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A B S T R A C T   

Ethanol obtained from sugarcane is an interesting biomass feedstock that is widely used as fuel and fuel additive. 
Another relevant biomass feedstock is acetol obtained from glycerol, the major byproduct of biodiesel 
manufacturing. Ethanol and acetol were oxidized by the Fe(ClO4)3-HClO4-H2O2 system in water at 60 ◦C with full 
conversions. Ethanol (0.1 M) oxidation yielded 0.058 M formic acid (HFO) and 0.085 M acetic acid (HAC), 
whereas acetol (0.1 M) oxidation provided 0.059 M HFO and 0.1 M HAC. On the basis of kinetic studies, the 
oxidation of these feedstocks followed different mechanisms. Ethanol oxidation followed a chain mechanism 
induced by hydroxyl radicals generated during the catalytic decomposition of H2O2 by Fe3+. Acetol oxidation, on 
the other hand, followed a non-chain process in which the complex formed between acetol (as substrate) and the 
catalyst played a decisive role, and interaction between this complex and H2O2 was the limiting stage. The 
activation energies for ethanol and acetol oxidation were 24.1 and 14.8 kcal/mol, respectively.   

1. Introduction 

Today, humankind faces the challenges of reducing CO2 emissions 
and decreasing dependence on fossil fuels [1]. The main strategy to 
mitigate these problems is to use biomass as feedstock to produce fuels 
and chemicals that can substitute the fuels and chemicals obtained from 
mineral sources, especially petroleum. Ethanol and biodiesel are two 
important products that can be obtained from biomass feedstock. 

The current global production of ethanol is approximately 110 
billion liters [2]. The United States are the major producer (54 %), with 
Brazil coming second (30 %). Despite having lost its position as the 
leading producer of ethanol, Brazil still presents the advantage of pro
ducing this fuel more competitively and without the need for direct 
government subsidies [3]. In addition, first-generation Brazilian sugar
cane ethanol presents higher energy balance (amount of energy pro
duced from sugarcane ethanol/amount of consumed fossil fuel 

energy = 8.4) [4]. Ethanol is mainly applied as fuel (hydrated) and fuel 
additive (anhydrous). Ethanol can also be used to obtain building blocks 
such as ethylene, propylene, and 1,3-butadiene, which are currently 
obtained from petroleum, as well as oxygenated products, like acetal
dehyde, 1-butanol, ethyl acetate, and acetic acid [5–7]. Because ethanol 
is widely used as solvent and fuel, it could become a dangerous volatile 
organic compound (VOC). The most efficient way to remove VOCs is to 
conduct their catalytic oxidation to CO2, which has been a topic of 
several studies (for some examples, see [8–11]). 

Biodiesel is another important product that can be obtained from 
biomass feedstock. Its global production was 41.3 billion liters in 2018 
[12]. Increasing demand for biodiesel has generated a surplus of its 
major byproduct, glycerol, which has prompted numerous studies 
aiming at adding value to glycerol [13–17]. One possible route is to 
dehydrate glycerol to obtain acetol [18], which can then be used to 
obtain other products of industrial interest [19,20]. Acetol oxidation has 
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been scarcely investigated. Some recent studies include the production 
of lactic acid over a Sn-Beta supported gold catalyst [21] and the 
oxidation of acetol as intermediate during the conversion of glycerol to 
formic acid and acetic acid by Lewis acid sites on ZrP- supported va
nadium [22] and metal-free silica [23] catalysts. 

One obstacle to the development of catalytic routes for chemical 
reactions is that many metallic catalysts are based on noble metals [24]; 
for example, palladium, rhodium, ruthenium, and iridium, which are 
expensive. To avoid the use of noble, rare, and expensive metals, various 
strategies for heterogeneous and homogeneous catalysis have been 
developed by using metals belonging to the first transition series. Among 
these metals, iron is particularly relevant because it is one of the most 
abundant metals on the Earth’s crust, not to mention that it is inex
pensive, relatively non-toxic, and versatile, as shown by the wide range 
of biological and man-made reactions mediated by iron [25–38]. 

Recently, we have reported that acetol oxidation by FeCl3-H2O2 in 
acetonitrile, under mild conditions, yields formic and acetic acids as the 
main products [20]. By using 2-butanol as model, we have also reported 
that the same catalytic system works well for the oxidation of 
short-chain secondary alcohols in water [39]. 

Oxidation reactions that use the decomposition of H2O2 with a 
metallic catalyst are well known [40–45], and the use of H2O2 as a green 
oxidant (to generate H2O as byproduct) has been extensively studied for 
the oxidation of alkanes [34,46–50], alkenes [51–55], and alcohols [37, 
44,56–58]. Additionally, water is the most attractive solvent for green 
oxidations [59–63]. Therefore, the use of H2O2 as oxidant combined 
with low-cost and non-toxic iron as catalyst and water as solvent gen
erates a greener oxidation system for alcohol oxidation. Moreover, the 
oxidation of organic compounds catalyzed by metal complexes can be 
significantly improved in the presence of additives, such as organic and 
inorganic acids and compounds containing nitrogen heterocycles [33, 
34,48,56,64–66]. 

Here, we report the oxidation of renewable ethanol and acetol (a 
potential biodiesel waste) by Fe(ClO4)3-HClO4-H2O2 in aqueous me
dium, under mild conditions, and we examine the kinetics and mecha
nism of these reactions, which are still poorly explored in the literature 
and, in the case of acetol, have not been explored at all. 

2. Material and experimental methods 

2.1. Reactions and analyses 

The reactions were conducted in a jacketed reactor at 60 ◦C, under 
air, in water. The following concentrations were used: 0.1 M ethanol or 
acetol, 0.5 M of H2O2, 0.03 M HClO4, and 0.001 M Fe(ClO4)3. The vol
ume of the reaction solution was 5 mL. For the gas chromatography (GC) 
analyses, the samples were prepared by adding 800 μL of acetonitrile, 
100 μL of reaction solution, 100 μL of a solution of nitromethane (in
ternal standard), and a small amount of triphenylphosphine (to 
decompose H2O2 and stop the reaction) to a GC vial. The GC analyses 
were carried out using a Shimadzu GCMS-QP2010 chromatograph 
equipped with a SOLGEL-WAX column (30 m x0.25 mm x0.25 μm) and a 
simple quadrupole MS detector. 

The reactions that were performed to determine the initial rates 
involved changing the initial concentration of one of the reaction 
components or the temperature, while the other parameters were kept 
constant. The parameters range for the reactions that involved ethanol 
as substrate were: [Fe(ClO4)3]0 within 0.3–5.0 M, [Ethanol]0 within 
0.05 – 0.5 M, [H2O2]0 within 0.1–2.0 M and T within 50–70 ◦C. When 
acetol was the substrate, the parameters range were: [Fe(ClO4)3]0 within 
0.3–1.5 M, [Acetol]0 within 0.1 – 0.6 M, [H2O2]0 within 0.1–1.5 M and T 
within 50–80 ◦C. The samples were collected within the first 10 min of 
reaction and analyzed using a Shimadzu GC-2010 chromatograph 
equipped with an SGE BP-20 column (30 m x0.25 mm x0.25 μm) and an 
FID detector. 

2.2. Determination of H2O2 concentration 

The H2O2 concentration was determined by iodometric titration. The 
standard solution consisted of a 0.01 M Na2S2O3 solution standardized 
with I2 as primary standard. The sample was prepared by adding 1 mL of 
ethanol, 100 μL of reaction solution, 1 mL of a 0.5 M H2SO4 solution, 
0.12 g of KI, and three drops of a 3% m/v (NH4)6Mo7O24 catalyst solu
tion into a 25-mL Erlenmeyer flask. The flask was then closed and left in 
the dark for 10 min to allow I2 to form. The sample was then titrated 
with the Na2S2O3 solution. 

3. Results and discussion 

3.1. Ethanol oxidation by Fe(ClO4)3-HClO4-H2O2 system 

Ethanol was oxidized by the Fe(ClO4)3-HClO4-H2O2 system (Fig. 1). 
The main products were formic acid (HFO) and acetic acid (HAC). At the 
beginning of the reaction, acetaldehyde also emerged at low concen
trations, but it was rapidly consumed. Under the studied conditions, the 
reaction system oxidized the substrate to full conversion within 30 min. 
The maximum HFO accumulation was 0.058 M at 30 min of reaction, 
which was equivalent to a turnover number (TON) of 58, whereas the 
maximum HAC accumulation was 0.085 M at 1 h of reaction 
(TON = 85). After these reaction times, strong over-oxidation occurred 
until 2 h of reaction, when almost all the H2O2 had been consumed 
(Fig. 2). After 2 h, the concentration of products slightly decreases due to 
the formation of peroxide oxidation products, which slowly decompose, 
inducing the oxidation of HFO and HAC. 

We calculated the turnover frequency (TOF) of this reaction for the 
time interval in which the conversion was close to 50 % (in this case, 
2 min of reaction). The TOF was 656 and 372 h− 1 for HFO and HAC, 
respectively. 

3.2. Kinetics and mechanism of ethanol oxidation reaction 

To understand the reaction mechanism better, we measured the 
initial reaction rate (W0) when the initial concentration of the catalyst, 
substrate, and oxidant agent and the temperature were varied (Fig. 3) 
(more details can be found at the Supplementary Material). From the 
Arrhenius plot, we calculated the activation energy as 24.1 kcal/mol. 

On the basis of the data in Fig. 1, ethanol disappeared before the 

Fig. 1. Concentration of ethanol (curve 1), acetic acid (curve2), and formic 
acid (curve 3) during ethanol oxidation by Fe(ClO4)3-HClO4-H2O2. Conditions: 
0.1 M ethanol, 0.001 M Fe(ClO4)3, 0.03 M HClO4, and 0.5 M H2O2; T =60 ◦C. 
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main reaction products were formed. In addition, at the initial stage in 
the process, acetaldehyde arose in the reaction medium (see Fig. 4), but 
it disappeared completely as the reaction proceeded. 

These facts indicated that the organic acids originated from ethanol 
overoxidation; i.e., they were formed during oxidation of the primary 
alcohol conversion product, acetaldehyde. We observed a similar 
pattern during acetol oxidation. All the given kinetic regularities were 
obtained for the initial rates of decrease in substrate concentrations (W0 
= (-d[ROH]/dt)0), when the concentrations of their overoxidation 
products were insignificant. 

The mechanism of catalytic decomposition of H2O2 in acidified 
aqueous HClO4 solutions in the presence of Fe(ClO4)3 was established in 
[67–69]. The process involves an ion radical chain, where the chain 
carriers are the radicals HO• and HO2

• (the radical ion O2
− , which is the 

product of acid HO2
• dissociation) and the Fe2+ ion; their nucleation 

(initiation) is associated with transformations of the peroxo complex 
FeHO2

2+. Formation of HO• radicals during the process is usually related 
to the oxidation of various organic compounds by systems containing 
iron ions and H2O2 [26,70,71]. Alcohols, and ethanol in particular, 
effectively interact with HO• radicals, to form rα alcohol radicals (RO•) 
[72]. In this regard, the kinetic models of HO• radicals induced by 
decomposition of H2O2 by Fe3+ ions and ethanol and acetol oxidation 
were considered and analyzed. 

Before we consider the mechanism of the process, let us pay attention 
to the following facts. First, some of us have shown that addition of 
0.02 M ethanol does not affect the rate at which tetranitromethane 
added to the Fe3+‒H2O2‒HClO4 system is reduced at 25 ◦C [73]. Ac
cording to [69], the tetranitromethane reduction rate corresponds to the 
initiation rate. Therefore, at 25 ◦C, ethanol does not affect the radical 
nucleation rate in the Fe3+‒H2O2‒HClO4 system. We assumed that, even 
at 60 ◦C, ethanol additives do not affect the radical nucleation rate. 
Then, using the results of [69], we calculated the radical nucleation rate 
for the experimental conditions in Fig. 3 and obtained an initiation rate 
value of 1.5 × 10− 5 M s-1 at 0.001 M Fe3+, 0.5 M H2O2, 0.03 M HClO4, 
and 60 ◦C. Second, the initial ethanol consumption rate was 1.8 × 10-4 M 
s-1 in these conditions. Hence, the chain mechanism of alcohol oxidation 
took place, which was reflected in the kinetic scheme presented below 
for the initial stages of the process. The scheme depicts the nucleation 
reactions (1,2) and the chain extension cycle for the catalytic decom
position of H2O2 by Fe3+ ions (3,4,5), the stage where alcohol oxidation 
is induced (6), the stage of chain alcohol oxidation (7,8,9), and the open 
circuit stage (10). 

Fe3+ + H2O2⇌FeHO2+
2 + H+ K1 (1)   

FeHO2
2+ → Fe2+ + HO2

• k2                                                               (2) 

Fig. 2. Concentration of H2O2 during ethanol oxidation by Fe(ClO4)3-HClO4- 
H2O2. Conditions: 0.1 M ethanol, 0.001 M Fe(ClO4)3, 0.03 M HClO4, and 0.5 M 
H2O2; T =60 ◦C. 

Fig. 3. Plot of W0 versus the initial concentration of the reaction components 
and of lnW0 versus 1/T for the ethanol oxidation reaction. Conditions, except 
for the components being varied: 0.1 M ethanol, 0.001 M Fe(ClO4)3, 0.03 M 
HClO4, and 0.5 M H2O2; T =60 ◦C. 
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Fe3+ + HO2
• → Fe2+ + H+ + O2 k3                                                   (3)  

Fe2+ + H2O2 → Fe3+ + HO− + HO• k4                                             (4)  

HO•

+ H2O2 → H2O + HO2
• k5                                                          (5)  

HO•

+ ROH → H2O + rα k6                                                             (6)  

rα + O2 → rO2
• k7                                                                            (7)  

rO2
•

+ ROH → rOOH + rα k8                                                            (8)  

rO2
• → CH3CHO + HO2

• k9                                                               (9)  

rO2
•

+ HO2
• → Rooh + O2 k10                                                          (10) 

Analysis of this kinetic scheme under the assumption that the con
centration of chain carriers is quasi-stationary and that the oxidation 
chains are quite long, and given that the rate of reaction (5) is much 
lower than the rate of reaction (6), because k5 << k6 [72], leads to the 
following expression for the alcohol oxidation rate:  

(-d[ROH]/dt)0 = {K1k2k3k9/(k10[H+])}0,5×(k8[ROH]/ k9+ 1)×[Fe3+] 
×[H2O2]0,5.                                                                                  (11) 

The expression obtained for the initial oxidation rate corresponded 
to the experimental data that were obtained for ethanol. Indeed, we 
verified a directly proportional dependence of the reaction rate on Fe3+

concentration, a linear dependence on alcohol concentration (see Figs. 3 
and 4), and a root dependence on H2O2 concentration (see straight line 1 
in Fig. 5). 

In accordance with Eq. (11) and judging from the dependence shown 
in Fig. 5, the ratio between the rate constants k8/k9 was 11.8 M− 1 at 60 
◦C. Moreover, on the basis of the value of the segment cutoff for this 
dependence on the ordinate axis, {K1k2k3k9 / (k10) [H+]}0.5 £ [Fe3+] £
[H2O2]0.5 was equal to 0.8 × 10-4 M s-1. By substituting the values of the 
concentrations of Fe3+, H2O2, and acid for the analyzed experiment, as 
well as the values of K1, k2, and k3 calculated according to [69] for a 
temperature of 60 ◦C, we obtained a k9/k10 value of 1.6£10-6 M for 
ethanol. Knowing that the effective activation energy of the ethanol 
oxidation process is 24.1 kcal/mol, we were able to roughly estimate the 
activation energy for the k9/k10 ratio by assuming that the term in pa
rentheses in expression (11) with [ROH] = 0.1 M weakly depended on 
temperature. By using the values for the equilibrium enthalpy (1) and 
activation energy of reactions (2 and 3) from [69], we obtained E9 – E10 
approximately equal to 13 kcal/mol. 

3.3. Acetol oxidation by Fe(ClO4)3-HC− HClO4-H2O2 system 

Acetol was oxidized by the Fe(ClO4)3-HClO4-H2O2 system. The main 
products were HFO and HAC (Fig. 6). Full conversion was attained at 2 h 
of reaction, while the maximum HFO accumulation of 0.059 M was 
observed at 30 min of reaction (TON = 59), and the maximum HAC 
accumulation of 0.1 M was obtained at 2 h (TON = 100). After the 
maximum accumulation was reached, the concentration of products 
decreased as a consequence of their over-oxidation. H2O2 was almost 
entirely consumed within 4 h of reaction (Fig. 7). For longer reaction 
times (after 2 h), the concentration of products slightly decreases due to 
the formation of peroxide oxidation products, which slowly decompose, 
inducing the oxidation of HAC and HFO. 

We calculated the TOF of this reaction for the reaction interval of 
5 min, which was the interval when conversion was closer to 50 %. For 
HFO and HAC, the TOF was 276 and 363 h− 1, respectively. 

3.4. Kinetics and mechanism of acetol oxidation reaction 

As in the case of ethanol, we studied W0 while the initial concen
trations of acetol, H2O2, and Fe(ClO4)3 and the temperature were varied 

Fig. 4. Acetaldehyde accumulation during ethanol oxidation by Fe(ClO4)3- 
HClO4-H2O2 Conditions: 0.1 M ethanol, 0.001 M Fe(ClO4)3, 0.03 M HClO4, and 
0.5 M H2O2; T =60 ◦C. 

Fig. 5. Dependence of logW0 on log [H2O2] for the ethanol (1) and acetol (2) 
oxidation reactions according to Figs. 3 and 8, respectively. 

Fig. 6. Concentration of acetol (curve 1), formic acid (curve 2), and acetic acid 
(curve 3) during acetol oxidation by Fe(ClO4)3-HClO4-H2O2. Conditions: 0.1 M 
acetol, 0.001 M Fe(ClO4)3, 0.03 M HClO4, and 0.5 M H2O2; T =60 ◦C. 
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(Fig. 8) (more details can be found at the Supplementary Material). From 
the Arrhenius plot, we obtained an activation energy of 14.8 kcal/mol 

A similar interpretation of the data for acetol discussed above met a 
number of objections. First, the effective order of the acetol oxidation 
rate as a function of the H2O2 concentration differed significantly from 
0.5 (see straight line 2 in Fig. 5). Second, the effective activation energy 
of the reaction, 14.8 kcal/mol, was substantially lower than the activa
tion energy of the ethanol oxidation reaction, 24.1 kcal / mol, and less 
than half the activation energy of the initiation process (ΔH1 +
E2 = 32 kcal / mol), including stages (1,2). 

Additionally, attention should be paid to the difference between 
ethanol and acetol as potential ligands capable of forming complexes 
with an iron ion. Unlike ethanol, acetol can coordinate with an iron ion 
via both its oxygen atoms. Compared to ethanol, the chelation effect will 
certainly increase the equilibrium constant for the formation of a com
plex between acetol and an iron ion significantly. These facts indicate 
that the mechanism of acetol oxidation should differ from the mecha
nism of ethanol oxidation. 

The Fig. 8 illustrates the kinetic scheme that satisfactorily describes 
the observed kinetic laws if we assume that, at 60 ◦C and in the presence 
of acetol (R1OH) and the Fe3+‒H2O2‒HClO4 system, the role of the 
complex formed between the substrate and the iron ion becomes 
significant. 

Fe3+ + R1OH⇌Fe3+ • R1OH, K12 = k+12
/

k− 12 (12) 

Three routes of interaction of this complex with H2O2 can be sug
gested. The first involves formation of radicals HO• and r1α. The second 
involves formation of r1α and Fe2+, which is rapidly oxidized by H2O2, to 
generate HO• (reaction 4). The third involves formation of r1α and ferryl 
ion FeO2+:  

Fe3+• R1OH + H2O2 → Fe3+ + H2O + HO•

+ r1α, k13                        (13)  

→ Fe2+ + H2O2 + H+ + r1α                                                           (14)  

→ FeO2+ + H+ + H2O + r1α                                                          (15) 

The ferryl ion formed in (15) is then reduced by H2O2 in one of the 
possible ways:  

FeO2+ + H2O2 + H+ → Fe3+ + H2O + HO2• (16)  

FeO2+ + H2O2 → Fe2+ + H2O + O2                                               (17) 

Fig. 7. Concentration of H2O2 during acetol oxidation Fe(ClO4)3-HClO4-H2O2. 
Conditions: 0.1 M acetol, 0.001 M Fe(ClO4)3, 0.03 M HClO4, and 0.5 M H2O2; 
T =60 ◦C. 

Fig. 8. Plot of W0 versus the initial concentration of the reaction components 
and lnW0 versus 1/T for the acetol oxidation reaction. Conditions, except for 
the components being varied: 0.1 M acetol, 0.001 M Fe(ClO4)3, 0.03 M HClO4, 
and 0.5 M H2O2; T =60 ◦C. 
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Fe2+ and HO2
• arising in stages (14, 16, 17) are subsequently con

verted into HO• by reactions (3) and (4), which induce R1OH oxidation. 
These reactions are fast, so assuming that the concentration of the 
complex formed between the iron ion and alcohol is low and quasi- 
stationary, the rate at which the active species are generated by mech
anism (12, 13), Wi, can be represented as:  

Wi = k+12[Fe3+][ROH] / (1 + k-12/ k13 [H2O2])                                  (18) 

If we assume that the rate of such path generating active particles 
substantially exceeds the rate of the traditional mechanism (reactions 
1,2), the contribution of the chain transformation of the substrate to the 
observed oxidation rate should decrease. In other words, it can be 
accepted that a non-chain process of acetol oxidation takes place. In this 
case, the initial acetol oxidation rate is equal to twice the rate of gen
eration of active particles (2Wi). Accordingly, the observed acetol 
oxidation rate is directly proportional to the Fe3+ concentration (see 
Fig. 8). The experimental dependences on the R1OH concentration were 
also close to the directly proportional dependence (see Fig. 8). The 
dependence of the oxidation rate on H2O2 concentration is well 
described by Eq. (18), which can be rearranged, to obtain linear Eq. (19):  

[H2O2] / (-d[ROH]/dt)0 = [H2O2] / 2k+12[Fe3+][C2H5OH]  
+ k-12 /2k+12 k13[Fe3+][C2H5OH]                                                    (19) 

From these data, the slope k+12 and the intercept k-12/k13 were1.4 
M− 1 s− 1 and 0.19 M, respectively (Fig. 9). 

Fig. 10 presents the value that was calculated from Eq. (18), plotted 
alongside the experimental values. The good correlation further vali
dated the equation and the constants. 

3.5. Comparison between the ethanol and acetol oxidation mechanisms 

We propose two different mechanisms for the oxidation of ethanol 
and acetol. In the initial stages of both oxidation mechanisms (see Sec
tions 3.2 and 3.4.), both ethanol and acetol are activated by formation of 
the corresponding alpha-alcohol radicals (CH3C•HOH and 
CH3COC•HOH). In the first case, the dominant route for their formation 
is interaction with radicals HO• (reaction 6) arising during the catalytic 
decomposition of H2O2 by iron ions. In the second case, the interaction 
of the Fe3+-acetol complex with H2O2 (reaction15, Scheme 1) prevails. 

The resulting alpha-alcohol radicals interact with O2, to form the 
corresponding peroxide radicals. In the case of ethanol, its peroxide 
radicals participate mainly in the chain extension reaction, with for
mation of hydroperoxide (reaction 8), or they decompose during the 

monomolecular reaction, to form acetaldehyde and HO2
• (reaction 9), 

which participates in the chain extension cycle (reactions 3,4,6). The 
acetol peroxide radicals are mainly reduced to peroxide (r1αO2 + e− +

H+ → r1αO2H). Further transformations of the resulting peroxides and 
acetaldehyde oxidation induced by HO• produce the reaction products – 
formic and acetic acids. Further oxidation of these products, induced by 
HO•, occurs under excess H2O2. 

4. Conclusions 

We have found that a simple and low-cost catalytic system Fe 
(ClO4)3− HClO4-H2O2 effectively oxidizes ethanol in aqueous solution 
under mild conditions. Acetic and formic acids are the main products 
from both substrates. In the two reactions, acetaldehyde is an interme
diate compound. The reaction rates depend on the initial concentrations 
of each reagent. On the basis of a kinetic study of these data, the ethanol 
and acetol oxidation reactions follow different mechanisms. In the case 
of ethanol, oxidation occurs via a radical chain mechanism. Acetol is 
oxidized via interaction of the Fe3+-acetol chelate complex with H2O2. 
This catalytic system may have good perspectives in industrial waste 
processing for the production of diesel fuel and sugars. 
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