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a b s t r a c t

Trans-stilbene (trans-ST) was produced through the hydrogenation of diphenylacetylene (DPA). Pd-based
intermetallic compounds (IMCs) supported on silica were applied to the selective hydrogenation of DPA
into cis- and trans-ST. Pd3Bi/SiO2 showed the highest selectivity to stilbenes without accelerating the deep
hydrogenation into diphenylethane (DPE), after DPA was completely converted. Proton-type zeolites
vailable online 3 December 2010

eywords:
tilbene
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were examined for the isomerization of cis-ST, the main product in the hydrogenation of DPA, into trans-
ST. H-USY zeolite partially exchanged with Na+ ions gave the highest activity owing to the appropriate
acid strength and enough space inside the pores for cis-ST to enter. The mixture of Pd3Bi/SiO2 and H-
USY gave trans-ST yield of 74 mol% through the one-pot reaction of DPA. The isomerization rate was
significantly retarded by coexisting DPA and DPE molecules.
ntermetallic compound
somerization

. Introduction

Liquid crystal displays have been widely used for various appli-
ations. Trans-ST is one of the raw materials for the syntheses
f liquid crystal molecules. In addition, trans-ST and its deriva-
ives are used for the production of dyes, pigments, fluorescent
hitener, electro-luminescent display, and so on. Trans-ST is now
roduced from benzene derivatives through the coupling reactions,
uch as Grignard reaction and Wittig reaction. These reactions usu-
lly give cis-ST predominantly with trans-ST as a by-product. In
his study, we take up a new route for the production of trans-
T through the hydrogenation of DPA as shown in Scheme 1. In
his process, the catalyst should be selective both for the par-
ial hydrogenation of a carbon–carbon triple bond into a double
ond and the stereo-selective formation of trans-ST instead of
is-ST.

The purpose of this study is to obtain an effective catalyst for
he formation of trans-ST directly from DPA or through the partial
ydrogenation of DPA into cis-ST followed by the isomerization into
rans-ST. We have studied on the catalytic properties of IMCs for
he selective hydrogenation and found that IMC catalysts, CoGe [1],
i3Sn2/SiO2 [2], Ni3Ge/MCM-41 [3], Pd3Bi/SiO2 [4], etc., are highly
elective for the partial hydrogenation of acetylene into ethylene.
he high selectivity of IMCs for the partial hydrogenation of acety-
ene has been reported also for PdGa, Pd3Ga7 [5] and NiZn [6].
herefore, we applied Pd-based IMCs to retard the deep hydro-
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genation into DPE, routes (4) and (5) in Scheme 1, for the selective
formation of stilbenes. As shown in Scheme 2, the molecule of trans-
ST has a plane structure, whereas that of cis-ST has a bending one.
Therefore, the second selectivity, the stereo-selective formation of
trans-isomer, could be achieved by the shape selective catalysis
inside the pores of zeolite.

2. Experimental

2.1. Catalyst preparation

Pd(3 wt%)/SiO2 was prepared by a pore-filling impregnation
method using an aqueous solution of PdCl2 and silica gel (CARiACT
G-6, Fuji Silysia). After drying the mixture at 403 K, it was reduced
in flowing hydrogen at 823 K. Supported Pd-based IMC catalysts
were prepared by a successive impregnation method onto Pd/SiO2.
Aqueous solutions of Bi(NO3)3, Fe(NO3)3, TlNO3 were used to pre-
pare Pd3Bi/SiO2, PdFe/SiO2 and Pd3Tl/SiO2, respectively. Toluene
solution of Ga(acac)3 and benzene solution of In(acac)3 were used
to obtain Pd5Ga2/SiO2 and PdIn/SiO2. After the impregnation, they
were reduced at 773 K (PdFe), 873 K (PdIn, Pd3Tl), and 1073 K
(Pd3Bi, Pd5Ga2), respectively, to accelerate the solid-phase reaction
into each IMC. Lindlar catalyst was purchased from Aldrich contain-
ing 5 wt% Pd on calcium carbonate with a small amount of lead.
H-USY(Si/Al = 16) was supplied from Catalysts & Chemicals Ind.

Na-Y (Y-30, Tosoh) was ion-exchanged with an aqueous solution
of NH4Cl and calcined in air at 743 K to obtain H(59%)-Y(2.9). H-
ZSM-5(20), H-beta(12), H-MCM-22(19) and Al-MCM-41(19) were
synthesized hydrothermally followed by the NH4

+-exchange and
calcination. H-USY was partially exchanged by Na+ with aqueous
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http://www.sciencedirect.com/science/journal/09205861
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Scheme 1. Reaction paths in the hydrogenation of DPA.

olutions (2.4–100 mM) of NaCl at 298 or 343 K for 12–24 h to obtain
a+-exchange levels of 12–74%.

.2. Characterization

The crystal phases of IMC catalysts and zeolites were observed
y powder X-ray diffraction (RINT 2400, Rigaku) with CuK� radi-
tion. The bulk composition of prepared catalysts was determined
y ICP (Rigaku, JY38) after dissolving samples with HF solution and
qua regia. TPD of adsorbed ammonia was measured by a flow
ystem with a TCD detector. After dehydrating zeolite in flowing
elium at 773 K, ammonia was introduced onto the sample at 423 K

or 10 min. The sample was purged with flowing helium for 10 min
nd a TPD pattern was obtained from 298 to 1073 K at a heating
ate of 10 K min−1.

.3. Catalytic reaction

The hydrogenation of DPA was carried out with a three-neck
ask under atmospheric pressure of flowing H2. The catalyst (0.10
r 0.50 g) was put into the flask and pretreated in situ with flowing
2 at 673 K. After purging the flask by argon, DPA (1.0 g) dissolved in
ml of toluene was injected through a septum. The hydrogenation
as started by flowing H2 into the flask with agitating the reaction
ixture. The isomerization of cis-ST was carried out with the same

eaction system as that used for the hydrogenation. After the in situ
retreatment of catalyst in flowing argon at 673 K, the isomeriza-
ion was started by injecting cis-ST (0.20 ml) diluted with 5 ml of
oluene. Reaction products in both reactions were analyzed using
n FID gas chromatograph (GC-14B, Shimadzu) with a column of
C-70 (0.25 mm × 60 m, GL Science).

. Results and discussion

.1. Direct hydrogenation of DPA into trans-ST
Direct hydrogenation of DPA into trans-ST, route (1) in Scheme 1,
as examined with Pd-containing catalysts. Pd(0.7 wt%)/SiO2 was
rst used to know the catalytic properties of Pd metal particles

Scheme 2. Molecular structure of cis-ST (a) and trans-ST (b).
Reaction time / min

Fig. 1. Hydrogenation of DPA on Pd/SiO2 at 298 K. DPA conversion (©), selectivity
to cis-ST (�), trans-ST (�) and DPE (�).

located on the support with relatively large pores. The hydrogena-
tion occurred at 298 K to produce cis- and trans-ST and DPE. As
shown in Table 1, DPA conversion was as high as 96% in 60 min
of reaction. The main product was cis-ST, whereas the selectivity
to trans-ST was only 2 mol%. Fig. 1 shows the change in DPA con-
version and selectivity to each product with reaction time. When
the conversion became closer to 100%, the selectivity to cis-ST
decreased steeply, whereas that to DPE increased. DPA molecules
would be adsorbed on the surface of Pd particles more strongly than
cis-ST. When the residual amount of DPA becomes smaller at higher
conversions, the adsorption of cis-ST would occur to be hydro-
genated into DPE. The selectivity to trans-ST was always lower than
5 mol%. At the reaction time of 120 min, DPE was the only product.
Then we carried out the reaction on Pd/zeolite catalysts, expecting
the shape-selective catalysis in their micropores (Table 1). Though
DPA conversion depended on the kind of zeolites, the selectivity to
trans-ST was always lower than 15 mol%. When we extended the
reaction time to obtain higher conversion, the selectivity to DPE
increased to lower the selectivity to cis- and trans-ST as in the case
of Pd/SiO2 (Fig. 1). The prolonged reaction accelerated the deep
hydrogenation into DPE, routes (4) and (5). Therefore, we concluded
that it is difficult to obtain trans-ST with high selectivity through
the direct hydrogenation with Pd/zeolite catalysts.

3.2. Selective hydrogenation of DPA into cis-ST

Next, we studied the formation of trans-ST through cis-ST by
routes (2) and (3). At first, the hydrogenation of DPA into cis-ST,
route (2), was examined on various Pd catalysts. To obtain trans-ST
selectively, it must be important to retard the secondary hydro-
genation of cis-ST into DPE. For this purpose, we used various
Pd-based IMCs supported on SiO2. XRD patterns showed that all
the IMC catalysts gave their specific diffraction, indicating that
they were composed of single-phase IMC particles supported on
SiO2. For example, Pd3Bi/SiO2 gave the main diffraction peaks at
2� = 38.2◦ and 41.0◦, whereas the main peaks of Pd/SiO2 appeared
at 40.1◦ and 46.7◦. Fig. 2 shows the change in the total selectivity
to cis- and trans-ST with conversion at the reaction temperature of
333 K. The selectivity was almost 100 mol% when the conversion
was low. The selectivity decreased significantly with increasing
the conversion. Some IMC catalysts showed higher selectivity than
Pd/SiO2 and Lindlar catalyst at high DPA conversions. Among them,
Pd3Bi/SiO2 gave the highest selectivity of 98 mol% at around 90%

conversion. We have reported that this catalyst had exhibited the
highest selectivity to ethylene in the hydrogenation of acetylene
among Pd-based IMC catalysts [4].

The high selectivity of Pd3Bi/SiO2 for the partial hydrogenation
of DPA at higher conversions was further confirmed by the reac-
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Table 1
Hydrogenation of DPAa on Pd-supported catalysts.

Catalysts Solvent DPA conversion (%) Selectivity (mol%)

cis-ST trans-ST DPE

Pd/SiO2 Toluene 96 75 2 23
Pd/ZSM-5 Toluene 59 88 2 10
Pd/USY Toluene 39 77 14 9
Pd/USY THF 40 81 10 9
Pd/MCM-22 THF 17 79 14 7

a Reaction temperature: 298 K, reaction time: 60 min, catalyst weight: 0.10 g.
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ig. 2. Selectivity to stilbene in the hydrogenation of DPA on Pd-based catalysts at
33 K.

ion with the larger amount of catalyst (0.50 g) at higher reaction
emperature (353 K). Fig. 3 shows that the conversion reached 100%
t 210 min. However, the selectivity to DPE increased only slightly
ven after 210 min to be as low as 3 mol% at 300 min. It is revealed
hat Pd3Bi/SiO2 does not accelerate the secondary hydrogenation
f cis- and trans-ST significantly even in the absence of DPA. This
atalyst will be effective for the formation of trans-ST through the
outes (2) and (3).

.3. Isomerization of cis-ST into trans-ST

The isomerization of cis-ST, route (3), was next studied on acidic

eolites as catalysts. Though the photosensitized isomerization of
tilbene has been studied using the stabilizing effect of zeolite pores
7,8], the catalytic isomerization of cis-ST has been reported for H-

[9] and Ca-Y [10]. Fig. 4 shows the reaction results obtained at
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Fig. 4. Isomerization of cis-ST at 333 K on H-USY (�), H-MCM-22 (�), H-beta (�),
H-Y (©), H-ZSM-5 (�) and Al-MCM-41 (×).

333 K, the same temperature as that in the hydrogenation (Fig. 2),
on various proton-type zeolites. On all the catalysts, only trans-ST
was produced. It is clear that H-USY has the highest activity. The
conversion of cis-ST reached 69% at the reaction time of 90 min. H-
Y, however, gave the very low conversion compared with H-USY,
suggesting that the weaker acid sites in H-Y are not effective for
the isomerization. The very low conversion on Al-MCM-41 also
indicates that the isomerization does not proceed on the weak
acid sites. Though H-ZSM-5 and H-beta have stronger acid sites
than H-USY, they showed lower conversion than H-USY. Their pore
openings would be too small for the bending molecule of cis-ST to
enter. The medium conversion observed on H-MCM-22 may result
from the reaction in the cups on its external surface. Owing to the
large pore diameter and the sufficient acid strength, H-USY would

be the most effective catalyst for the isomerization of bulky cis-ST.

To clarify the role of Brønsted acid sites in H-USY, we prepared
H-USY with various proton concentration by Na+-exchange into H-
USY. Fig. 5 shows the effect of Na+-exchange level on the amount
of acid sites and the conversion of cis-ST in the isomerization.
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Pd3Bi/SiO2 (0.10 g) and Na(16%), H-USY (0.50 g) at 353 K.
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-USY (0.50 g) at 333 K. Symbols are the same as those in Fig. 1.

he parent H-USY contained Na+ with exchange level of 9%. The
cid amount, measured by NH3-TPD, decreased monotonously with
ncreasing Na+-exchange level and the acid sites which can adsorb
H3 almost disappeared at 74% exchange level. On the other hand, a

light Na+-exchange into the parent H-USY resulted in the increase
n cis-ST conversion. The further Na+-exchange decreased the con-
ersion. The isomerization would be catalyzed by Brønsted acid
ites though a small number of the strong acid sites may accelerate
he oligomerization of ST resulting in the slight deactivation.

.4. One-pot formation of trans-ST via cis-ST

In the hydrogenation of DPA (Table 1), Pd/USY gave cis-ST as
he main product with selectivity of ca. 80 mol%. Then we added
a(16%), H-USY (0.50 g), having the highest activity for isomer-

zation (Fig. 5), into Pd/USY (0.1 g) to accelerate the isomerization
f primarily produced cis-ST for the one-pot formation of trans-ST
rom DPA. As shown in Fig. 6, the selectivity to cis-ST decreased with
eaction time indicating the secondary reaction of cis-ST. However,
he formation of DPE was mainly accelerated at higher conver-
ion consuming trans-ST as well as cis-ST. The highest selectivity
o trans-ST was only 29 mol%. To retard the secondary hydrogena-
ion into DPE, Pd/USY was replaced by Pd3Bi/SiO2 (0.10 g) because
f its high selectivity for the partial hydrogenation (Figs. 2 and 3).
s shown in Fig. 7, cis-ST was the main product at the initial stage.

ith increasing reaction time, the selectivity to cis-ST decreased,
hereas that to trans-ST increased. Though DPE formation was also

bserved, the isomerization of cis-ST was effectively accelerated
y Na(16%), H-USY. The selectivity and yield of trans-ST reached
4 mol% through 450 min of one-pot reaction of DPA.
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ig. 7. One-pot reaction of DPA on the mixture of Pd3Bi/SiO2 (0.10 g) and Na(16%),
-USY (0.50 g) at 353 K. Symbols are the same as those in Fig. 1.
Fig. 9. Change in conversion in the isomerization of cis-ST without additive (�), and
with DPA (♦), DPE (©) and biphenyl (�) on Na(16%), H-USY at 333 K. Molar ratio of
additive/cis-ST is 1.0.

Fig. 7 also indicates that the rate of hydrogenation was much
higher than that of isomerization. The rate-determining step will
be the isomerization of cis-ST. Fig. 8 shows the change in trans-
ST yield with reaction time during the one-pot reaction of DPA
(Fig. 7) and the isomerization of cis-ST at the same temperature
of 353 K. Though we used the same amount (0.50 g) of Na(16%), H-
USY for both reactions, the formation rate of trans-ST was much
lower in the one-pot reaction. The co-existing DPA molecules may
hinder the isomerization of cis-ST. We examined the effect of co-
existing molecules on the rate of isomerization of cis-ST (Fig. 9).
The addition of DPA with DPA/cis-ST molar ratio of 1.0 strongly
retard the isomerization. The electronic effect of the triple bond in
DPA molecule could affect the isomerization of cis-ST. However, the
similar effect was observed when DPE or even biphenyl was added
instead of DPA. The diffusion of cis-ST between supercages of USY
may be hindered by these molecules. In the case of the one-pot
reaction, therefore, the formation of DPE should be minimized to
obtain trans-ST with higher reaction rate after DPA is completely
converted into cis-ST.

4. Conclusions

The formation of trans-ST from DPA is achieved through the one-
pot reaction consisting of the partial hydrogenation into cis-ST and

the concomitant isomerization of cis-ST into trans-ST. The partial
hydrogenation of DPA is catalyzed by Pd-based intermetallic com-
pounds, such as Pd3Bi/SiO2, with high selectivity even after DPA
is fully converted into cis- and trans-ST. The isomerization of cis-
ST is effectively catalyzed by Brønsted acid sites of H-USY slightly
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