a**) under basic reaction condition $(Cs_2CO_3^{30})$ in THF/H₂O or NaHCO₃ in MeOH/H₂O) at 60 °C for 15-24 h. However, there was no conversion from 2a to boronic acid 4a and when the reaction was kept for longer time; protodeboronated phenylacetylene (1a) was observed.
- 30. Lennox, A. J. J.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 2012, 134, 7431.