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Abstract

Modification of carbon nitride based polymeric 2D materials for tailoring their optical, electronic
and chemical properties for various applications has gained significant interest. The present report
demonstrates the synthesis of a novel modified carbon nitride framework with a remarkable 3:5
C:N stoichiometry (C3Ns) and an electronic bandgap of 1.76 eV, by thermal deammoniation of
melem hydrazine precursor. Characterization revealed that in C3Ns polymer, two s-heptazine units
are bridged together with azo linkage, which constitutes an entirely new and different bonding
fashion from g-C3;N4 where three heptazine units are linked together with tertiary nitrogen.
Extended conjugation due to overlap of azo nitrogens and increased electron density on heptazine
nucleus due to the aromatic © network of heptazine units lead to an upward shift of the valence
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band maximum resulting in bandgap reduction down to 1.76 eV. XRD, He-ion imaging, HR-TEM,
EELS, PL, fluorescence life-time imaging, Raman, FTIR, TGA, KPFM efc clearly show that the
properties of C3Ns are distinct from pristine carbon nitride (g-C3N4). When used as an electron
transport layer (ETL) in MAPbBTr3 based halide perovskite solar cells, C3Ns outperformed g-C3Na,
in particular generating an open circuit photovoltage as high as 1.3 V, while C3Ns blended with
MAFA1xPb(lossBro.15); perovskite active layer achieved a photoconversion efficiency (PCE) up
to 16.7 %. C3Ns was also shown to be an effective visible light sensitizer for TiO> photoanodes in
photoelectrochemical water splitting. Due to its electron-—rich character, the C3Ns material
displayed instantaneous adsorption of methylene blue from aqueous solution reaching complete
equilibrium within 10 min, which is significantly faster than pristine g-C3N4 and other carbon-
based materials. C3Ns coupled with plasmonic silver nanocubes promotes plasmon-exciton co-
induced surface catalytic reactions reaching completion at much low laser intensity (1.0 mW) than
g-C3N4 which showed sluggish performance even at high laser power (10.0 mW). The relatively
narrow bandgap and 2D structure of C3Ns make it an interesting air-stable and temperature-
resistant semiconductor for optoelectronic applications while its electron--rich character and intra-
sheet cavity make it an attractive supramolecular adsorbent for environmental applications.

KEYWORDS: carbon nitride, melem, s-heptazine, dye adsorption, photocatalysis, water

1. Introduction

The last few decades have witnessed the rise of semiconducting, all-organic polymers as excellent
metal-free and visible light-active materials for various optoelectronic and energy harvesting

applications.! Although impressive improvements in performance have been achieved, particularly
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for plastic solar cells, the synthesis procedures for semiconducting polymers are cumbersome and
difficult to scale up,? and the organic semiconductors themselves are unstable under the action of
heat, light and/or ambient air.® Consequently, there are scalability concerns related to
semiconducting polymers,* and requirement of heavy encapsulation to achieve even modest
durability in the photovoltaic application. The same concerns, related to oxidative stability and
durability, have also ruled out the use of semiconducting polymers in photocatalytic applications.
A very different approach toward forming and exploiting all-organic, polymeric
semiconductors in optoelectronic and energy harvesting applications consists of using doped and
substituted graphenic frameworks as building blocks to achieve two-dimensional (2D)
semiconductors with well-defined bandgaps and structural motifs.> 3® The major advantages of
graphenic semiconductors are their chemical robustness; and the simplicity of synthesis. Several
graphenic semiconductors are synthesizable using solvothermal synthesis and/or solid-state
reactions, and graphenic semiconductors are perfectly stable in ambient conditions up to
temperatures of several hundred degrees Ceelsius. As a result of this exceptional stability, almost
no structural or chemical degradation of photocatalytic action is observed even after several re-use
cycles.”
Among graphenic semiconductors, graphitic carbon nitride (g-C3N4), composed of tris-s-triazine
(s-heptazine, CsN7) units bridged together with nitrogen atoms to give a 2D graphitic structure has
gained significant interest due to its astonishing electronic, optical, and physicochemical
properties.® Continuous repetition of the heptazine motif leads to a bandgap- of 2.7 eV with band
edge positions (Ec, —1.1 eV and Evg, +1.6 eV) that render it compatible with sunlight-driven
water splitting, CO» photoreduction and the photooxidation of a number of organic compounds.’

Further, the plentiful presence of electron rich sites and basic nitrogens in the g-C3N4 scaffold
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enables the promotion of various catalytic reactions i.e. alkylation, esterification, oxidation, efc
and pollutant removal (dye adsorption). % 1 The somewhat wide bandgap of g-C3N4 means that it
can absorb only the ultraviolet and blue fraction of solar spectrum (4 < 450 nm) which limits its
performance in photocatalytic and photovoltaic applications. Doping with various heteroatoms
such as P, F, B, and S has been utilized to improve the visible light absorption profile and

photoefficiency.!!

Like all semiconductors, g-C3N4 suffers the innate drawback of carrier
recombination detrimental to catalytic and photocatalytic processes. Many surface modification
approaches such as increasing the surface area via soft and hard templating, using two or more
precursors, transformation of bulk material into sheets, doping with metals (Ag, Cu, Rh, Pt, Na,
etc) and metal oxides (CoO,) for electron and hole capture, coupling with other
semiconductors/metal complexes to form heterojunctions, and blending with graphene have been
employed to improve the photocatalytic and catalytic performance of g-C3N4.!> However, less
attention has been paid to chemical structure modification which can lead to the generation of a
more robust, band edge tuned g-C3N4 framework with entirely new physicochemical properties
for efficient catalytic/photocatalytic applications. It has been found that addition of extra nitrogen-
rich moieties in the g-C3Ny scaffold to increase the N:C ratio from 4:3 ratio in CN can reduce the
bandgap significantly, due to a more extended conjugated network and the participation of the lone
pair on the N atom with the m conjugated system of heptazine motif. Vinu et al. demonstrated the
synthesis of N-rich carbon nitride (MCN-8) using 3-amino-1,2,4-triazole to afford C3Ns
stoichiometry resulting in a significant decrease in bandgap (2.2 eV) due to extended
conjugation.'®* However, this increase in N:C ratio to 5:3 (from the 4:3 ratio in g-C3N4) was due to
the presence of the N-rich 1,2,4-triazole moiety linked to the heptazine motif and not because of

the direct incorporation of the extra N atom in the heptazine nucleus. The same group has also
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reported the synthesis of mono/and di-amino-s-tetrazine based carbon nitride materials (i.e. MCN-
ATN, MCN-4, and MCN-9) with C3Ns to C3Ng stoichiometry using 3-amino-1,2,4-
triazine/aminoguanidine hydrochloride precursor and SBA-15/KIT-6 templating material.'* The N
rich 1,2,4-triazine or 1,2,4,5-tetrazine moieties were bridged together with tertiary nitrogen in a
similar fashion to triazine--based carbon nitride and a significant decrease in band gap was
observed due to the addition of extra nitrogens. In a recent report, mesoporous triazole and triazine
framework modified carbon nitride materials with C3N4g empirical formula synthesized by using
5-amino-1H-tetrazole (5-ATTZ) precursor and their hybrid with graphene displayed excellent
performance in the oxygen reduction reaction.'> Fang et al. reported the synthesis of nitrogen self-
doped graphitic carbon nitride (C3Nasx) by heating hydrazine treated melamine in a sealed
ampoule. In C3Ny.x, the excess N atoms replace terminal C atoms in the heptazine nucleus and the
excess charge on the N atom gets redistributed leading to electron rich heptazine motifs due to
which C3N4.x possessed a narrower bandgap (2.65 eV) with concomitant shifts in the conduction
and valence band edge positions (Ecg, —0.98 eV and Evg, +1.67 ¢V).! In these N rich carbon
nitrides, the N rich triazine or heptazine based unit remains linked together with tertiary nitrogen,
N(C)3 and increased stochiometric N:C ratio was due to the replacement of C via N in triazine or
heptazine ring system. Similarly, carbon--rich C3N4 network also facilitates bandgap narrowing
and efficient charge separation due to the extended conjugated network. Zhang et al. reported the
hydrothermal synthesis of low bandgap, C rich C3N4 materials with extended conjugated networks
using melamine (as heptazine ring source) and glucose (as carbon source) precursors.'2s 17
However, the use of melamine and other C and N sources can afford only C3Ns structures

possessing randomly distributed domains within the C3N4 framework due to the uncontrolled
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the smallest monomeric unit of g-C3N4 framework, provides the opportunity to manipulate
chemical structure by incorporating other units in the C3N4 framework in a more controlled
fashion.!®!3 Shiraishi et al. reported the synthesis of modified CN-polydiimide framework (g-
C3N4/PDIx) by solid-state reaction between melem and electron deficient pyromellitic dianhydride
(PMDA); and demonstrated that the band edge positions of g-C3N4/PDIx could be tuned by limiting
the number of PDI units in the framework.!” Heterostructured (Ciing-C3N4) embodiments of
conductive, in-plane, © conjugated carbon rings incorporated in the C3N4 matrix were prepared by
thermal dehydrogenation reaction between glucose and melem, and the obtained Cring-C3Ns
heterostructure achieved fast spatial charge transfer from g-C3N4 to Cring motif facilitating efficient
water splitting.'8¢ 2% The replacement of amino functionalities on melem/melamine by nitrogen-
rich functionalities i.e. azide (—N3) expedited the synthesis of N-rich carbon nitride i.e. 2,5,8-
triazido-s-heptazine, (CéN7)(N3)3 which after thermal heating, afforded N-rich carbon nitride.?-?!
Likewise, triazine containing N-rich CN was also synthesized by thermal annealing of 2,4,6-
triazido-1,3,5-triazine [cyanuric triazide, (C3N3)(N3)3].2* 22 However, the synthesis procedure
involved sodium azide and concomitant shock sensitive explosion hazards; furthermore, azide
intermediates are highly undesirable.

Herein, we demonstrated the synthesis of novel modified carbon nitride framework with a
C3N5s stoichiometry by thermal deammoniation of 2,5,8-trihydrazino-s-heptazine, also known as
carbon nitride modified framework was denoted as C3Ns due to its 3:5 C:N stoichiometric ratio.
Characterization studies revealed that the C3Ns framework contains heptazine moieties bridged
together by azo linkage (-N=N-). The presence of azo linkage extends the © conjugated network

due to overlap between the p orbitals on N atoms constituting the azo bond and 7 system of
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heptazine motif which resulted in the reduction of the electronic bandgap to 1.76 eV. C3Ns
displayed improved photosensitization properties at longer wavelengths for solar water splitting.
Further, due to the increased electron charge density on the ring nitrogen, C3;Ns exhibited
instantaneous adsorption of methylene blue from aqueous solution. Solar cell devices fabricated
using low band-gap C3Ns, as an electron transporting layer (ETL) in MAPbBr3 based perovskite
solar cells demonstrated improved power conversion efficiency (PCE), open circuit voltage (Vo)
etc. compared to solar cells made from g-C3N4 based ETL due to tuned band alignment. Blending
a small amount of C3Ns (4.0 wt%) with MAxFA1.xPb(lo.ssBro.15)3 perovskite active layer led to an
increase in PCE up to 16.68% with Vo of 1.065V and Ji. of 22.87 mA/cm? higher than
conventional and g-C3N4 blended solar cell architectures. Compared to g-C3N4, C3Ns exhibited a
remarkably enhanced performance in the plasmon-exciton co-driven photoreduction of 4-

nitrobenezenethiol to 4,4'-dimercaptoazobenzene.
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Figure 1. Chemical structure of g-C3N4 and carbon nitride modified C3Ns framework.
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2. Results and discussion

Melem (2,5,8-triamino-s-heptazine) served as the precursor monomeric unit for the synthesis of
C3Ns polymer. Melem was synthesized by heating melamine at 425 °C overnight followed by
purification in boiling water. The obtained melem was treated with hydrazine hydrate
(NH2NH2.H20, 55% in water) in an autoclave at 140 °C for 24 h. The treatment of melem with
hydrazine hydrate transformed amino (-NH2) functionalities into hydrazino (-NH-NH>)
functionalities which afforded melem hydrazine, MH (2,5,8-trihydrazino-s-heptazine).”®> The
obtained white melem hydrazine was subjected to programmed heating at 450 °C for 2 h to obtain
orange colored C3Ns polymer (Figure 2) (See supporting information for experimental details).
Melem hydrazine has a highly hydrogen bonded structure which facilitates the formation of an
azo-bridged heptazine framework by thermal condensation. Previously, Gillan also reported the
formation of similar azo-bridged functionalities by heating nitrogen--rich 2,4,6- cyanuric triazide
or triazido-1,3,5-triazine (C3N3)(N3); to form differential composition triazine-—based carbon
nitride.”> 2* In the same report Gillan suggested that transformation of cyanuric triazide into azo-
bridged triazine carbon nitride framework proceeded through the nitrene intermediate (C3(N3)2N:)
and that the formation of C3Ns from melem hydrazine might proceed via a similar intermediate
due to the thermolabile nature of hydrazine functionalities. The structures of melem, melem

hydrazine and hydrogen bonded melem hydrazine are given in supporting information (Figure S1).
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The surface morphology of the C3Ns polymer was investigated using a He-ion microscope
equipped with an electron flood gun to facilitate positive charge neutralization accumulated from
the He-ion beam (Figure 3a). The He-ion images of MHP show a rough, crumpled graphenic
scaffold with some erupted morphologies which indicate that the high temperature treatment of
MH monomeric unit facilitated polymerization into an irregular sheet-like structure. The fine
structure of C3Ns material was determined using high resolution transmission electron microscopy
(HR-TEM) (Figure 3b-d). The carbon nitride like layered sheet architecture is clearly evident in
the TEM image of C3Ns at 50 nm scale bar (Figure 3b). Under long duration exposure of the
electron beam, C3Ns starts to degrade and shrink which likely resulted due to high energy electrons
breaking the -N=N- linkage. HR-TEM images at 10 nm and 5 nm scale bar show crystallite fringes
of nanoporous multilayered sheets with an interplanar d-spacing of 0.32 nm, corresponding to the
002 plane of the graphitic structure (Figure 3c, 3d, and inset). The observed d-spacing in C3Ns was
identical to g-C3N4 from which we infer that during the thermal polymerization step, the stacking

pattern of sheets in C3Ns remains similar to that in bulk g-C3Na. The broad, less intense ring in the

the 002 plane; however, the low intensity of the ring suggests amorphous nature of the material
(inset of Figure 3d).

The surface chemical composition of the synthesized material was investigated using X-
ray photoelectron spectroscopy, XPS (Figure 4). The XPS elemental survey scan of C3Ns5 shows
peaks corresponding to Cls, N1s, Nals, C12p, and Ols (Figure S2a). The presence of Nals and
Cl12p is due to intercalated Na* ions in the supramolecular cavity of the polymeric motif (Figure 1)

and the residual NaCl formed during the purification step of MH. After excluding Nals, C12p and
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respectively, which represent an empirical formula of C3Ns.16 for the C3Ns polymer (Table 1). The
obtained composition matched well with theoretical C3Ns (N-62.50 at% and C-37.50 at%)
stoichiometric carbon nitride materials. The high resolution XPS spectrum of C3Ns in C1s region
was deconvolved into two peak components at binding energies of 284.8 eV and 287.9 eV
corresponding to the presence of sp* and sp? hybridized carbons, respectively (Figure 4a). The sp®
carbon peak originated from adventitious carbons, edge group carbons and turbostratic carbons
present in the scaffold of C3Ns polymer while the relatively stronger sp® peak appeared due to
N=C-N type aromatic carbons which constitute the carbon nitride like framework of C3Ns. 2> The
core level HR-XPS in N1s after deconvolution gave two peak components located at 398.7 eV and
400.2 eV. The peak at a binding energy of 398.7 eV was assigned to tertiary N—(C)3 and secondary
C=N-C nitrogens present in the aromatic ring structure while another peak at 400.2 eV was due
to the presence of primary residual -NH> and bridging C~-N=N—C type nitrogens (Figure 4b). 326
From the N1s XPS spectrum, the at % of N present in aromatic ring (Nring) and bridging (Nbridging)
were found to 60.47 % and 39.53 % respectively and the at% ratio obtained was 3:2, which strongly
supports the proposed structure in which two heptazine units are interconnected with the azo (-
N=N-) motif and is also consistent with the theoretical C3Ns azo linked structure (Table 1).
Furthermore, HR-XPS in Nals region gave a peak at 1071.9 eV due to the presence of Na* ions in
the polymeric skeleton and residual NaCl (Figure S2b). The two peak components in C12p XPS,
at binding energy values of 198.7 eV and 200.2 eV ascribed to C12p3;2 and C12pi.; further validated
the presence of CI™ in the form of NaCl (Figure S2c). Two XPS peaks in the Ols region located at
531.6 eV and 532.4 eV were associated with surface adsorbed adventitious oxygens and —OH

groups (Figure S2d). The nature of C and N bonding in g-C3N4 and C3Ns5 was elucidated with
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spectra of g-C3N4 and C3Ns exhibited two major symmetric peaks due to the-contribution of C-K
and N-K edge loss. The C K-edges signal of both g-C3N4 and C3N5 was composed of two peaks
located at located at 284.6 and 293.2 eV corroborated to 1s-n* and 1s-6* electronic transition of
sp? hybridized carbons trigonally coordinated with nitrogens in s-heptazine nucleeus (Figure
4¢)."* b 27 The relative intensity of n* C K-edge signal and m*/c* peak area ratio of C3Ns was
higher than g-C3N4 suggesting increased conjugation in C3Ns due to extended = orbitals overlap
between bridging azo functionalities and heptazine motifs.?® The formation of extended =
conjugated network in C3Ns was also supported by increased UV-Vis absorption profile and
shorter TRPL lifetime decay (Figure 7 and 8). The N K-edges energy loss peaks for g-C3N4 and
C3Ns located at 399.8 and 408.5 eV, assigned to Is-n* and 1s-6* electronic transition of sp?
hybridized nitrogens in heptazine ring and bridgiaing N, further verify sp® hybridized nitrogen-
rich carbon nitride framework (Figure 4d).!* Absence of any new peak in N K-edge loss of C3Ns
demonstrate bridging nitrogens in C3Ns have almost identical electronic environment like N(C)3
nitrogens in g-C3N4.% The relative peak intensity of N K-edge 7* signal of C3Ns was slightly lower
than g-C3N4 demonstrating enhanced contribution of azo motifs in 1s-0* transition The
replacement of tertiary bridging nitrogens, N(C)3 in g-C3Ny via azo nitrogens, C-N=N-C render
lone pair on azo nitrogens which contribute to 6* signal and relative intensity of n* signal was
suppressed. However, total peak area of N K-edge peak for C3Ns was increased which demonstrate
addition of extra nitrogens in carbon nitride framework. The N:C atomic ratio of C3Ns was
calculated to be 1.62 which was in close agreement with theoretical value (1.66) and C:N value
obtained from CHNS analysis (1.65). Slightly lower N content might be due to cleavage of azo

bond resulting in loss of some nitrogens under high energy electron beam.
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Figure 4. The core level HR-XPS spectra of C3Ns in (a) C1s region, (b) N1s region and normalized EELS spectra

of g-C3N4 and C3Ns showing relative intensity of n* and o* peaks for (c) C K-edge and (d) N K-edge loss.

Table 1. (a) Elemental analysis of CsNs showing C, H, and N wt% and empirical formula and (b) XPS elemental

analysis of C3Ns showing at% and empirical formula and their comparison with theoretical C3Ns composition.
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Serial. N (wt%) C (wt%) H (wt%) Empirical  Nring:Nbridging
No. formula (at% ratio)
1. CHN 61.27 31.81 2.68 C3NaggsH1.01 -
analysis
2 Theoretical 66.02 33.98 - C3Ns 3:2 (60:40)
wt% value

N (at%) C (at%) H (at%) Empirical ~ Nring:Nbridging
formula (at% ratio)

3. XPS 63.24 36.76 - C3Ns.i6 ~3:2
analysis (60.47:39.53)
4. Theoretical 62.50 37.50 - C3Ns 3:2 (60:40)
at% value

To probe the proposed composition and structure of the synthesized C3Ns material, CHNS
elemental analysis was performed which gave 61.27 wt% N, 31.81 wt% C and 2.68 wt% H
suggesting an empirical formula of C3N4.9sH1.01 which was in close proximity with the theoretical
wt% for C3Ns composition (Table 1). Slight difference between predicted and observed C:N ratio
might be due to the presence of unbonded -NH> at the edge of sheets, formed by cleavage of
hydrazino group (-NH-NH,) at elevated temperature and loss of some azo nitrogens.” % As
expected, sulfur was not present at measurable levels. Notably, the observed hydrogen might arise
from —NH> and —OH groups present at the edge of the polymeric framework.

To elucidate the chemical structure of MH and C3Ns materials, solid-state nuclear magnetic
resonance (NMR) spectroscopy using the cross-polarization magic-angle spinning (CPMAS)
technique was performed (Figure 5). CPMAS NMR enables the structural investigation of- local-
and medium-range structure in micro- and nano-crystalline compounds. The '3C CPMAS NMR

spectra of melem hydrazine (MH) display three NMR signals at 164, 160 and 154 ppm (Figure

5a). The 3C NMR signals at 164 and 160 ppm originated from NoC-NHNH, carbons while the
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resonance at 154 ppm was observed from CNj; carbons of the heptazine nucleus. The observed
signals were in good agreement with the reported NMR spectra for MH and melem based
structures.'® 24 30 The CPMAS NMR spectrum of C3Ns exhibits two 3C NMR signals of
approximately equal intensity at 164 and 156 ppm for N.C—-N=N- and CNj carbons (Figure 5b).2*
30-31 The NoC-NHNH; carbon signal of MH located at 160 ppm arising due to C—H functionalities
disappeared in the '*C NMR of C3Ns, which confirms removal of -NHNH> protons and formation
of an azide linkage during polymerization step agreeing with ’N CPMAS NMR, vide infra.
Furthermore, the appearance of equally intense (Cc:Ce/1:1.07) '3C peaks in the '*C NMR spectrum
of C3Ns suggests that heptazine units are in the presence of a symmetric azo bridging motif (where
Cc corresponds to central carbons in ring and Ce to external carbons bonded to azo N). A slight
shift to higher frequency in CN3 carbon peaks from 154 ppm in MH to 156 ppm in C3Ns suggests
shielding of carbons due to N2p overlap of azo and aromatic m system which extends the ©
conjugated network.®

The "N CPMAS NMR spectrum of MH exhibits four signals, —207, =252, —273 and -317
ppm (Figure 5¢).23* The >N NMR signal at —207 ppm and another weak signal at =273 ppm were
assigned to (NC) and (NC3) nitrogens of the heptazine motif,?3* 3!% 3233 while the peaks at —252
and -317 ppm assigned to NH> and NH terminal nitrogens of hydrazino moiety.>*** The
transformation of MH to C3Ns proceeds with removal of NH3 and formation of azo linkage which
was evident from the disappearance of NH, and NH peaks at —252 and —317 ppm in the >N NMR
spectrum of C3Ns (Figure 5d). The two NMR peaks in the >N NMR spectra of C3Ns at -197 and -
248 (weak) ppm were attributed to NCz and NCj3 nitrogens of heptazine skeleton while another
peak at —271 ppm arose from —N=N- (and residual NHs) type nitrogens. As the N atoms are in

similar chemical environments, a semi-quantitative CPMAS NMR analysis of the !N peak areas
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achieved by peak integration of NC; and NC3 and —-N=N- resonances was found give a ratio of
1.00:0.18:0.54 which was in good agreement with the theoretical value (1.00:0.17:0.5) calculated
for C3Ns polymeric structure containing heptazine units interconnected with azo linkage (Figure
S1). Furthermore, 'H NMR of MH gave an intense peak at 5.11 ppm due to NH and NH> hydrogens
(Figure S4). This intense peak disappeared in the '"H NMR spectra of C3Ns further confirming the
removal of NH hydrogens and a very broad peak centered at 9.18 ppm appeared due to intercalated
hydrogen, and residual carboxy and aldehyde hydrogens (essential for the CPMAS approach to
function whereby "H magnetization is transferred to '3C and >N). All these NMR results validate

the successful synthesis of a modified carbon nitride framework.
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i N NMR

-252 -317
N
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164 164 15
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Figure 5. CPMAS NMR spectra (a) '*C of MH, (b) '*C of C3Ns, (c) N of MH and (d) "N of C3Ns.

Fourier transform infrared (FTIR) spectroscopy was employed to determine the change in
functional moiety in the material (Figure 6a-d). The FTIR spectrum of melem shows characteristic
broad peaks at 3109 cm™ due to the combined symmetric and antisymmetric stretch vibrations of
—NH: and ~OH (vn_n and vo-u) groups. The IR bands at 1595, 1411, 1230 and 1078 cm™ are
ascribed to the C—N stretch (vc) of heptazine (CéN7) aromatic nucleus (Figure 6a).!8a 31 34a. 35
The N-H stretch band ranging from 3153-2895 cm™ for MH was found to become broader due to
combinational symmetric and asymmetric N-H stretches of -NH-NH> group in MH which
confirms the successful transformation of —-NH> moiety in melem to -NH-NH; in melem
hydrazine (Figure 6b). The broadening of NH peak was attributed to strong intermolecular
hydrogen bonding in MH molecules.>¢ However, all stretching and bending peaks due to
heptazine aromatic ring skeleton remain preserved which indicates that the heptazine motif
remains unchanged during the hydrazine treatment. Additionally, some new peaks emerged at
1095 and 965 cm™! implicating the N-N stretch and -NH, rocking vibration respectively.!8® 36-37
Graphitic carbon nitride shows characteristic peaks at 3145 cm™ due to residual -NH, and —~OH
stretch and 1639-1145 cm™ due to triazine ring stretch and 798 cm™ for triazine ring bending
vibration was in good agreement with the reported literature (Figure 6¢).7-* After conversion of
MH to C3Ns by thermal annealing, the intensity of -NH-NH> peak of MH was diminished which
implicated the transformation of -NH-NH> group into azo (-N=N-) linkage through the removal
of NH; (Figure 6d). It is important to note that vibration of symmetrical -N=N- azo linkage is
forbidden due to which no new sharp peak due to azo functionalities was observed. The possibility

of -NH-NH- bond can be neglected due to the absence of any strong N-H band; however very
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weak broad peaks arise due to some residual -NH> present at the edge of the polymeric framework.
This fact was well supported by CHNS analysis which showed the presence of only one H for each
stoichiometric C3Ns unit (Table 1). Further, other peaks of MH at 1095 and 965 cm™ due to N-N
stretch and —NH: rocking vibration disappear in C3Ns, which confirmed the transformation of
hydrazine group into azo moiety. Peaks corresponding to the C3N4 framework at 1542, 1315 and
887 cm! were absent in C3Ns which suggests an entirely different network of C3Ns in comparison
to g-C3Na.

The changes in phase structure and crystalline nature of melem, MH, g-C3N4, and C3Ns
were investigated through the measurement of X-ray diffraction (XRD) (Figure 6). The XRD
pattern of melem demonstrated a series of peaks located at 12.5°, 13.6°, 16.7°, 18.4°, 19.7°, 22.0°,
25.2°,27.2° and 30.4°, in close agreement with previous reports (Figure 6e).%3-3° The XRD results
indicate the absence of any melamine impurity in the melem sample.'®™ 3% Due to the
transformation of melem into melem hydrazine, the XRD pattern of MH changed, with new peaks
being observed at 20 values of 7.3°, 7.9°, 8.4°, 12.9° 13.7°, 14.8°, 25.1° and 28.0° (Figure 6f). Bulk
2-C3N4 shows two distinct XRD peaks at 20 values of 27.1° and 13.0° indexed to the 002 and 100
planes of carbon nitride materials (Figure 6g). The 002 peak with a 0.32 nm interplanar d spacing
was correlated to interplanar stacking of sheets while 100 peaks with a 0.68 nm spacing was
specific to in-plane structural packing of heptazine units (Figure 6g).!3% 3" 40 The XRD pattern of
C3N;s exhibits one broad 002 peak at 27.6° corresponded to 0.33 nm interplanar sheet distance. The
slight increase in 260 value and d spacing can be explained due to repulsion between electron rich
n conjugated C3Ns sheets as in graphite (0.34 nm) (Figure 6h). Further, the absence of 100 peak —
a specific feature of in-plane packing, suggests distortion in the carbon nitride framework and

broadening of the nanochannel distance between heptazine units due to azo (-N=N-) bridging
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linkage, further consistent with *C and N NMR resonance broadening above, suggesting
local/medium-range disorder. Also, bridging of two heptazine units with two nitrogens through in-
plane lattice packing is less efficient in C3Ns which was responsible for the absence of any
expected peak at lower 20 values. These XRD results clearly support the distinct structure of C3Ns

possessing azo linkage.

~\/«\ o
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Figure 6. FTIR spectra of (a) Melem, (b) Melem hydrazine, (c) g-C3N4, (d) C3Ns, and XRD diffraction pattern

of (e) Melem, (f) Melem hydrazine, (g) g-C3Na, (h) C3Ns.

Raman spectra of melem acquired using 632 nm laser excitation show characterstic
fingerprint peaks of melem at 435 and 697 cm™ due to heptazine ring (C¢N7) breathing modes and
a broad hump at 1452 cm™ due to —~NH; bending mode (Figure S5a).!3* 4% Raman spectra of MH
demonstrate many signature peaks correlated to the core at 472, 744 and 1529 cm™ which were

shifted in comparison to melem due to functionalization while other peaks due to various
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vibrations of the heptazine nucleous and hydrazine group were observed at 127, 342, 537, 985,
1159, 1314 and 3071 cm™', in good agreement with the reported literature (Figure S5b), '8 232 40b.
4! The Raman spectra of g-C3N4 display many prominent peaks due to the heptazine framework at
471, 697, 706 cm™' (heptazine ring breathing modes) and two additional peaks at 1233 and 1567
cm’! corresponding to the -NH; bending mode and graphitic G band (Figure S5¢).2** 4 Further,
the presence of a broad hump extended from 1100-1600 cm™! suggests multilayer stacking of g-
C3N; sheets.*"> # In the Raman spectra of C3Ns, only trace peaks of melem hydrazine motif are
observed which indicates the complete transformation of MH to C3Ns. Two small peaks were
observed at 1085 and 1161 cm™ due to the mixed vibration of heptazine motif and azo stretch
(Figure S5d). A sharp peak at 1609 cm™ originated due to the C=N stretching mode.

Figure 7a displays the diffuse reflectance UV-Vis (DR-UV-Vis) spectra of g-C3N4 and
C3Ns. The DR-UV-Vis spectra of g-C3N4 shows a characteristic absorption peak between 200—
400 nm with a band tail extended up to 450 nm due to charge transfer from the populated valence
band of the nitrogen atom (2p orbitals) to the conduction band of the carbon atom (2p orbitals) of
carbon nitride. The less intense absorption band at 330 nm is due to m—m* transition in the
conjugated network while another intense peak at ca. 387 nm appeared due to n—x* transition
from nitrogen nonbonding orbital to the aromatic nonbonding orbital.!? 4>#* The DR-UV-Vis
spectrum of C3Ns demonstrates a drastic change in the UV-Vis absorption profile in comparison
to g-C3N4 due to a more extended m conjugated network (Figure 7a).!2>45 A broad absorption peak
around 393 nm in UV-Vis spectrum of C3Ns was attributed to n—x* transition from nitrogen
nonbonding orbital to the @ conjugated nonbonding orbital. The absorption spectrum of C3Ns was
red shifted showing band tailing up to 670 nm, due to an extended m conjugated network arising

from the overlap between N2p orbitals of bridging azo moieties and N2p in heptazine © conjugated
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system. Further residual -NH3 also contributes to the delocalized aromatic © conjugated system.
Due to this, the position of the valence band gets upshifted and n—n* transition occurs at-a
relatively low energy which facilitates the absorption of a large fraction of the visible spectrum
and results in the sample displaying an orange color. Further, the optical bandgaps of g-C3N4 and
C3Ns were determined using a Tauc plot by plotting a graph between (ahv)"? vs hv and
extrapolation of the linear tangent to abscissa; where a is absorption coefficient, h is plank constant
and v is light frequency (Figure S6a). From the Tauc plot, the value of bandgap for g-C3N4 was
estimated to be 2.65 eV corresponding to a band-edge at a wavelength of 467 nm, in good
agreement with the bandgap values reported in the literature.*® The bandgap value of C3Ns was
calculated to be 1.76 eV corresponding to a band-edge at a wavelength of 707 nm.
Photoluminescence (PL) spectra were collected by exciting samples using 360 nm photons
to probe radiative recombination (Figure 7b). The PL spectrum of melem consists of an intense
emission peak centered at 441 nm which is indicative of radiative recombination of carriers within
melem unit.3% * It is important to note here that melem exhibits excitation wavelength-dependent
PL emission. On the other hand, g-C3N4 showed a sharp emission peak at 468 nm which did not
shift upon changing the excitation wavelength. This peak is attributed to fast interlayer carrier
recombination in multilayered sheets of bulk g-C3N4.*> 47 Surprisingly, C3Ns does not exhibit any
distinguishing PL peak which might be indicative of efficient charge separation between the bulk
and the surface. Such charge transfer excitonic states involving the bulk and the surface, have also
been observed in other conjugated organic semiconductors that possess an extended m-conjugated
network that prevents radiative recombination by delocalizing the Frenkel exciton. However, due
to conductive conjugated surface non-radiative charge recombination can take place over new

localized states in the sheets scaffold.*®
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Figure 7. (a) DR-UV-Vis spectra of g-C3N4 (blue) and C3Nj5 (red), with inset showing photographs of g-C3Na
28 and C3Ns samples and (b) Steady--state PL spectra of melem (black), g-C3N4 (blue) and C3Ns (red) obtained

using ant excitation wavelength of 360 nm.

In order to investigate the lifetime of excited charged species, and charge separation processes,
33 we collected time resolved photoluminesece (TRPL) spectra of g-C3N4 and C3Ns using a single
35 photon picosecond pulsed laser at a wavelength of 405 nm. Figure 8 displays the PL lifetime decay
37 ‘ curves of g-C3N4 and C3Ns. The PL decay curve was fitted tri-exponentially using the following

equation:
41 I() = Ale ™+ A ™2 + Aze™? "

43 ‘ where, A1, A2, and A3 represent the normalized amplitudes of each decay component and 71, 72
45 and 73 are values of the lifetime components respectively. The existence of three radiative lifetimes

in the fitted PL lifetime spectra of g-C3N4 and C3Ns was in good agreement with previously
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reported carbon nitride--based materials. 4 The obtained values of lifetimes and their fractional

components are given in Table 2.

Table 2. The PL lifetime of phogenerated charge carrier and their relative contribution in g-C3N4 and C3Ns.

Sample | 7i(ns) [A1] | zi(ns) [A1] 71(ns) [A1] | Average lifetime (zavg) ns

g-C3Ny | 3.31 [0.34] | 0.75 [0.63] | 25.02 [0.05] 12.43

C3Ns | 8.10 [0.07] | 2.11 [0.26] | 0.28 [0.73] 4.40

The three components in the PL lifetime decay curve of g-C3N4 can be assigned to various energy
states in g-C3N4 formed by the overlap of C and N sp? and sp® hybridized orbitals and the presence
of lone pairs of electrons which allow for various radiative transitions. g-C3N is composed of tri-
s-triazine (C¢N7) units inter-connected with tertiary nitrogen atoms where C-N sp? hybridized state
constitute high energy ¢ and o* molecular orbitals while C-N sp? hybridization gives rise to a
conjugated network resulting in low energy © bonding and 7* antibonding orbital which constitutes
the valence and conduction bands respectively.’’ The presence of unbonded lone pairs of electrons
on pyridinic N atoms creates energy levels just below the n bonding orbital and their overlap with
the m conjugated system can further decrease the energy of the m molecular orbital resulting in the
reduction of the bandgap.®! The first two shorter lifetime components of 3.31 and 0.75 ns with 34
% and 63 % contribution in g-C3N4 correspond to charge carrier recombination from ¢* and m*
antibonding to ©1 MO.32 The third longer lifetime component of 25.02 ns with a relative low
contribution originated due to intersystem crossing (ISC) of electron from ¢* and n* orbital

followed by radiative relaxation to conjugated m orbital and trap-—assisted radiative
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recombination.® The first two lifetimes of C3Ns at 8.10 and 2.11 ns with 7 % and 26 %
contributions in the PL decay curve were significantly longer lived in comparison to g-C3Na,
strongly suggesting that the introduction of azo moiety extends m conjugated network which
facilitates better charge carrier mobility on C3Ns sheets (delocalized the exciton, as mentioned
previously) and prevents faster charge carrier recombination.® Further, due to extended
conjugation, the difference between 6* and n* band get decreased which is also evident in Mott-
Schottky measurement (Figure S6b).3'? The low energy difference between o* and m* accelerates
the transfer of electrons from o* and ©* orbital via intersystem crossing followed by radiative
relaxation which was evident from higher percentage contribution of the third lifetime component

(73 %).

The average lifetime (zavg) Which is regarded as coherent measure to evaluate the rate of
spontaneous emission was calculated from the three lifetime components using the following

expression.
Tavg = (A]‘L’]2 + Av® + A3‘L’32)/ (A1t1 + A2 + A313) 2)

From Eq (2), the average lifetimes of g-C3N4 and C3Ns were calculated to be 12.43 and 4.40 ns
respectively. The decreased lifetime of the C3Ns in comparison to g-C3N4 coupled with the very
weak photoluminescence of C3Ns (as seen in Figure 7b) is indicative of fast quenching of the C3Ns
luminescence. The fast quenching might originate from improved charge separation in C3Ns due
to a larger conjugated m network but might also be due to stronger non-radiative transitions. Fast
exciton dissociation with concomitant high carrier mobility can result in photogenerated electrons
finding trap sites (and moving to them) and recombining by non-radiative processes.**d The

aforementioned processes are highly likely in C3N; since the presence of azo bonds extends the ©
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network because of overlap of N2p orbital on azo nitrogens with the @ network of heptazine motif
due to which electrons can move within C3Ns scaffold freely. The lower PL lifetime of C3Ns in
comparison to g-C3Ns4 was consistent with steady-—state PL. where C3Ns shows prodigious

quenching in its PL spectrum.
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Figure 8. (a) PL lifetime decay curves of g-C3Ny (red; tri-exponential fit, yellow line) and C3Ns (black, tri-
exponential fit, cyan), (b) Schemaetics of various energy levels bands and possible route of charge carriers
recombination (c) X-band EPR spectra of g-C3N4 in the dark (blue), after light irradiation (orange dots) and C3Ns
in the dark (red) and after light irradiation (black dots) at room temperature, (d) Plausible molecular orbital

overlap representation of C3Ns.
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10 Electron paramagnetic resonance (EPR) spectra of g-C3N4 and C3Ns to elucidate electronic
12 nature and band excited paramagnetic species were collected under dark and UV irradiation at
room temperature (Figure 8b). The EPR spectra of g-C3N4 under dark conditions exhibits an
15 intense Lorentzian EPR resonance signal located at a g-factor of 2.003. The observed EPR signal
17 originated due to the presence of unpaired electrons in the sp2 hybridized aromatic n-system which
was in good agreement with previous reports.*® > The EPR signal intensity of g-C3N4 increased
after UV irradiation, attributed to populated unpaired electrons in the conduction band due to n-*
22 and N non-bonding to n* (n-n*) transition followed by slow relaxation via ISC. The observed EPR
24 signal of C3Ns was also observed at 2.003 g-value which implies basic graphitic heptazine skeleton
reamains intact in C3Ns framework.’ Further, after irradiation with UV light, the EPR signal
27 intensity of C3Ns was also enhanced due to increased numbers of unpaired electrons in the
29 conduction band. However, the overall EPR signal intensity of C3Ns in both the dark and under
31 UV illumination was significantly weaker in comparison to g-C3N4 which was attributed to a
lesser number of unpaired electrons in C3Ns, which in turn can be taken as evidence of the presence
34 of extra N atoms outside the heptazine nucleus in comparison to conventional N-rich carbon nitride
36 ‘ materials where N atoms substitute C atoms in the heptazine motif. It is well documented in the
literature that substitution of sp? hybridized +4 state C atom in heptazine motif with sp? hybridized
39 +3 state N atom will liberate extra electrons in the aromatic system which will distort electronic

41 symmetry & 47 57

and also increase EPR signal intensity. However, in the case of C3Ns, the
43 ‘ additional N atom makes an azo bond with an N atom outside the ring via & overlap and the extra

electrons remain in the form of lone pairs (Figure 8d).

46 Fluorescence lifetime imaging microscopy (FLIM) of samples at different spots was used

48 ‘ to probe the homogeneity of samples and to determine the nature of the fluorescence (Figure S79). - { Formatted: Highlight
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The PL spectra of g-C3N4 samples obtained from different spots exhibited identical emission
profiles with a sharp intense peak at 480 nm which was in good agreement with the steady--state
the difference in the mechanism of excitation (750 nm two--photon excitation source for FLIM,
360 nm single photon excitation in Figure 7b). Furthermore, the emission spectrum of C3Ns

displays two relatively weak peaks centered around 410 and 490 nm which likely originated from

,,,,, =

smaller fragments are consistent with a lesser number of MH units and therefore exhibit PL
properties closer to melem. FLIM images of g-C3N4 were brighter than C3Ns which further
supports our inference that the charge separation process was dominant in C3Ns samples (Figure

displayed relatively strong PL and brighter FLIM images due to the presence of MB in the

composite further suggests the absence of photo-induced charge transfer between the methylene

blue and C3Ns.

The synthesized C3Ns material was explored for dye adsorption studies using methylene+ ~ - { Formatted:

leather industries which also constitutes a good example of a colored water contaminant which
due to its excellent visible light absorption, reduces light penetration in aqueous ambients and
adversely affects aquatic flora and fauna. All dye adsorption studies were carried out at room
temperaature and under dark conditions. UV-Vis spectra of samples were collected for
determining the concentration of MB solutions during dye adsorption experiments (For

experimental details, see supporting information). MB has a sharp peak at 664 nm due to n-m*
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transition and a shoulder around 614 nm which represents MB present in dimeric and polymeric ©
stacked forms in water (Figure 9a). After the addition of C3Ns sample into methylene blue solution,
the color of the solution instantaneously turned green. The green solution after centrifugation
turned completely colorless which demonstrated the prompt adsorption of MB dye over the surface
of C3Ns and subsequent settling of the MB adsorbed C3Ns during centrifugation. The obtained
solid after centrifugation (denoted as C3Ns/MB) exhibits a sharp absorption peak intermediate
between C3Ns5 and MB with a broad peak centered at 680 nm. The red-shifting in the peak of C3Ns
from 664 to 680 nm is attributed to the transformation of MB into monomeric form and some
degree of ground state charge transfer from C3Ns to MB during adsorption on the surface of C3Ns.
The dye adsorption performance of C3Ns was much higher than g-C3Ns. MB is a well known
cationic dye possessing positive charge centered on the S atom in aqueous solutions.>® On the other
hand, the surface of C3Ns material has electron rich character due to the presence of secondary N
(NC2) in heptazine moieties, terminal —NH> and 7 extended network. Therefore, electrostatic
interactions between the positively charged MB molecule and negatively charged C3Ns are likely
responsible for the instantaneous adsorption.® 3° To confirm negative charge on the surface of
C3Ns, zeta potential measurement was performed which depicts average surface charge —36.2 mV
of C3N;s via m-m stacking between aromatic conjugated network of MB and n framework of C3Njs
(Figure 9b).%° To investigate the role of surface specific properties in the enhanced adsorption
profile, Brunauer-Emmett-Teller (BET) surface area (Sger), pore volume (V;) and pore diameter
(rp) of g-C3N4 and C3Ns were measured by N> adsorption and desorption. The obtained BET
surface area, pore volume and pore diameter for g-C3Ns were found to be 11.47 m? g!, 0.095 cm?,

and 19.13 nm while these values for C3Ns were found to be 1.78 m? g!, 0.002 cm® g'! and 16.98
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nm, respectively. The obtained surface values indicate a decrement in the surface area of C3Ns in

comparison to g-C3N4. The relatively low surface area of C3Ns might be due to the less gas

evolution (three NH3 per heptazine unit) from melem hydrazine precursor during thermal

annealing step while the formation of g-C3N4 from melamine precursor releases six NH; molecule

per heptazine unit. Further, hydrogen bonded melem hydrazine precursor might promote in-plane

cross-linking of heptazine units leading to a stacked sheets type structure which reduces the

effective accessible surface area. Contrarily, in g-C3N4 ring formation and polymerization step can

produce_cross-linking between sheets giving a porous structure with high surface area. The

obtained results suggests that an electronic interaction between C3Ns and MB is responsible for
the superior adsorption performance of C3Ns rather than an increased surface area.,
To investigate whether-the the nature of adsorption was chemisorption or physisorption,
and to explore the possibility of any chemical bonding, the C3Ns/MB composite was analyzed
using NMR spectroscopy. The *C NMR spectrum of C3Ns/MB composite did not show any
change in peak position and intensity of C3Ns which demonstrated the adsorption of MB on C3Ns
composite displayed various cumulative peaks and signals due to the presence of MB in the
C3Ns/MB composite. However, no evident signals for any chemical interaction can be identified
which further supports a purely physical interaction (physisorption) between C3Nsand MB (Figure
S9+Hta-c). Additionally, XPS spectra of C3Ns/MB composite were identical to pristine C3Ns

samples which revealed that C3Ns signals dominated over MB, and no change in BE value was

observed which ruled out the possibility of any chemical bond formation between C3Ns and MB

30

ACS Paragon Plus Environment

Page 30 of 115

- {Formatted: Font: (Default) Arial, Bold, Font color: Blue

)

- { Formatted: Highlight

) - { Formatted: Highlight

- {Formatted: Highlight




Page 31 of 115 Journal of the American Chemical Society

oNOYTULT D WN =

(@)

Absorbance (a.u.)

w-n stacking

500 600 700 800
Wavelength (nm)

300 400

Figure 9. (a) UV-Vis absorption spectra of MB (blue), C3Ns (red) and C3Ns/MB solution just after 1 min of
absorption (green). Inset showing photographes of (1) MB before absorption, (2) after absorption and (3) solution

after centrifugation, (b) Possible ionic and n-n stacking interaction between methylene blue and C3Ns.

To quantify the excellent dye adsorption capacity of C3Ns, various parameters such as the

adsorption capacity, adsorption constants, linear regression correlation coefficient, and adsorption

adsorption capacity (amount of dye adsorbed) of g-C3N4 and MHP materials was calculated using

equation 3

_(C=CoV
- m

3
Where ¢ is the adsorption capacity, V is the volume of MB solution, m is the mass of the added

adsorbent, and C and C. are the initial and equilibrium concentrations of MB, respectively. The
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kinetics of methylene blue adsorption on the surface of g-C3N4 and C3Ns were investigated using

first and second order adsorption kinetics using following equations 4 and 5.

qe = qe(1 —e™*) “)
kqdt
% = Tres )

Wswhere ¢g.is adsorbed amount of dye after reaching equilibrium and ¢; is the adsorbed amount at
time ¢, and £ is the pseudo--first order or pseudo--second order adsorption rate constant.

The results obtained using pseudo-first order and pseudo-second order kinetics are
displayed in Table 3 and Figures 10a and 10b. The kinetic studies clearly demonstrate that the
prepared C3Ns samples can reach approx. 95% adsorption-desorption equilibrium instantaneously
(1 min), and complete adsorption-desorption equilibrium condition within 10 min, which is an
extraordinary performance compared to previously reported carbon nitride and carbon-based

materials which usually take 45 min to achieve equilibrium.®!

In addition, the kinetics study
indicated that the adsorption of methylene blue on the C3Ns and g-C3N4 materials follows pseudo-
second order adsorption kinetics, which agreed well with previous reports.%!* For isotherm studies,
standard solutions of 5, 10, 15, 20, 25 and 30 ppm MB in water were prepared, 50 mL of these
standard solutions were placed in a beaker and 50 mg of the adsorbents were added to them. The
solutions were kept under strong stirring for 30 minutes under dark condition to reach equilibrium
and then the concentration of methylene blue was calculated using UV-Vis spectroscopy (See
Supporting Information for detail). The adsorption isotherms of methylene blue were investigated

61b, 62

in terms of the Langmuir and Freundlich models®'™ ®* (equations 6 and 7 respectively) and

the results for g-C3N4 and C3Ns are displayed in Figures 10c and 10d respectively; the relevant
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constants are reported in Table 3. It can be seen from Figure 10 and Table 3 that the value of R?
extracted by employing the Langmuir isotherm model was higher than R? value obtained from the
Freundlich isotherm model, indicating that the Langmuir model representing complete monolayer
coverage on homogeneous sites was successful in predicting the adsorption of methylene blue on

both g-C3Ns and C3Ns.%

__QbC,
€ 7 (1+bCp) ©)
qe = KC 7

Where ¢. is adsorbed amount of dye after reaching equilibrium (mg g!), R is correlation
coefficient, Q is the monolayer adsorption capacity (mg g™!), b is the adsorption coefficient (L mg"
Y, C.is the equilibrium concentration and X is the Freundlich constant.

Table 3. The pseudo-first and -second order kinetic models of MB adsorption on g-C3N4 and C3Ns and Langmuir

and Freundlich adsorption models showing isotherm constants.

Serial No. Pseudo-first-order Pseudo-second-order
Sample name k qe k qe
R? R?
s | (mggh s'mg'L) | (mggh)
L. g-C3Ny 0.16 2.35 0.96 0.08 2.6 0.99
2. C3Ns 6.35 6.33 0.98 2.24 6.95 0.99
S.No. Langmuir Freundlich
Sample name [0 b K
R? n R?
(mgg") | (Lmgh (mg'"L" g
1. 2-C3Ny 6.03 0.13 0.97 1.21 043 0.96
2. CiNs 42.32 0.05 0.98 2.40 0.78 0.97
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Figure 10. Kinetics of MB dye adsorption on g-C3N4 and MB displaying (a) Pseudo-first order fitted curve (b)
Pseudo-second order fitted curve and MB adsorption isotherms fitted by Langmuir and Freundlich model of (c)
2-C3Ny and (d) C3Ns respectively. g. is the amount of dyes adsorbed at equilibrium while C. is the equilibrium

concentration of MB.
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To check whether C3Ns material displays any visible light induced dye degradation
activity, 50 mL of 50 ppm MB containing solution was charged with 50 mg C3N;s catalyst and
stirred in the dark for 30 min to reach adsorption-desorption equilibrium. Subsequently, the
obtained suspension was irradiated under simulated sunlight (AM1.5G, 100 mW cm?). After every
10 min, 1 mL of sample was withdrawn and centrifuged to remove solid C3Ns and the supernatant
liquid was analyzed with UV-Vis spectroscopy. The UV-Vis analysis indicated that the
concentration of MB solution does not change even after 8 h of irradiation. These results suggest
that C3N5 is not active for dye degradation which might be because of unfavorable band alignment.
To understand the band structure of C3Ns, Mott Schottky plots were obtained in 0.5 M Na>SO4
were found to be —1.05 and —-0.91 V vs Ag/AgCl, respectively, which can be considered the
conduction band position if the Fermi level lies just below conduction band (strong n-type
character). Using the bandgap values obtained from the Tauc plot (2.65 eV for g-C3Ny4 and 1.76
eV for C3Ns), the positions of the valence band edge for g-C3N4 and C3Ns were calculated to be
+1.60 and +0.85 V vs Ag/AgCl, respectively. Since the standard band edge positions are usually
expressed with reference to NHE, the CB and VB positions of g-C3N4 were calculated to —0.85
and +1.80 V vs NHE at pH-0, while CB and VB positions of C3Ns were found to be —0.72 and
+1.04 V vs NHE at pH-0.

XPS valence band spectra of C3Ns was collected to get further information regarding the
band structure (Figure 11a). The intersecting point obtained by extrapolation of XPS VB spectra
on X and Y axis gave the value of valence band maximum (VBmax). The VBmax of C3Ns5 was
calculated to be +0.95 eV which was approximately the same (+1.05 V) obtained from the Mott-

Schottky measurements and UV-Vis data. Further, by using XPS VB and optical bandgap (1.76
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eV) values, the CBmin and VBmax of C3Ns were calculated to be —0.79 and +0.97 eV, while for g-
C3N4, CBmin and VBmax positions were found to be -0.85 eV and +1.80 eV respectively. Figure
11b a schematic illustration of the density of states (DOS) distribution in C3Ns and g-C3Ns.

The dye degradation process begins with the reaction with *OH radical originating from
photogenerated holes in the valence band of the semiconductor. The oxidation potential of water
to generate *OH radical (H2O/*OH) is +2.38 V vs NHE at pH-0 which requires highly oxidative
holes. Another route for the generation of *OH radicals is the reduction of Oz to O™ anion radical
(02/02", —0.33 V vs NHE at pH-0) at the conduction band followed by reaction with protons to
afford *OH radicals.®* % However for this process required protons should be derived from water
oxidation (H20/O2, +1.23 V vs NHE at pH-0).%*  Unfortunately, the valence band position of
C3Ns is just +1.04 V vs NHE which cannot facilitate water oxidation thus explaining the absence
of photocatalytic activity for MB degradation. Nyquist plots of g-C3N4 and C3Ns determined with
electrochemical impedaence spectroscopy (EIS) under dark and AM1.5G irradiation demonstrate
that the semicircle for C3Ns was larger than for g-C3N4 which represents a higher charge transfer
resistance in C3Ns compared to g-C3Ng; a higher charge carrier recombination is indicated in C3Ns

Due to the unfavorable band edge positions of C3Ns5 (CB = —0.71 V and VB =+1.04 V vs
NHE at pH-0), it is not able to function as a stand-alone catalyst for the photoelectrochemical
splitting of water. However, the excellent visible light absorption of C3Ns encouraged us to
investigate the photosensitizing effect of C3Njs to increase the photocatalytic performance of TiO2
(a wide bandgap semiconductor).®’ The conduction band of C3Ns (=0.72 V vs NHE) was more
negative than conduction band of TiO2 (0.1 V vs NHE) which favors transfer of photogenerated

electrons in the CB of C3Ns to the CB of Ti02.°® To measure photosensitizing performance, C3Ns,
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and g-C3N4 powders were mixed with TiO2 nanoparticles in a-terpineol solution (film--forming
agent) followed by drop-casting on FTO:glass substrates coated with a thin (~ 50 nm) blocking
layer of TiO2. A three electrode setup consisting of the samples as the photoanode (working
electrode), Pt as cathode (counter electrode) and Ag/AgCl reference electrode was used for
photoelectrochemical water splitting experiments in 0.1 M Na>SOg electrolyte, while a Class A
solar simulator was used as the source of AM1.5G simulated sunlight (100 mW c¢m™). Linear
sweep voltammograms of electrodes consisting of C3Ns and pristine g-C3N4 samples mixed with
TiO2 NPs are shown in Figure 11a. It can be seen from Figure 11a that the photocurrent density
for C3Ns sensitized TiO2 was much higher than g-C3Njy sensitized TiO». The current density for
C3Ns and g-C3N4 sample blended TiO» sample was found to be 152 and 100 pA cm™ at an applied
potential of +0.6 V vs NHE (or 1.23 V vs NHE). To probe the improved photosensitizing
performance in the visible region, on-off experiments using a 450 nm LED (54.15 mW cm™2) were
carried out which clearly show the alternate drop and rise in photocurrents in on-off cycles (Figure
11b). Figure 11b also shows that the magnitude of the photocurrent was higher for the C3Ns
sample. A similar pattern in the on-off cycle was observed when samples were irradiated with 505

nm LED (40.48 mW c¢m2) confirming the improved photosensitizing properties of C3Ns at longer

conditions, the value of photocurrent density for g-C3N4 was found to be 373 pA cm? (Figure
S13a). Similar pattern was followed at higher wavelengths and calculated current density for C3Ns
was found to be 454 and 145 pA cm? at 450 and 505 nm, while for g-C3Ny the value of current

density was found to be 275 and 80 pA cm respectively (Figure S13b) Photocurrent response of
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C3Ns as function of time during light on-off cycle doesn’t change significantly compared to g-
C3N4 which demonstrate resiliency of C3Ns under reaction conditions and charge flow (Figure
S14). The maximum applied bias photon-to-current efficiency (ABPE) and incident photon-to-
current efficiency (IPCE) achieved by C3Ns was 0.059 and 2.33% (at 450 nm) while these value

for g-C3N4 was 0.048 and 1.41% (at 450 nm), respectively (Figure S13c and d).

(a) VB XPS (b)
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3 -0.79 eV
s 3
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Figure 11. (a) XPS valence band spectra of C3Ns for determining energy levels (b) Density of state revealing
band structure of g-C3N4 and C3Ns (c) Linear sweep violtammogram showing current-—potential characteristics

of g-C3N4 (blue) and C3Ns (red) measured in 0.1 M Na>SOu solution AM1.5G light irradiation (100 mW cm™2)
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and under dark condition (d) Light on-off showing photocurrent response vs applied voltage by using 450 nm

wavelength light (54.15 mW cm™2) for g-C3N4 (blue) and C5Ns (red).

To demonstrate the optoelectronic application of our newly synthesized graphenic
semiconductor, we employed C3Ns as the electron transport layer (ETL) in MAPbBr; based
perovskite solar cells and obtained a good result. Carbon-based materials have frequently been
used as hole transport layers (HTLs) or hole collection electrodes in MAPbBr3; based solar cells,
but have almost never been used (effectively) as ETLs to boost the open circuit photovoltage.
Using C3Ns as the ETL and with no optimization of any kind, we measured a V,c of 1.3 V, Ji of

7.5 mA cm and a FF (fill factor) of 0.4 to obtain a power conversion efficiency (PCE) of 4.2 %

significance of the aforementioned result. Methylammonium lead bromide (MAPbBr3) is a halide
perovskite with an electronic bandgap of 2.23 eV which has two major advantages for solar cell
applications in comparison to the more commonly used methylammonium lead iodide (MAPbI3)
— in theory, it enables the construction of much higher V. solar cells that can be used to power
electrocatalytic and electrochemical reactions and secondly, MAPDbBr3 is known to have superior
ambient stability (less moisture sensitivity) and operational stability (due to the absence of phase
transitions and enhanced thermal stability at a high working temperature) compared to MAPbI3.%°
However, until recently, most works in this area failed to achieve the expected high V. value, and
the typical V,. values obtained using were in the range 0.90-1.16 V.”° The use of carbon-based
charge transport layers has enabled a dramatic improvement in the performance of MAPbBr3-
based photovoltaic devices by generating photovoltages in excess of 1.3 V (as high as 1.6 V)
without suffering a corresponding penalty in the short circuit current (Jsc). The first such report

was by Wu et al.”! wherein indene-C60 bisadduct (ICBA) was used as the acceptor in conjunction
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with MAPbBr3 to realize a high Vi perovskite solar cell. Shortly thereafter, Li et al. used carbon
nanotubes as an efficient hole collector for MAPbBr3 solar cells and achieved a V,. of 1.4 V.7
MAPbBr; sandwiched between modified PEDOT:PSS (hole transport layer) and PCeBM
(electron transport layer) resulted in a solar cell with a V,e of 1.52 V7® while a graphitic carbon
anode (with no hole transport layer) and TiO; electron transport layer were used by Liang et al. to
realize a MAPbBr; solar cell with a Vi as high as 1.57 V.™

The origin of the poor V,. values was poorly understood for a long time. Even now, there
are two distinct explanations, one based on active layer material quality issues and another based
on high interfacial recombination. For instance, vapor deposited MAPbBr3 films were found to
generate high V. values in comparison with solution-deposited films, which was attributed to the
superior morphology and grain size in the vapor deposited films, and supported the explanation
based invoking material quality.”” The second explanation was supported by the observation of
high V. values when hole transport layers with deep HOMO levels were used, indicating that the
separation of the electron- and hole- quasi-Fermi levels at the charge extraction interfaces, was the
controlling mechanism determining V,..”® Our examination of MAPbBr3; solar cells using C3Ns as
the ETL provides a way to reconcile the above explanations. On the one hand, the high CB position
of C3Ns is better aligned with the CB of MAPbBr3, and enables an optimal value for the electron
quasi-Fermi level at the perovskite- C3Ns interface. On the other hand, the low dark current
Supporting Information) indicates suppression of trap-mediated hopping through MAPbBr3 due to
the insertion of C3Ns as a midgap state-free barrier layer, thus enabling the circumventing of active

layer material quality issues. In summary, it is noteworthy that an unoptimized ETL made with a

40

ACS Paragon Plus Environment

Page 40 of 115

- { Formatted: Highlight




Page 41 of 115 Journal of the American Chemical Society

oNOYTULT D WN =

brand new semiconductor (C3Ns) that was cast into films from a particulate suspension, generated
a Vo value of 1.3 V, higher than that generated by TiO> and g-C3N4 ETLs.

The photovoltaic performance of halide perovskite solar cells is highly dependent on grain size
and defects free lattice states and presence of small numbers of defects and trap sites have a
detrimental effect. The trap assisted recombinations can be minimized by passivating perovskite
layer with graphenic materials due to their high carrier mobility and surface area materials which
can efficiently capture charge are improve transportation behaviour resulting inte better
photoconversion efficiency.”” Further, incorporation of graphenic semiconductors with perovskite
precursor provide crystallization surface which helps in increasing of grain size and minimize
defects density at grain boundaries. The increased conjugation in C3Ns should lead to electron rich
conductive surface with high charge carrier density and better carrier mobility than g-C3N4. To
verify this assumption we have blended MAFA 1.xPb(lo.85Bro.15)3 based perovskite with diifferent
wt% of C3Ns and g-C3N4. Under optimized conditions, 4 wt% doping of g-C3N4 and C3Ns with
respect to PbX> was found best performing and C3Ns outperformed over g-C3N4 and bare PbX»
based solar cell architecture attributed to better charge separation in more conjugated C3Ns scaffold

and reduced trap sites.

Figure 12 shows the J-V curves of the best performing solar cells devices based on undoped and
doped perovskite layers while the photovoltaic performance of solar cells isare summarized in
table 4. Solar cells made with a compact undoped perovskite solar cell yielded a short circuit
current density (Jyc) of about 20.344 mA/cm?, an open circuit voltage (Vo) of 1.04 V and fill factor
(FF) of about 66% resulting in the overall power conversion efficiency (PCE) of about 13.959%.
While, perovskite solar cell made with g-C3Ns-doped perovskite layer showed a Ji. of 21.573

mA/cm?, Vo of 1.03V and fill factor of about 69.1% and corresponding PCE of about 15.344%.
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C3Ns doped perovskite solar cells displayed PCE value of 16.689% resulting from Vi of 1.065V,

Jse of 22.87 mA/cm? and FF of 68.5%.

Capacitance-voltage measurement on fabricated devices with doped/undoped perovskite layer was
measured at 10 kHz frequency in dark to determine bulk properties such as doping density (Np)
and energy equilibrium at the contacts which is related to the flat-band potential (Vp).”® Mott-

Schottky plots for the devices made with doped and undoped perovskite layer are shown in Figure

135
1 2 {(V Vo) kT} g
CZ.~ egye, Np FB e ®
Np = 2 9
D™ egpe,m ®

Vp» and Np were calculated by using equation (8) and equation (9) respectively, where Cicis the
space-charge capacitance (i.e. film capacitance) per unit area; €,.is the dielectric constant of the material,
&y 1s the vacuum permittivity, k is Boltzmann constant, 7 is temperature in Kelvin, e is the electron
charge and V is the applied potential. The measured Vj of bare undoped, g-C3N4_doped and C3Njs
doped perovskite solar cell was found to be 1.12, 1.08 and 1.15 V respectively, while carrier
concentration of the respective devices wasere found to be 1.74x10'®, 1.96x10'6 and 1.36x10'®
cm?. This proves that doping perovskite layer with C3Ns significantly improves the charge
transport in the device compared to the undoped and g-C3Ns-doped devices.

To explore the charge transport characteristics, hole only devices with the architecture of
FTO/PEDOT:PSS/Perovskite/Spiro-oMeTAD/Au wasere measured by the space charge limited

current (SSLC) model described by the following equation.
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9

J=355 €o€rnV? (10)

Where €, €., 1, and L are permittivity of the free space, relative permittivity of the perovskite,
carrier mobility in the perovskite layer and thickness of perovskite layer respectively. The hole
mobility in pure perovskite was found to be 2.55x103 cm¥sS while that of g-C3N4 and C3Ns doped
To get insight into the charge transfer properties of perovskite solar cells based on undoped and
doped perovskite layer, solid-state impedance spectroscopy measurements in the frequency range
from 0.1 Hz to 1 MHz at different applied bias under dark condition were performed. The resulting
Nyquist plots were fitted with the circuit shown in inset of Figure 12¢, where R; is series resistance,
Rrec and C represents the resistance and capacitance at the interface between the active layer and
charge transport layer and Q is a constant phase element (CPE) with coefficient N. The resulting
recombination resistance of different solar cells obtained after fitting the Nyquist plot observed
from the low--frequency region at different voltage shown in Figure 12 (d-i). C3Ns doped device
showed a higher value of Rrec compared to the g-C3N4 doped and undoped devices. As the electron
and hole transporting layers for all kind of devices are same, the difference in Ry is mostly
governed by the change in the interfacial property of perovskite layer induced by doping with C3Ns
and g-C3Ny. Interfacial recombination is inversely proportional to the recombination resistance,
therefore, it can be concluded that the interfacial charge recombination in perovskite solar cells
significantly gets suppressed by doping with MHP while it increases by doping with g-C3N4

resulting in an improved Vi, in C3Ns based device followed by the undoped and doped devices.
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Figure 12. (a) Current-voltage characteristics of perovskite solar cells made with bare PbX», 4 wt% of g-C3N4
and C3Ns under AM1.5 G one sun illumination. (b) Mott-Schottky plot of the perovskite solar cells based
undoped and g-C3N4/C3Ns-doped perovskite active layers. (c) Recombination resistance of perovskite solar cell
based on undopped and doped Perovskite layer with CN and MHP in dark. The corresponding equivalent circuit
is shown in insets where Rs is series resistance, C is high-frequency capacitance, R is recombination resistance,
and Q is a constant phase element (CPE) with coefficient N. (d-i) Nyquist plots for perovskite solar cells made

with bare PbX», g-C3N4 and C3Ns doping under dark condition at 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 V.
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Table 4. Photovoltaic performance of HPSCs made with bare PbXs, 4 wt% g-C3N4 and C3Ns in PbX; solution

under AM1.5 G solar simulated light.

Voc(V) Jse(mA/cm?) FF PCE (%)
Maximum 1.065 22.870 0.685 16.686
C3Ns
Average 1.02620.043 22.560+1.039 0.654+0.044 15.142+1.442
Maximum 1.030 21.573 0.691 15.344
g-C3Na
Average 0.984+0.042 21.204+0.565 0.670+0.017 13.981+0.949
Maximum 1.040 20.344 0.660 13.959
Bare
Average 1.041+0.035 20.394+0.200 0.647%0.020 13.713+0.245

The low band gap and extended m conjugation of C3Ns makes it an excellent candidate to harvest
solar light to drive visible light induced catalytic reaction. Recently plasmonic materials capable
of generating hot electrons, coupled with graphenic materials has shown wide potential in
plasmon-exciton co-induced surface catalytic reactions.” The plasmon--exciton coupling for co-

To probe the viability C3Ns for promoting chemical reaction on its surface, the transformation of

4NBT (4-nitrobenzenethiol) to DMAB (4,4'-dimercaptoazobenzene) was chosen as model reaction
while silver nanocubes (AgNC)3! were used as plasmonic material. The comparative SERS spectra
of NBT adsorbed on bare AgNC, and AgNC decorated on g-C3Ns mW and C3Ns using 532 nm
laser and 1 mW laser power are presented in Figure 13a. Normal Raman spectra of the pristine

4ANBT powderere show three main Raman signals at 1101, 1332 and 1576 cm™! assigned to S-C
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stretch, NO; vibration and C=C stretch respectively.®? After irradiating with 532 nm laser with a 1
mW power intensity the N-O vibration was decreased and new peaks at 1142 (C-N stretch), 1389
and 1438 (N=N stretch) cm™! corresponded to DMAB a, modes emerged demonstrating conversion
of 4NBT to DMAB.® For bare AgNC the drop in 4NBT peak was not significant which show
inefficient surface-plasmon-to-hot-electron conversion to promote plasmon-driven chemical
reaction. The AgNC/g-C3Ny4 show a slight lowering of 4NBT peak intensity and rise in DMAB
peaks, however, the peak was not disappeared suggesting incomplete transformation at lower laser
power. While for AgNC/C3N5s the N-O vibration peak was completely disappeared at 1.0 mW laser
power. Further, we have tested laser power dependent SERS spectra on NBT adsorbed samples
which demonstrate complete disappearance of 4NBT peaks for Ag/C3Ns even at 0.7 mW while
bare Ag and AgNC/g-C3N4 system could not achieve complete degradation even at 10 mW laser
power (Figure 13 b-d). Magnified SERS spectra of Ag/C3Ns, in 1270-1470 cm! region show a
gradual decrease in N-O vibration peak as a function of laser power AgNC and completely
C3N; and AgNC as evident from the increase in 4NBT peak at 1332 cm™! along with DMAB peak
at 1389 and 1438 cm! as a function of laser intensity. The excellent conversion efficiency of
AgNC/C3Ns assembly was attributed due to better plasmon-to-electron conversion efficiency on
conjugated C3Ns’s surface which lead to-a high-density hot electrons to facilitate high catalytic

conversion.”®
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Figure 13. (a) Raman spectrum of pristine 4NBT (black), DMAB (yellow) and comparison of SERS spectra of
plasmon-exciton co-induced surface catalytic reaction of 4NBT to DMAB on AgNC (purple), AgNC/g-C3N4
(blue) and AgNC/C3Ns (red) under 532 nm laser irradiation at 1.0 mW power and 60 s accumulation time and
SERS spectra as function of laser power for plasmon-exciton co-induced surface catalytic transformation of
4NBT to DMAB on (b) AgNC/C3Ns (c) AgNC/g-C3N4 and (d) AgNC. The gradual lightening of color as a

function of laser power represents the transformation of 4NBT to DMAB.
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We performed thermogravimetric analysis (TGA) analysis ofa g-C3N4 samples to determine the

(~ 6%) in the range of 60-150 °C was due to loss of surface adsorbed water molecules. The second
major weight loss started from 550 °C, shows slow weight loss (~8%) up to 635 °C due to loss of
NH: and condensation of heptazine units followed by almost ~70% sharp weight loss in the range
of 635-740 °C due to degradation of heptazine moieties.?* Following that, a steady weight loss was
observed up to 900 °C due to the removal of residual carbon material. For C3Ns, an initial small

weight loss of 6% in the range of 60-150 °C was attributed due to loss of surface adsorbed and

range of 420-630 °C was assigned to loss of bridging azo nitrogens (-N=N-) and edge decorated -
NH: nitrogens. The absence of any sharp weight loss for azo nitrogens demonstrates that azo
nitrogens were not localized but present in a crosslinked heptazine network. Previous reports on
azo linked polymer also demonstrated excellent thermally stability of such polymers due to the
formation of a rigid structure.®® Further, the observed weight loss value was in close agreement
with expected weight loss value for azo nitrogen (33.5%) calculated by considering removal of
three azo nitrogens (-N=N- shared by two heptazine) from azo bridgzed C¢No unit, leaving behind
CsN7 heptazine unit. These results further validated the presence of azo nitrogens in C3Ns polymer.
Approximately 38% sharp weight loss in 630-720 °C region was assigned to degradation of
heptazine ring system followed by slow weight loss-due up to 900 °C for residual carbon. Further,
to investigate the nature of the product formed at high temperature, we annealed the sample in a
closed evacuated quartz tube at 800 °C for 4 h. The orange product turned black and stuck to the

wall of the tubes. Raman analysis of the product showed specific D, G band along with the 2D
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reports also demonstrate the transformation of carbon nitride-based materials/nitrogenous

precursors into N-graphene/N-carbon at higher temperatures.

To understand charge carrier dynamics and recombination mechanisms in C3Ns, the surface
potential changes of the samples under dark and under laser illumination at different wavelengths,
were measured using Kelvin Probe Force Microscopy (KPFM) as illustrated in Figure 14. The
surface topographical AFM image of g-C3N4 and C3Ns thin films deposited on bare FTO reveals
an average roughness of 20.4 and 19 nm respectively (Figure 14ai and bi). Figure 14(aii)-(av) and
(bii)-(bv) displays the surface potential map of g-C3N4 and C3Ns samples under dark, 635, 520 and
450 nm respectively. The FTO was grounded and behaves as an electron sink for photogenerated
charges, leaving holes behind. The surface potential ef-map under dark for both g-C3N4 and C3Ns
shows even distribution of charge all over the surface of samples, (Figure 14(aii) and (bii)). After
illumination with 635 nm laser the contrast of blue spots (positive potential shift) in the surface
potential map was increased for both g-C3N4 and C3Ns, however, this change was much intense
for C3Ns. Under 520 nm light, the density of blue spots was slightly higher for g-C3N4 than C3Ns
which drastically increased under 450 nm illumination (Figure 14a (aiv)-av) and Figure 14b (biv)-
(bv). These observations demonstrate that highest charge generation and accumulation on the
surface was at 450 nm for g-C3Ny and at 635 nm for C3Ns while remaining moderate for both at
520 nm. Further, values of surface potential measured by KPFM under dark condition were found
to be +156 and +45 mV for g-C3N4 and C3Ns respectively, which agreed well with the increased
electron density on C3Ns than g-C3N4 due to contribution of charge from azo motif to heptazine

ring system via extended orbital overlap (Figure 14c and d). The high surface negative charge of
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450 nm light, the surface potential was negatively shifted reaching maximum +40 mV for g-C3N4
and +25 mV for C3Ns. Higher change in contact potential difference (CPD) or SP i.e. 102 mV for
2-C3N4 was observed due to good absorption at 450 nm for generation of electron--hole pairs and
accumulation of negative charge on the sample surface. The broad surface potential peaks and
significantly larger CPD shift for g-C3Ny wereas attributed possibly due to the longer lifetime (as
confirmed by TRPL, Figure 8a) of g-C3N4 charge carriers resulting into delayed recombination of
accumulated charge. Under 520 nm illumination, the surface potential values for g-C3N4 and C3Nj5
were measured to be 123 and 8§ mV, while the change in SP was found to be 33 and 37 mV,
respectively. For g-C3Ny, relatively small CPD shifting at 520 nm can be explained due to its
limited absorption at 520 nm wavelength generating fewer numbers of excitons, while in C3Ns
most of the photogenerated charge get recombined due to faster recombination rate. Interestingly,
C3N;s show unusually high SP shift (77 mV) at 635 nm, while g-C3N4 show explicitly small CPD
shift (30 mV). Exceptional high SP shift at 635 nm, demonstrating azo motif playing a certain role
in charge carrier generation and stabilization at a longer wavelength. Azo bridged aromatic
compounds are well known for their visible light absorption due to the presence of azo
chromophore (-N=N-) in conjugation with aromatic units. The n—n* transition corresponding to
azo nitrogen nonbonding orbital to the n* orbital of conjugated nitrogens in azo moiety occurs at
low energy giving visible light absorption.®® In C3Ns where electron withdrawing heptazine units
(C¢H7) were bridged together with azo bonds, these low energy transition can take place at 635 nm
resulting into increase CPD shift at 635 nm. The high surface potential of C3Ns at 635 nm validates

its potential to generate excitons at longer wavelengths.
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Figure 14. (a) and (b) Topographical AFM images (ai), (bi) and Surface potential maps of g-C3N4 and C3Ns
samples deposited on FTO (aii) and (bii) without light, (aiii) and (biii) with 635 nm lased, (aiv) and (biv) with
520 nm laser, (av) and (bv) with 450 nm laser in sequence of top to bottom and surface potential distribution of
(c) g-C3N4 and (d) C3Ns samples deposited on FTO under dark conditions, under illumination with 635, 520 and

450 nm laser.

3. Conclusion

We report the synthesis of a modified carbon nitride framework C3;Ns polymer containing
exceptionally high N:C atomic ratio (5:3) melem hydrazine as the monomeric unit. Extensive
characterization of C3Ns with XPS, EELS, NMR spectroscopy and elemental analysis suggested
the presence of heptazine moiety bridged by azo nitrogens in the C3Ns framework. Due to the
overlap between the & orbitals of azo-bridged units and the n-conjugated network of the heptazine
unit, the bandgap of C3;Ns material was significantly reduced which, in turn, enabled optical
absorption extended up to 700 nm and a bandgap of 1.76 eV. The position of the valence band in
C3N;s was raised (+1.04 V vs NHE) in comparison to g-C3N4 (+1.80 V vs NHE) and C3Ns displayed
excellent photosensitizing behaviour to sensitize TiO> at longer wavelengths (505 nm) to facilitate
photoelectrochemical water splitting. Due to the increased nitrogen content and the availability of
electron rich basic nitrogen sites, C3Ns materials displayed astonishing dye adsorption
performance for methylene blue removal reaching 90 % adsorption-desorption equilibria within 1
min and complete adsorption-desorption equilibria within 10 min. In conjunction with Ag
nanocubes, C3Ns displayed excellent photocatalytic activity for the plasmon-exciton (plexciton)
co-driven reduction of 4-nitrobenzenethiol to 4,4'-dimercaptoazobenzene. A prototypical solar cell

device using C3Ns ETL and MAPbB1; displayed an improved Vi, of 1.3 V and power conversion
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efficiency (PCE) of 4.2 % higher than g-C3N4 ETL. C3Ns blended with MAxFA1.xPb(lo.ssBro.15)3

perovskite active layer achieved a photoconversion efficiency (PCE) as high as 16.7 %.

Supporting Information:

Experimental details; chemical structures; Supporting Figures (Fig. S1-S22); XPS, ssNMR,
Raman, electrochemical characterization (Mott-Schottky, EIS), PL, Fluorescence lifetime
imaging, Zeta potential, EELS, TGA, Photoelectrochemical water splitting results(under AM
1.5G irradiation, LEDs PCE, IPCE, APCE, i-t curve), solar cell results (J-V curves, action

spectra) and plexitonic performance (SERS spectra)
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36 1. Experimental details

1.1 Reagent and materials

39 Analytical grade pure melamine (99%), hydrazine hydrate (55%), methylene blue

41 (Ci6H1sCIN3S -xH20), NaOH (97%), HCI (37%), anhydrous Na>SO4 (99%), titanium (IV)

43 isopropoxide (97%), titanium (IV) butoxide (97%), 4-nitrobenzene thiol (80%), NazS -9H>O
(299.99%), Acetic acid (=99.85%), HCI (37%), formamidinium iodide (=99%, anhydrous), 4-

46 tert-butylpyridine (96%), lithium bis(trifluoromethanesulfonyl)-imide and spiro-OMeTAD

48 (99%) were procured from Sigma Aldrich. Acetonitrile (99.8%), lead iodide (99%) and lead
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bromide (+98%) were purchased from Acros Organics. Methylammonium bromide was
obtained from Dyesol. Chlorobenzene (99.8%), titanium (IV) chloride (99.9%),
dimethylformamide (DMF) (99.8%) and dimethylsulfoxide (DMSO)(=99.9 %) were
purchased from Fisher Scientific. Transparent titania paste (18NR-T)(Average Nanoparticle
Size (active) - 20nm) was purchased from Greatcell Solar. Chemicals were used as received
without any further purification. Fluorine--doped tin oxide (FTO), (80-82% transmittance)
was purchased from Hartford Tec Glass Company and surface was cleaned by ultrasonication
for 10 min in acetone, methanol and de-ionized water respectively. HPLC grade water and

solvents were used throughout experiments.

1.2 Physicochemical characterization

The surface morphological features of materials were determined by using Helium ion microscope,
by using a Zeiss Orion NanoFab HiM w/ Ga-FIB (Trinity) equipped with GFIS column with a
working distance of 9.3 mm, scan size of 1024x1024 and dwell time 0.2 um. The excess charging
on the sample was neutralizing by using electron flood gun to get better images. The sample for
He-ion imaging was prepared by deposition of the sample on carbon tape and drying. Fine
structural attributes of the sample were acquired by using high resolution transmission microscopy
(HR-TEM), on a JEOL 2200 FS TEM/STEM- with EDX operating at an acceleration voltage of
200 KV. For the HR-TEM very dilute suspension of the sample in methanol was deposited on the
lacy carbon--coated copper TEM grid. The obtained HR-TEM .dm3 files were processed with
Gatan micrograph to determine sheets morphology and inter-planer d spacing. Further, inner shell
ionization edge (core loss) of g-C3N4 and C3Ns for was determined with EELS (electron energy-
loss spectroscopy). The EELS project file was processed with GATAN Pro. software and extracted

data wereas later plotted in Origin. X-ray photoelectron spectroscopy (XPS) to execute surface
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chemical composition, binding energy and at% of samples were obtained by using XPS (Axis-
Ultra, Kratos Analytical) instrument equipped with monochromatic Al-Ka source (15 kV, 50 W)
and photon energy of 1486.7 eV under ultrahigh vacuum (~1078 Torr). The binding energy of C1s
core level (BE =~ 284.8 eV) of adventitious hydrocarbon was used as a standard to assign other
elements binding energy (BE) and the carbon correction value. The deconvolution of obtained raw
data in-to various peak components was done by using CasaXPS software and exported .csv files
were plotted in origin 8.5. To elucidate the chemical structure of materials 'H, '3C and >N solid-
state nuclear magnetic resonance (NMR) spectra were acquired on a Bruker Avance 500 NMR (B,
=11.75 T) equipped with a 4 mm double resonance MAS NMR probe. The *C and "N spectra of
natural abundance samples were acquired using the cross polarization' technique, with contact
times of 3 ms ("*C) or 5 ms ('°N), a 4.0 us n/2 pulse (YB1/2n = 62.5 kHz) and a recycle delay of
3.0 s, and with broadband proton decoupling (YB1/27w = 62.5 kHz) via two-pulse phase modulation
(TPPM). Powdered samples were packed into 4 mm zirconia rotors and all spectra were acquired
under magic-angle spinning (MAS) conditions using a spinning frequency of 10 kHz. *C spectra
were referenced to TMS (8(*3C) = 0.00 ppm) by setting the high frequency '*C peak of solid
adamantane to 38.56 ppm. N spectra were referenced to nitromethane 5('>N) = 0.00 ppm by
setting the isotropic peak of a glycine sample (98 % °N) to —=347.6 ppm. NB: Liquid NH3 is also
a common PN reference compound (&( 5N) = -380 ppm wrt nitromethane). To convert the values
reported here with respect to liquid NH3 at 0 ppm one can easily achieve this by adding 380 ppm
to all reported values (Swrintz = Sreported + 380 ppm). 'H MAS NMR data were acquired using a
Bloch?pulse with a 4.0 us n/2 pulse (YB1/2n = 62.5 kHz) and a recycle delay of 3.0 s. 'H signals
were referenced with TMS (8 (‘H) = 0.00 ppm) by setting the isotropic peak of adamantane to 1.85

ppm. The change in functional groups moieties of materials and their IR active vibration were
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investigated with the help of Fourier transform infrared (FT-IR) spectroscopy recorded on a
Digilab (Varian) FTS 7000 FT-Infrared Spectrophotometer with UMA 600 Microscope using a
ZnSe ATR accessory. For acquiring the spectra, samples were deposited on the ZnSe crystal and
nitrogen gas flow was maintained through the ATR assembly and spectra wereas collected by
averaging 64 scans in the frequency range of 450-4000 cm™'. The phase structure and crystalline
properties to of materials were explored by X-ray powder diffraction (XRD) spectra recorded on
Bruker D8 Discover instrument using Cu-Ka radiation (40 kV, A = 0.15418 nm) equipped with a
LynxEYE 1-dimensional detector. The spectra were recorded with a scan size of 0.02° in the range
of 20 value 4-60°. The UV-Vis absorption spectra of materials in diffuse reflectance mode were
collected using a Perkin Elmer Lambda-1050 UV-Vis-NIR spectrophotometer equipped with an
integrating sphere accessory. The steady--state photoluminescence (PL) spectra of materials were
acquired on Varian Cary Eclipse fluorimeter xenon lamp excitation source and a slit width of 5
nm. The vibrational properties of materials were executed with Raman spectroscopy using were
recorded on a Thermo Scientific DXR2Raman Microscope using the 634 nm excitation line with
an incident power of 20 mWcm™. The spectra were accumulated for 60 seconds using 50 um
confocal pinhole apertures slit, a2 cm™//CCD pixel element spectral dispersion grating. The sample
was deposited on a glass slide and laser spot was focused on the sample surface and the scattered
light was collected. Time-resolved photoluminescence (TRPL) curves were recorded using a
homemade single photon counting. Samples were photoexcited by 405-nm picosecond diode laser
(Alphalas GmbH) operated at a frequency of 13MHz to excite the samples, and a Becker-Hickl
HPM-100-50 PMT interfaced to an SPC-130 pulse counter system. This setup has a response time
of ~100 ps. Electron paramagnetic resonance (EPR) spectra of material to was ensued on a Bruker

model E-580 (EMXnano Bench Top system) spectrometer (Germany) equipped with a 400 W
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mercury-lamp (Lot Quantum-Design GMBH) as the light source and helium flow cryostat (Oxford
CF935 helium flow cryostat), operating at X band microwave frequency (~ 9.64 GHz). The
operation setting for EPR measurement was as follow: Power 3.162 mW, center field 33440 G,
cavity Q quality factor was kept above 4000. The sample was charged in a quartz tube and covered
with air-tight lids and EPR spectra wereas accumulated under dark and light at liquid 100 K using
liquid nitrogen. Standard samples was used for the calibrations and obtained field values wereas
converted into g value by following expression g =h f/mp B. where; g is Lande factor, h is plank
constant (6.62 107 Is), f is frequency (9.64 GHz Hz), mg is Bohr magneton (9.2740154x102*
J/T) and B is magnetic field is Tesla. In order to execute fluorescence nature at different sample
spots Fluorescence lifetime imaging microscopy (FLIM) was performed by exciting the samples
by 750 nm femtosecond Ti:sapphire laser, and then imaging the resulting PL using a Zeiss LSM
510 NLO multi-photon microscope equipped with a FLIM module consisting a Hamamatsu RS-
39 multichannel plate detector, a filter wheel, and a Becker Hickl Q5 SPC730 photon counting
board. Elemental analysis for determination of CHNS content of material was carried out on a
Thermo Flash 2000 Elemental Analyzer. The surface properties like Brunauer—-Emmett—Teller
(BET) surface area, Barrett—Joyner—Halenda (BJH) porosity, pore volume of materials was
examined by N> adsorption-—desorption isotherms at 77 K by using Autosorb Quantachrome 1MP
instrument. Thermal stability of samples was evaluated by thermogravimetric analyses (TGA)
using a thermal analyzer TA-SDT Q-600. The Aanalysis was carried out in the temperature range
of 40 to 900 °C under nitrogen flow with a heating rate of 10 °C min~!. To measure the change in
surface potential (SP) or contact potential difference (CPD) of materials at different wavelength
and elucidate nature of charge carrier dynamics, peak force KPFM (Kelvin probe force

microscopy) was used on g-C3Ns and C3Ns samples using Dimension Fast Scan Atomic Force
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Msnicroscope (Bruker Nanoscience Division, Santa Barbara, CA, USA). For measurement
materials were dispersed in DMF (10 mg/mL) using ultrasonication and A thin film was spin casted
on FTO in three sequential depositions at 500 rpm followed by drying at 150 °C for 30 min. The
measurements were performed in the presence and absence of 450, 520 and 635 nm wavelength
diode laser (Thorlabs). A custom-made optical setup was used for shining laser perpendicularly of
the samples. SCM-PIT cantilever of 4.4 N/m stiffness was employed to conduct the KPFM
experiments. The surface potential of the samples was measured at 75nm nm lift height at 2 kHz
lockin bandwidth by maintaining scan speed of 1 Hz. Samples were grounded with the AFM chuck
using a conducting copper tape. The surface potential was mapped by sample routing at zero tip
bias. Dark and light conditions were maintained for 5 min, prior to performing the experiments to
achieve the equilibrium condition of carrier transport. The Wwork function of Pt-Ir tip was
calibrated by measuring the contact potential difference (CPD) of HOPG and the Pt tip using the

following equation and found to be 5.04 eV.
EF (tip) = 4.6 eV (Work function of HOPG) + VCPD (HOPG and Pt tip)

1.3 Electrochemical characterization
The electrochemical studies were performed by using a CHI660E series electrochemical
workstation using Ag/AgCl reference electrode. For the electrochemical measurements three
electrode systems was assigning C3Ns and g-C3N4 deposited on FTO as an anode, Pt as cathode
and Ag/AgCl as a eathedereference electrode. The photocurrent response (J-V curve) of
materials was measured in 0.1 M Na>SO4 by linear sweep veltammeteryvoltammetry by
sweeping voltage at the rate of 10mV/sec from —0.8V to +0.8 V vs Ag/AgCl. A Solar simulator

(Newport, Oriel instrument USA, model 67005) was used as AM1.5G solar light source having
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10 a power density of 100 mW m™ at the surface of the sample. To determine photoresponse at
12 higher wavelength 450 and 505 nm wavelength LED was used having a power density of 54.15
mW cm2 and 40.48 mW cm2 at the surface of the sample respectively. The EIS measurement

15 was done in the dark and AM1.5G solar radiation using a three electrodes configuration at an

17 applied voltage of —0.5V vs Ag/AgCl in 0.1 M NaSO4, with AC amplitude of 0.005 V in the
frequencies range of 0.01 kHz to 25 kHz. The impedance-potential values for Mott—Schottky

plots were determined in 0.5 M Na>SOy in the voltage range of —1 V to +1 V at 1K frequency.

25 2.0 Synthesis procedures

27 2.1 Synthesis of Melem (2,5,8-triamino-s-heptazine)’

For the synthesis of melem (2,5,8 -triamino-s-heptazine) a certain amount of melamine was
30 heated at 425 °C for overnight in an alumina crucible covered with a lid. The obtained
32 powder with yellowish tinge was crushed and suspended in DI water. The obtained
suspension was refluxed for several hours to remove un-reacted melamine and other
impurities. The resulting white product was collected by centrifugation and dried at room

37 temperature. All the data well matched with previously reported literature.

2.2 Synthesis of 2,5,8-trihydrazino-s-heptazine or melem hydrazine (MH)?

41 The monomeric unit 2,5,8-trihydrazino-s-heptazine or melem hydrazine was synthesized by
43 hydrothermal reaction between melem and hydrazine hydrate with slight modification in
previous literature procedure. In brief, 1.6 g (7.5 mmol) of melem was dispersed in 15 mL
46 (0.25 mol) of 55% aqueous hydrazine hydrate solution and sealed in a 25 mL Teflon lined

48 autoclave. The autoclave was heated at 140 °C in an oven for 24 h hours. After cooling the

77

60 ACS Paragon Plus Environment



oNOYTULT D WN =

Journal of the American Chemical Society

obtained yellowish solution suspension was transferred to a 100 mL beaker and 10% HCl
was added to maintain pH in between 1-2. This solution was filtered to remove un-reacted
solid residue containing melem. The filtrate was precipitated by adding 10 % NaOH solution
by maintaining pH in between 7.5 — 8.5. The obtained solid was again dissolved in HCI,
filtered and re-precipitated in NaOH and this procedure was followed for three times.
Finally, obtained solid was washed several times with DI water and ethanol and dried under

vacuum. All the data were well matched with previously reported literature.

NMR (CP/MAS, ppm): 'H: 5.11, s (-NH- and —-NHa), 13C: 164.13, 159.16, 154.23, 15N: —
207.44, —251.55, —273.50, —316.73.; FTIR: 3209, 2926, 1595, 1475, 1388, 1192, 1116,
1099, 1008, 960, 794, 723, 648, 495 cm'.; Raman: 3365, 3066, 2896, 1589, 1528, 1409,

1309, 1156, 983, 747, 544, 470, 342, 129, 104 cm™..

2.3 Synthesis of C3Ns polymer

C3Ns polymer was synthesized by heating melem hydrazine (2,5,8-trihydrazino-s-
heptazine) at a temperature of 450 °C with a heating rate of 2 °C and holding at 450 °C for
2 h. The obtained orange powder was used for subsequent experiments without any further

treatment. The BET surface area (Sger) of C3Ns was found to be 1.781 m? g%,

CHN analysis wt%, observed (theoretical): N- 61.27 (66.02), C- 31.81 (33.98), H- 2.68

(0.00), Empirical formula: C3N4.95H;.01 (C3Ns)

XPS elemental Analysis at%, observed (theoretical): N- 63.24 (62.50), C-36.76(37.50),
Empirical formula: C3Ns.16 (C3N5), Nring: Nbridging at% and ratio (theoretical): 60.47:39.53 and

~3:2, (60:40, 3:2).
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NMR (CP/MAS, ppm): 'H: 9.18, s (broad) (residual H, intercalated water and carbonyl H),
13C: 164.41, 155.97, SN: =197.33, —247.88, -270.99.; FTIR: 3305, 3140, 2164, 1608, 1402,

1323, 1271, 1143, 1070, 970, 794, 453 cm™’.; Raman: 2591, 1308, 1258 cm’!.

16 2.4 Synthesis of g-C3N#

For comparison, graphitic carbon nitride (g-C3N4) powder was synthesized by direct heating
of melamine at 550 °C with a heating rate of 8 °C min~! up to 300 °C and 2 °C min™" up to
550 °C and finally holding the temperature 550 °C for 4 h. The BET surface area (Sger) of

2-C3N4 was found to be 11.471 m? gL,

3.0 Experimental for dye absorption

To probe the applicability of materials in dye absorption methylene blue (MB) was chosen
as model coloring organic contaminant. All the absorption studies were performed at room
temperature and pH-7 under the dark condition to avoid any photo-induced effects. To
execute absorption kinetic studies, a solution containing 10 ppm of methylene blue was
prepared and 50 mL of the solution was placed in a beaker followed by addition of 50 mg
C3Ns or g-C3Na. As the absorption process was extremely fast initially, so the sample was
withdrawn after every 1 min for 10 min interval, and later time of sampling was increased
to 15 and 30 min. The collected samples were centrifuged at 10000 rpm using a centrifuge
device to remove the solid materials. The supernatant was analyzed with UV-Vis
spectroscopy. Methylene blue displays a strong absorption peak around 664 nm. A series
of standard solutions were prepared, and a calibration curve was prepared by measuring

absorbance and quantification of treated solution. To investigate the nature of interaction
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between C3Ns and MB the centrifuged solid called C3Ns/MB composite was dried at 70 °C
under vacuum. Further, g-C3N4 was also used under identical condition for comparing the

dye absorption performance.

4.0 Photo-electrochemical measurements

For the photo-electrochemical measurement, clean FTO glass was coated with a 60 nm
thick TiO> seed layer by following our previously reported spin cast procedure using
titanium isopropoxide solution as a precursor.® The g-C3N4 and C3Ns powder wereas mixed
with TiOz (5 nm) nanoparticles in a-terpineol solution which works as film forming agent.
The obtained suspension was drop-casted on the TiO> coated FTO and heated at 250 °C for
1 h. The photo-electrochemical water splitting performance of samples was determined on
three electrode working station using Ag/AgCl as a reference electrode. The g-C3N4 or
C3N; containing FTO works as a working electrode (photoanode) while a Pt electrode was
used as counter electrode (photocathode). The surface of anode was sealed with Surlyn by
keeping a 0.3167 cm? window open and electrodes were immersed in 0.1 M Na>SOs
electrolyte. The photoanaode was irradiated with the solar simulator at possessing AM1.5
G filter having a power density of 100 mW c¢m™. The current density vs applied potential
graph was obtained by sweeping voltage from —0.8V to +0.8 V. Further, photoresponse at
different wavelength was measured by using 450 and 505 nm LED light. LED’s were
calibrated with a photodiode and the LED intensity on the surface of samples was
maintained 54.15 W cm at 450 nm, 40.48 mW cm™2 at 505 nm. Dark current was also

measured for comparing the photo-response of samples. Additional photoelectrochemical
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experiments using 2.0 mmol NaxS as hole scavenger was also carried out under identical

reaction conditions.”

5.0 Fabrication of solar cell

A thin compact layer of TiO; was deposited on the cleaned FTO:glass substrate. To prepare
the precursor solution for the deposition of compact TiO2, 369 uL of titanium (IV)
isopropoxide and 70 uL of 1.0 M HCI were separately diluted in 2.53 mL of isopropanol.
Diluted HCI was added drop by drop into the diluted titanium (IV) isopropoxide solution
under stirring. After overnight stirring of the mixed solution, it was filtered using a 0.2 pm
filter and deposited over cleaned FTO:glass substrates by spin casting at 3000 rpm for 30
s, followed by calcination at 450 °C for 30 min & 18NR-T titania paste was dissolved in
absolute ethanol in the ratio of 1:3.5 wt% and spin casted on compact TiO> layer at 4000
rpm for 40 s followed by annealing at 450 °C for 30 min. On mesoporous TiO> layer, 0.1
M of lithium bis(trifluoromethanesulfonyl)-imide dissolved in acetonitrile was spin--coated
at 3000 rpm for 30 sec followed by annealing at 450 °C for 30 min. On FTO/TiOz by spin
casting followed by calcination at 500 °C for 30 min. Then 636.4 mg of Pbl> and 90 mg of
PbBr; was dissolved in 1 mL of DMF and 160 pL of DMSO. For g-C3N4/C3Ns based device
4 wt% of g-C3N4/C3Ns relative to PbX, (where X=I and Br) was added in the PbX> solution.
All the solutions were stirred at 70 °C for 12 h. A solution of 1100 mg of FAI and 110 mg
of MABr was dissolved in 15 mg of 2-propanol. PbX> solution was spin coated over
mesoporous TiO: layer at 4000 rpm for 30 sec followed by annealing at 70 °C for 10 min.
Then prepared FAI/MABr solution was spin coated over the PbX> layer at 2000 rpm for
30 sec followed by annealing at 140 °C for 30 mins. A hole transporting layer was

deposited by spin-casting a solution containing 70 mg of Spiro-OMeTAD mixed with 1
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mL  of chlorobenzene and additives, namely 8.8 mg of lithium
bis(trifluoromethanesulfonyl)-imide, 28 uL of 4-tert-butylpyridine and 35 upL of
acetonitrile at 4000 rpm for 30 sec. A 70-nm thick layer of gold was then thermally
evaporated to complete the devices. The current-voltage characteristics of the samples were
measured using a Keithley 4200 semiconductor parameter analyzer. For solar cell testing,
one sun AM1.5 G illumination from a collimated Class A solar simulator (Newport
Instruments) was used. Solid state impedance spectroscopy (SSIS) was performed in a two-

electrode configuration using a CHI-600E potentiostat.

6.0 Measurement of plasmon excitons co-induced surface catalytic transformation of

4NBT to DMAB

The plasmonic Ag nanocubes, AgNC (45 nm edge length) were synthesized by ethylene
glycol and Na,S assisted reduction of AgNOs according to literature procedure.’ Thin film
of g-C3N4 and C3N;s was coated on the glass surface by spin casting 30 mg/mL solution in
DMF at 500 rpm followed by heating to evaporate any residual of solvent. Then AgNC
were deposited on afforded film by spin casting. To the obtained Ag decorated substrate,
4-NBT (5 x 107 M) in methanol solution was drop casted followed by vacuum drying. To
identify the peak of DMAB peaks, Raman spectra of DMAB was digitalized from
reference.!” The course of surface catalyzed reaction was monitored by surface-enhanced
Raman scattering (SERS) spectroscopy using a Thermo Scientific DXR2Raman
Microscope with a 532 nm laser by varying laser power from 0.1 mW to 10 mW. The
spectra were accumulated for 3x25 s exposure time using, aperture 50 um pinhole, 2 pm

spot size and 2 cm™'/CCD pixel element 900 lines/mm spectral dispersion grating.

7.0 Calculation of efficiencies
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Diagnostic efficiencies of C3Ns and g-C3Ns was calculated to evaluate system/inter-face
performance.!!
Applied bias photon-to-current efficiency (ABPE):
The applied bias photon-to-current efficiency percentage (ABPE%) which is considered
photoconversion efficiency (PCE%) under applied bias was determined by plot between
ABPE% and applied voltage on reversible hydrogen electrode (RHE) scale. The ABPE%
was calculated by the following expression:

ABPE (%) = [J (mA cm™?) x (1.23=Vp)/ P(MmW cm™2)]x 100 .................. Eqn- (1)
Where; J is the current density, Vy is applied voltage at RHE scale and P is power density of the

incident light.

The applied voltage on Ag/AgCl scale was converted RHE scale by using the following equation.
VRHE = Vagaeci + 0.059 PH + VOAgAGCH «.vvveiiiiiieiiiiie e Eqn - (2)

Where; VOagaeci=0.197 V.

From the ABPE vs RHE plot the maximum ABPE% for C3Ns and g-C3N4 was calculated to be
0.059 and 0.048 without Na>S and 0.030 and 0.026 with Na>S respectively.

Incident photon-to-current efficiency (IPCE):

The IPCE also referred as external quantum efficiency (EQE) is a measure of photocurrent
obtained (numbers of electrons collected) per incident photon flux as a function of
wavelength). The IPCE% of samples were calculated at an applied bias of 0.6 V vs
Ag/AgCl (1.23 V vs RHE, thermodynamic water splitting potential) using 450 nm and 505
nm wavelength LEDs. IPCE% was calculated using the following expression.

IPCE% = [1240 x J (mA cm™)/A (nm) X P (MW cm™)] x 100 .................. Eqn- (3)

Where, J is photocurrent density, A is wavelength of incident light in nm and P is the power density

of incident light.
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The IPCE% of C3Ns and g-C3N4 without NaxS was found to be 0.51 and 0.46 at 450 nm and 0.37
and 0.35 at 505 nm respectively. While the IPCE% values for C3Ns and g-C3N4 using Na2S was

found 2.32 and 1.41 at 450 nm and 0.86 and 0.45 at 505 nm respectively-
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40 Figure S2. (a) XPS elemental survey scan of C3Ns, and HR-XPS spectra of C3Ns in (b) Nals, (c)
CI2p, and (d) Ols regions.
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Figure S312. EELS spectra of g-C3N4 and C3Ns showing ¢* and * peaks in C K-edge and N K-

edge energy loss
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Figure S4. 'H MAS NMR spectra of (a) melem hydrazine, MH and (b) C3N’s
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36 Figure S5. Raman spectra of (a) melem, (b) melem hydrazine, MH, (c) g-C3N4 and (d) C3Ns
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Schottky plot of g-C3N4 (blue) and C3Ns (red) in 0.5 M Na»SOs at 1K frequency.
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10 femtosecond fluorescence life time instrument and two photon fluorescence images of (b) g-C3Ny

n (d) C3Ns, and (f) CsNs/MB composite.
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Figure S810. Zeta potential distribution of C3Ns for calculating surface charge.
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Figure S94. Comparison of (a) FTIR spectra, (b) Raman spectra, (c) PL spectra using 360 nm
excitation wavelength, and (d) '*C CPMAS NMR of C3Ns (black) and C3Ns/MB (red) composite.
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46 Figure S117. Electrochemical impedance spectroscopy (EIS)-Nyquist plots of g-C3N4 in dark
47 (black) and AM1.5G light irradiation (blue) and C3Ns in dark (green) and AM1.5G light irradiation
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(red). All measurement was performed in 0.1 M NaxSO4 at frequencies range of 0.01 kHz to
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Figure S134. (a) Photocurrent density vs applied potential plot of C3Ns and g-C3N4 under dark
conditions, under solar simulated AM1.5 G irradiation (>420 nm) with and without Na;S. (b)
Photocurrent density vs applied potential plot of C3Ns and g-C3N4 under dark conditions, under 450 nm
LEDs irradiation (power density 54.15 mW cm?), under 505 nm LEDs irradiation (power density 40.48
mW cm). (c) Plot between ABPE% vs potential (RHE) showing maximum ABPE% for C3Ns and g-
C3Ny4 without and with Na>S under solar simulated AM1.5 G irradiation (>420 nm). (d) IPCE of C3Ns
and g-C3Nu, under 450 nm LEDs irradiation (power density 54.15 mW cm), under 505 nm LEDs
irradiation (power density 40.48 mW cm™). All the measurements were carried out in 0.1 M NaxSOs
solution at a scan rate of 0.1 mV/sec). Colour legends: Dark (black), C3Ns without NaxS (red), C3Ns

with NaxS (purple), g-C3N4 without NayS (blue) with Na,S and 505 nm (green).
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(b) C,N, after heating at 800 °C
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Figure S157. J-V characteristics under AM 1.5 one sun illumination of halide perovskite solar

cells comprising an active layer of MAPbBr; and different electron transport layers — TiO> (black
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curve), g-C3Ny (blue curve) and C3Ns (red curve). In every case, spiro-OMeTAD was used as the

hole transport layer.
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Figure S168. Action spectra showing the relative external quantum yields of halide perovskite

solar cells comprising an active layer of MAPbBr3 and different electron transport layers — TiO2

(black curve), g-C3Ny (blue curve) and C3Ns (red curve). In every case, spiro-OMeTAD was used

as the hole transport layer.
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layer of MAPbBr3 and different electron transport layers — TiO: (black curve), g-C3Ns (blue curve)

and C3Ns (red curve). In every case, spiro-OMeTAD was used as the hole transport layer.

Figure S18290. Cross-sectional FE-SEM images of perovskite solar cell made composed of (a)
perovskite layer with bare PbX», (b) with 4 wt% of g-C3N4 and (c) with 4 wt% of C3Ns in PbX»

solution.
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33 structure of FTO/PEDOT:PSS/Perovskite/Spiro-oMeTAD/Au
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Figure S20%. SERS spectra as function of laser power for plasmon-exciton co-induced surface
catalytic transformation of 4NBT to DMAB magnified in 1270-1470 cm™ region for (c)
AgNC/C3Ns and (d) AgNC/g-C3Ns. The 4NBT peak at 1332 cm! was decreasing for AgNC/C3Ns
while increasing for AgNC/g-C3N4 as function of laser power and DMAB peaks increasing for
both AgNC/C3Ns and AgNC/g-C3Ny. This represent complete transformation of 4ANBT to DMAB
on AgNC/C3Ns even at lower laser power (1.0 mW) and sluggish transformation of 4NBT to
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(b) C,4N, after heating at 800 °C
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