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Abstract: A concise and efficient approach to synthesizing coumarin-fused pyrazolo[3,4-b]pyridine
via silica sulfuric acid (SSA) catalyzed three-component domino reaction under microwave irradiation
has been demonstrated. Participation of various alcohols in construction of coumarin derivatives
has been described for the first time. Short reaction time, high yields, one-pot procedure, usage of
eco-friendly catalyst, and solvent are the key features of this method.
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1. Introduction

As one of the most important heterocyclic compounds, coumarin was widely found in nature
products [1,2], and several synthetic coumarins [3] with a variety of pharmacophoric groups at
C-3, C-4, and C-7 positions have been intensively screened for various biological activities like
AChE inhibitors [4–6], anticancer [7–9], anticoagulant [10,11], anti-HIV [12–14], antitubercular [15,16],
anti-inflammatory [17,18], antioxidant [19], antibacterial [20], antihypertensive [21], anticonvulsant [22],
antifungal [23], and antihyperglycemic [24]. A recent literature survey suggests quite a few coumarin
derivatives have been patented for their biological properties (Figure 1). Besides the high biological
activity, coumarin is also considered to be a functional material [25,26] such as receptors [27–29],
signaling units in sensors and biosensors, as well as in advanced photophysical systems [30,31].

Among various nitrogen-containing heterocyclic compounds, pyrazolo[3,4-b]pyridine is
recognized as important drug molecular skeleton in recent years due to a wide varieties of biological
activities (Figure 2), such as antimicrobial [32,33], anti-inflammatory [34,35], anti-proliferative [36,37],
and many other [38,39] important effects.
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Therefore, development and introduction of a convenient, efficient method for the synthesis of 
coumarin-fused pyrazolo[3,4-b]pyridine is highly desirable for their immense pharmacological 
potential. As a part of our research on the synthesis of novel functionalized heterocyclic derivatives 
[40–46], in the current paper, we report a novel three-component domino reaction for the synthesis 
of functionalized coumarin-fused pyrazolo[3,4-b]pyridine derivatives using silica sulfuric acid as the 
catalyst. It worth mentioning that participation of alcohols in construction of coumarin derivatives is 
described for the first time. 

2. Results and Discussion 

In the early literature reports of our group [44], the coumarino[4,3-d]pyrazolo[3,4-b]pyridine 
derivative (3a) was synthesized by the reaction of 3-acylcoumarin (1a) with 5-aminopyrazole (2a) 
catalyzed by silica sulfuric acid (SSA) in EtOH at 90 °C for 20 min under microwave irradiation 
(Scheme 1). 
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Therefore, development and introduction of a convenient, efficient method for the synthesis of
coumarin-fused pyrazolo[3,4-b]pyridine is highly desirable for their immense pharmacological potential.
As a part of our research on the synthesis of novel functionalized heterocyclic derivatives [40–46], in the
current paper, we report a novel three-component domino reaction for the synthesis of functionalized
coumarin-fused pyrazolo[3,4-b]pyridine derivatives using silica sulfuric acid as the catalyst. It worth
mentioning that participation of alcohols in construction of coumarin derivatives is described for the
first time.

2. Results and Discussion

In the early literature reports of our group [44], the coumarino[4,3-d]pyrazolo[3,4-b]pyridine
derivative (3a) was synthesized by the reaction of 3-acylcoumarin (1a) with 5-aminopyrazole (2a)
catalyzed by silica sulfuric acid (SSA) in EtOH at 90 ◦C for 20 min under microwave irradiation
(Scheme 1).



Molecules 2019, 24, 2835 3 of 17
Molecules 2019, 24, x FOR PEER REVIEW 3 of 16 
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According to our previously reported synthetic procedure, we speculate that the coumarin 
derivative 6a could be obtained from the 2-butyryl-3H-benzo[f]chromen-3-one (4a) and 3-methyl-1-
phenyl-1H-pyrazol-5-amine (2a) used as the starting materials. However, product 6a was not 
available as expect (Scheme 2-1). Considering the steric hindrance effect of the reaction, when ethanol 
and ethylene glycol (EG) as mixed solvent (volume ratio of EG/EtOH = 1:1) was added to the reaction, 
and further increasing the temperature (120 °C), a new product 7a formed unexpectedly (Scheme 2-
2), which was identified by 1H-NMR, 13C-NMR, HRMS analysis. Moreover, we also obtained the 
single crystal of 7a suitable for X-ray analysis (Figure 3) [47]. To our surprise, the solvent ethanol also 
participated in this reaction and a novel coumarin derivative was constructed. 
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In order to achieve the optimal conditions of three-component reaction, a series of catalysts, 
solvents, and temperature were screened, as shown in Table 1. Some other acid catalysts such as p-
TsOH, HClO3S, H2SO4, SiO2-H2SO4 (Table 1. entries 1, 3–5) and base catalysts such as K2CO3, NaOH, 
Cs2CO3 (Table 1, entries 6–8) were tested. However, none of them gave better results, lead to the 
identification of SSA as the most effective catalyst (Table 1. entry 2). To further increase the yield of 

Scheme 1. Synthesis of coumarino[4,3-d]pyrazolo[3,4-b]pyridine derivative 3a.

According to our previously reported synthetic procedure, we speculate that the coumarin
derivative 6a could be obtained from the 2-butyryl-3H-benzo[f ]chromen-3-one (4a) and 3-methyl-1-
phenyl-1H-pyrazol-5-amine (2a) used as the starting materials. However, product 6a was not available
as expect (Scheme 2-1). Considering the steric hindrance effect of the reaction, when ethanol and
ethylene glycol (EG) as mixed solvent (volume ratio of EG/EtOH = 1:1) was added to the reaction,
and further increasing the temperature (120 ◦C), a new product 7a formed unexpectedly (Scheme 2-2),
which was identified by 1H-NMR, 13C-NMR, HRMS analysis. Moreover, we also obtained the single
crystal of 7a suitable for X-ray analysis (Figure 3) [47]. To our surprise, the solvent ethanol also
participated in this reaction and a novel coumarin derivative was constructed.
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In order to achieve the optimal conditions of three-component reaction, a series of catalysts,
solvents, and temperature were screened, as shown in Table 1. Some other acid catalysts such as
p-TsOH, HClO3S, H2SO4, SiO2-H2SO4 (Table 1. entries 1, 3–5) and base catalysts such as K2CO3,
NaOH, Cs2CO3 (Table 1, entries 6–8) were tested. However, none of them gave better results, lead to
the identification of SSA as the most effective catalyst (Table 1. entry 2). To further increase the yield
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of desired product 7a, different solvents were evaluated. The results revealed that EtOH and EG as
mixed solvents greatly improved the transformation, in control to EtOH, PEG, glycerol, and DMF as a
single solvent (Table 1, entries 2, 9–12). When the volume ratio of EG/EtOH = 3:1, the yield of 7a could
further increase to 68% (Table 1, entry 15). Much to our delight, we observed that increasing of the
temperature to 140 ◦C resulted in affording 7a in 84% yield (Table 1, entry 20).

Table 1. Optimizing the reaction conditions for the synthesis of 7a under microwave a.

Entry Catalyst Solvent (v/v) Temperature (◦C) Yield (%) b

1 p-TsOH (20 mol%) EG/EtOH=1:1 120 trace
2 SSA (0.25 g) EG/EtOH=1:1 120 58
3 HClO3S (5 mol%) EG/EtOH=1:1 120 36
4 SiO2-H2SO4 (0.25 g) EG/EtOH=1:1 120 -
5 H2SO4 (20 mol%) EG/EtOH=1:1 120 -
6 K2CO3 (20 mol%) EG/EtOH=1:1 120 -
7 NaOH (20 mol%) EG/EtOH=1:1 120 -
8 Cs2CO3 (20 mol%) EG/EtOH=1:1 120 -
9 SSA (0.25 g) EtOH 110 20

10 SSA (0.25 g) PEG/EtOH = 1:1 120 45
11 SSA (0.25 g) Glycerol/EtOH = 1:1 120 32
12 SSA (0.25 g) DMF/EtOH = 1:1 120 24
13 SSA (0.25 g) EG/EtOH=1:2 120 21
14 SSA (0.25 g) EG/EtOH = 2:1 120 55
15 SSA (0.25 g) EG/EtOH = 3:1 120 68
16 SSA (0.25 g) EG/EtOH = 4:1 120 57
17 SSA (0.25 g) EG/EtOH = 3:1 100 trace
18 SSA (0.25 g) EG/EtOH = 3:1 110 trace
19 SSA (0.25 g) EG/EtOH = 3:1 130 78
20 SSA (0.25 g) EG/EtOH = 3:1 140 84
21 SSA (0.25 g) EG/EtOH = 3:1 150 76

a Reaction conditions: 4a (0.5 mmol), 2a (0.5 mmol), 5a (1.0 mL), 45 min; b GC yield of 7a determined using tridecane
as internal standard.

With optimal conditions in hand, the corresponding novel coumarin-fused pyrazolo[3,4-b]pyridine
derivatives 7 were synthesized (Scheme 3).

As illustrated in Scheme 3, the substrate scope of the transformation was examined using
arylbenzo[f]chromen-3-one 4, enaminone 2, and alkyl alcohol 5 as staring materials. Notably, electronic
effects had an important impact on this reaction. When the substituent R3 was electron-donating group,
such as Me, the desired products could not be obtained at all (7e, 7f).

To further expand the scope of substrates, aryl alcohols (8) instead of alkyl alcohols (5) were also
tested. It was found that aryl alcohols were well tolerated under the optimal reaction conditions,
the corresponding products were afforded in moderate to good yields. When substituent R3 was
electron-withdrawing groups (Ph), the yields were good and no more than 1 h cost (Table 2, entries
1–19). However, the substituents R3 was electron-donating groups (CH3) (Table 2, entries 20–22), the
yields were lower and the reaction time was longer. Unfortunately, When R3 and R4 was electron rich
group, such as Me, the reaction could not proceed successfully (Table 2, entry 23).
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Table 2. Synthesis of coumarin-fused pyrazolo[3,4-b]pyridine derivatives 9 a.
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5 9e CH2CH3 H Ph CH3 4-BrC6H4 0.75 71
6 9f CH2CH3 H Ph CH3 Pyridine-4-yl 1 70
7 9g CH2CH3 H Ph CH3 Furan-2-yl 1 76
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9 9i CH2CH3 OCH3 Ph CH3 4-CH3C6H4 1 70
10 9j CH2CH3 OCH3 Ph CH3 4-OCH3C6H4 1 72
11 9k CH3 H Ph CH3 C6H5 1 68
12 9l CH3 H Ph CH3 4-CH3C6H4 1.25 70
13 9m CH3 H Ph CH3 4-OCH3C6H4 1.25 74
14 9n CH3 H Ph CH3 3-OCH3C6H4 1.25 72
15 9o CH3 OCH3 Ph CH3 4-CH3C6H4 1.25 67
16 9p CH3 OCH3 Ph CH3 4-OCH3C6H4 1.25 70
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a Reaction conditions: arylbenzo[f ]chromen-3-one 4 (0.5 mmol), enaminone 2 (0.5 mmol), aryl alcohols 8 (1.0 mL),
EG (3 mL) and SSA (0.25 g), 140 ◦C.

To gain insight into the mechanism of this one-spot three-component reaction process, some
additional experiments were performed. When benzaldehyde (10) was added to the reaction instead of
phenylmethanol (8a) under standard conditions, 73% yield of desired product (9a) could be obtained,
and reaction time reduced from 1 h to 15 min (Scheme 4A), and when butyraldehyde (11) was added
to the reaction 50% yield of desired product (7c) could be obtained (Scheme 4B). The reaction did
not proceed successfully without SSA catalyzed. Just phenylmethanol (8a) was heated to 140 ◦C,
directly with the catalyst of SSA, benzaldehyde (10) and benzoic acid (12) could be detected by GC-MS
(Scheme 4C). We speculated that the benzaldehyde was most likely the key intermediate in this protocol.
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derivatives 9a. (B) Synthesis of coumarin-fused pyrazolo[3,4-b]pyridine derivatives 7c. (C) Reaction of
phenylmethanol with the catalyst of SSA.

Herein, we propose the following mechanism for the reaction (Scheme 5). SSA catalyzed alkyl
alcohol 5 to afford the corresponding aldehyde, then the intermediate A is formed by means of a
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Knoevenagel condensation of aldehyde and arylbenzo[f ]chromen-3-one (4). The intermediate A is
activated by SSA, which subsequently undergoes Michael addition with enaminone (2) via attack of
the nucleophilic C-4 of the intermediate A to give intermediate B, which transformed to more-stable
intermediate C. Then, intermediate C tautomerizes to intermediate D, which undergoes intramolecular
nucleophilic addition to form intermediate E. In the last step, loss of H2O affords the desired product.
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3. Conclusions

In conclusion, we have developed a protocol for the facile synthesis of various potentially
biologically active coumarin-fused pyrazolo[3,4-b]pyridine derivatives, based on a novel three-
component domino reaction under microwave irradiation. Using this method, coumarin derivatives
could be rapidly constructed in moderate-to-good yields with short reaction time. Further study to
deeply understand the reaction mechanism is currently underway in our lab.

4. Experimental Section

4.1. General

All reagents were purchased from commercial suppliers (Aladdin, Shanghai, China) and used
without further purification. Microwave irradiation was carried out with Initiator 2.5 Microwave
Synthesizers from Biotage, Uppsala, Sweden. The reaction temperatures were measured by infrared
detector during microwave heating. Melting points are uncorrected. IR spectra were recorded on a
Tensor 27 spectrometer (Bruker Corp., Karlsruhe, Germany) in KBr with absorptions in cm−1. 1H-NMR
(400 MHz) and 13C-NMR (75 MHz or 100 MHz) spectra were recorded on a Varian Inova-400 MHz or
Varian Inova-300 MHz (Varian, CA, America) in CDCl3, DMSO-d6 or CF3COOD as solution. J values
are in hertz. Chemical shifts are expressed in parts per million downfield from interal standard TMS.
High-resolution mass spectra (HRMS) for all the compounds were determined on Bruker MicrOTOF-QII
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mass spectrometer (Bruker Corp., Karlsruhe, Germany) with ESI resource. X-ray diffraction analysis
was recorded on a Smart-1000 diffractometer (PANalytical B.V., Holland).

4.2. General Procedure for the Synthesis of Products 4 Are Represented as Follows

Typically, 2-hydroxy-1-naphthaldehyde (5 mmol), ethyl 3-oxopentanoate or ethyl 3-oxohexanoate
or ethyl acetoacetate (5 mmol) and piperidine (0.5 mmol) were introduced in a 20 mL vial with ethanol
(10 mL) as solution. Subsequently, the reaction vial was closed and then prestirred for 10 s. The mixture
was irradiated at 90 ◦C for 10 min. After the completion, the reaction mixture was then cooled to room
temperature and concentrated in vacuo to remove the solvent. The residue was then washed with
water, filtered, dried, and the precipitate was purified by recrystallization from 95% EtOH to give the
products of 4. The analytical data for represent compounds are shown below. 1H-NMR and 13C-NMR
spectra of compounds 4 in Supplementary Materials.

4.2.1. 2-Butyryl-3H-benzo[f]chromen-3-one (4a)

Yellow solid; yield 89%; m.p.: 127–129 ◦C; IR (KBr): ν 1734, 1626, 1557, 1513, 1383, 1109, 864 cm−1;
1H-NMR (CDCl3, 400 MHz) δ (ppm): 9.21 (s, 1H, ArH), 8.91 (s, 1H, ArH), 8.06 (d, J = 8.8 Hz, 1H, ArH),
7.83 (d, J = 8.8 Hz, 1H, ArH), 7.57–7.56 (m, 1H, ArH), 7.20 (d, J = 9.2 Hz, 1H, ArH), 7.12 (dd, J1 = 8.8 Hz,
J2 = 2.0 Hz, 1H, ArH), 3.00 (t, J = 7.2 Hz, 2H, CH2), 1.63–1.58 (m, 2H, CH2), 0.93 (t, J = 7.2 Hz, 3H, CH3);
13C-NMR (100 MHz, DMSO-d6) δ (ppm): 197.5, 159.1, 158.9, 156.4, 142.8, 136.6, 132.1, 131.5, 124.6, 121.9,
118.6, 113.0, 111.4, 104.8, 43.9, 17.3, 14.1;

4.2.2. 2-Butyryl-9-methoxy-3H-benzo[f]chromen-3-one (4b)

Yellow solid, yield 88%; m.p.: 125–128 ◦C; IR (KBr) ν: 1730, 1667, 1601, 1556, 1513, 1386, 1365, 1196, 948,
836 cm−1; 1H-NMR (CDCl3, 400 MHz) δ (ppm): 9.01 (s, 1H, ArH), 7.86 (d, J = 8.8 Hz, 1H, ArH), 7.68 (d,
J = 8.8 Hz, 1H, ArH), 7.40 (s, 1H, ArH), 7.14 (t, J = 8.4 Hz, 2H, ArH), 3.94 (s, 3H, CH3O), 3.12 (t, J = 8.4
Hz, 2H, CH2); 1.76–1.70 (m, 2H, CH2), 1.00 (t, J = 8.4 Hz, 3H, CH3); 13C-NMR (100 MHz, CDCl3) δ
(ppm): 197.6, 159.9, 158.7, 156.0, 142.5, 135.3, 131.2, 130.2, 124.7, 121.1, 117.9, 113.1, 111.4, 100.7, 55.5,
44.0, 16.9, 13.3.

4.2.3. 2-Propionyl-3H-benzo[f]chromen-3-one (4c)

Yellow solid, yield 87%; m.p.: 134–136 ◦C; IR (KBr): ν 1732, 1662, 1601, 1556, 1524, 1387, 1365, 1196, 945,
823 cm−1; 1H-NMR (CDCl3, 400 MHz) δ (ppm): 9.15 (s, 1H, ArH), 8.74 (s, 1H, ArH), 7.90 (d, J = 8.8 Hz,
1H, ArH), 7.66 (d, J = 8.8 Hz, 1H, ArH), 7.41–7.40 (m, 1H, ArH), 7.04 (d, J = 8.8 Hz, 1H, ArH), 6.95 (dd,
J1 = 8.8 Hz, J2 = 2.0 Hz, 1H, ArH), 3.14–3.08 (m, 2H, CH2), 1.08 (t, J = 7.2 Hz, 3H, CH3); 13C-NMR (100
MHz, CDCl3) δ (ppm): 198.4, 159.9, 159.4, 156.7, 143.3, 135.9, 131.9, 130.8, 125.3, 121.8, 118.7, 113.7,
112.1, 102.0, 35.2, 10.7.

4.2.4. 9-Methoxy-2-propionyl-3H-benzo[f]chromen-3-one (4d)

Yellow solid, yield 87%; m.p.: 125–128 ◦C; IR (KBr): ν 1730, 1667, 1601, 1556, 1513, 1386, 1365, 1196, 948,
836 cm−1; 1H-NMR (DMSO-d6, 400 MHz) δ (ppm): 9.19 (s, 1H, ArH), 8.14 (d, J = 9.2 Hz, 1H, ArH), 7.90
(d, J = 9.2 Hz, 1H, ArH), 7.79 (s, 1H, ArH), 7.32 (t, J = 8.8 Hz, 1H, ArH), 7.21 (dd, J1 = 8.8 Hz, J2 = 2.0
Hz, 1H, ArH), 3.98 (s, 3H, CH3O), 3.10–3.05 (m, 2H, CH2), 1.09 (t, J = 7.2 Hz, 3H, CH3); 13C-NMR (100
MHz, DMSO-d6) δ (ppm): 198.7, 160.4, 158.8, 156.1, 143.0, 136.2, 131.9, 131.2, 125.4, 122.8, 118.6, 113.9,
112.1, 102.4, 56.2, 35.4, 8.4.

4.2.5. 2-Acetyl-3H-benzo[f]chromen-3-one (4e)

Yellow solid, yield 88%; m.p.: 189–190 ◦C [48]; IR (KBr): ν 2959, 1696, 1622, 1562, 1384, 1227, 1206,
857 cm−1.
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4.3. General Procedure for the Synthesis of Products 7 and 9 Are Represented as Follows

Typically, benzo[f ]chromen-3-one 4 (0.5 mmol), enaminone 2 (0.5 mmol), alkyl alcohol 5 (1.0 mL)
or aryl alcohols 8 (1.0 mL) and SSA (0.25 g) were introduced in a 5 mL vial with ethylene glycol (3 mL)
as solution. Subsequently, the reaction vial was closed and then prestirred for 10 s. The mixture
was irradiated at 140 ◦C. The reaction was monitored by TLC. After the completion, the reaction
mixture was then cooled to room temperature and diluted with cold water (30 mL), and extracted with
CH2Cl2 (3 × 30 mL). The extracts were washed with water (3 × 50 mL) and dried over anhydrous
Na2SO4. After evaporation of the solvent under reduced pressure, the precipitate was collected and
purified by recrystallization from 95% EtOH or by flash column chromatography (petroleum ether:ethyl
acetate = 8:1) to give the products 7 or 9. The analytical data for represent compounds are shown
below. 1H-NMR and 13C-NMR spectra of compounds 7 and 9 in Supplementary Materials.

4.3.1. 2-(5-Ethyl-3,4-dimethyl-1-phenyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-3H-benzo[f]chromen-3-one (7a)

White solid, m.p.: 258–260 ◦C; IR (KBr, cm−1) ν: 2960, 1722, 1629, 1572, 1507, 1415, 1387, 1315, 1290,
1248, 1211, 1096, 989, 906, 815, 787, 713, 691, 605; 1H-NMR (400 MHz, DMSO-d6) δ (ppm): 9.07 (s, 1H,
ArH), 8.58 (d, J = 8.0 Hz, 1H, ArH), 8.23 (t, J = 8.0 Hz, 3H, ArH), 8.08 (d, J = 8.0 Hz, 1H, ArH), 7.69–7.61
(m, 3H, ArH), 7.44 (t, J = 8.0 Hz, 2H, ArH), 7.20 (t, J = 7.2 Hz, 1H, ArH), 2.78–2.66 (m, 8H, 2 × CH3 +

CH2), 1.05 (t, J = 7.2 Hz, 3H, CH3); 13C-NMR (75 MHz, CF3COOD) δ (ppm): 156.0, 148.8, 146.2, 145.4,
140.5, 139.1, 135.6, 134.1, 132.6, 132.0, 131.2, 130.8, 130.2, 129.4, 128.5, 126.5, 122.3, 121.3, 116.7, 116.2,
22.7, 17.0, 14.3, 13.4; HRMS: m/z cacld. for C29H24N3O2 [M + H]+ 446.1869, Found 446.1853.

4.3.2. 2-(4,5-Diethyl-3-methyl-1-phenyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-3H-benzo[f]chromen-3-one (7b)

White solid, m.p.: >300 ◦C; IR (KBr, cm−1) ν: 2974, 1719, 1688, 1656, 1628, 1596, 1628, 1571, 1546, 1506,
1413, 1357, 1204, 1071, 909, 817, 752, 694, 676, 589; 1H-NMR (400 MHz, DMSO-d6) δ (ppm): 9.16 (s, 1H,
ArH), 8.66 (d, J = 8.4 Hz, 1H, ArH), 8.29 (d, J = 9.2 Hz, 1H, ArH), 8.21 (d, J = 7.6 Hz, 2H, ArH), 8.11 (d, J
= 8.0 Hz, 1H, ArH), 7.73–7.63 (m, 3H, ArH), 7.47 (t, J = 8.0 Hz, 2H, ArH), 7.23 (t, J = 7.6 Hz, 1H, ArH),
3.51–3.48 (m, 2H, CH2), 3.17–3.14 (m, 2H, CH2), 2.79 (s, 3H, CH3), 1.35 (t, J = 7.2 Hz, 3H, CH3), 1.09 (t,
J = 7.6 Hz, 3H, CH3); 13C-NMR (75 MHz, DMSO-d6) δ (ppm): 160.2, 154.3, 153.8, 149.4, 148.1, 142.4,
139.6, 134.1, 130.5, 130.3, 129.6, 129.0, 128.3, 126.8, 125.7, 123.2, 120.5, 117.2, 115.9, 113.5, 100.0, 22.2, 21.6,
16.6, 16.2, 15.5; HRMS: m/z cacld. for C30H25N3O2 (M)+ 459.1947, Found 459.1946.

4.3.3. 2-(5-Ethyl-3-methyl-1-phenyl-4-propyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-3H-benzo[f]chromen-3-one (7c)

White solid, m.p.: 242–245 ◦C; IR (KBr, cm−1) ν: 2974, 2880, 2703, 2545, 1789, 1722, 1665, 1573, 1503,
1439, 1414, 1389, 1359, 1320, 1288, 1248, 1217, 1155, 1091, 915, 858, 813, 792, 745, 695, 641, 610; 1H-NMR
(400 MHz, DMSO-d6) δ (ppm): 9.14 (s, 1H, ArH), 8.63 (d, J = 8.8 Hz, 1H, ArH), 8.26 (d, J = 8.8 Hz, 1H,
ArH), 8.22 (d, J = 8.0 Hz, 2H, ArH), 8.09 (d, J = 8.0 Hz, 1H, ArH), 7.70–7.63 (m, 3H, ArH), 7.46 (t, J
= 7.6 Hz, 2H, ArH), 7.22 (t, J = 7.6 Hz, 1H, ArH), 3.07–3.06 (m, 2H, CH2), 2.76–2.73 (m, 5H, CH3 +

CH2), 1.72–1.69 (m, 2H, CH2), 1.13 (s, 3H, CH3), 1.07 (s, 3H, CH3); 13C-NMR (75 MHz, CF3COOD) δ
(ppm): 165.7, 155.9, 148.1, 146.2, 145.9, 140.8, 139.1, 135.0, 134.1, 132.6, 131.9, 131.2, 130.7, 130.2, 129.3,
128.5, 126.5, 121.6, 121.3, 116.3, 33.4, 26.2, 22.2, 14.5, 13.7; HRMS: m/z cacld. for C31H28N3O2 [M + H]+

474.2182, Found 474.2210.

4.3.4. 2-(5-Ethyl-3,4-dimethyl-1-phenyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-9-methoxy-3H-benzo[f]chromen-
3-one (7d)

White solid, m.p.: >300 ◦C; IR (KBr, cm−1) ν: 2975, 2026, 1795, 1728, 1628, 1574, 1509, 1230, 1091, 989,
917, 840, 794, 751, 686, 610; 1H-NMR (400 MHz, DMSO-d6) δ (ppm): 9.21 (s, 1H, ArH), 8.24–8.17 (m,
3H, ArH), 8.01–7.96 (m, 2H, ArH), 7.50–7.45 (m, 3H, ArH), 7.27–7.21 (m, 2H, ArH), 3.90 (s, 3H, OCH3),
2.80–2.79 (m, 8H, CH2 + 2 × CH3), 1.07 (t, J = 7.2 Hz, 3H, CH3); 13C-NMR (75 MHz, DMSO-d6) δ (ppm):
160.3, 160.1, 154.4, 154.0, 149.0, 143.1, 142.4, 140.0, 139.7, 133.8, 131.4, 131.0, 129.5, 127.5, 125.6, 125.5,
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120.3, 118.7, 116.9, 114.3, 102.6, 56.3, 22.4, 16.1, 15.4, 15.0; HRMS: m/z cacld. for C30H26N3O3 [M + H]+

476.1974, Found 476.1980.

4.3.5. 2-(5-Ethyl-3-methyl-1,4-diphenyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-3H-benzo[f]chromen-3-one (9a)

Yellow solid, m.p.: >300 ◦C; IR (KBr, cm−1) ν: 3032, 2978, 2888, 2763, 1725, 1049, 958, 815, 756, 699, 679,
588; 1H-NMR (400 MHz, CF3COOD) δ (ppm): 10.16 (s, 1H, ArH), 9.15–9.14 (m, 2H, ArH), 8.88–8.87 (m,
1H, ArH), 8.65–8.64 (m, 1H, ArH), 8.59–8.55 (m, 4H, ArH), 8.51–8.47 (m, 6H, ArH), 8.38–8.37 (m, 2H,
ArH), 3.77–3.76 (m, 2H, CH2), 3.05 (s, 3H, CH3), 1.91 (s, 3H, CH3); 13C-NMR (75 MHz, CF3COOD) δ
(ppm): 163.7, 156.1, 149.4, 146.8, 146.4, 140.8, 139.1, 135.8, 134.3, 132.8, 132.6, 132.0, 131.6, 131.2, 130.8,
130.2, 129.9, 129.5, 128.5, 127.8, 126.5, 121.9, 121.4, 116.8, 116.3, 113.6, 22.9, 14.3, 12.5; HRMS: m/z cacld.
for C34H26N3O2 [M + H]+ 508.2025, Found 508.2025.

4.3.6. 2-(5-Ethyl-3-methyl-1-phenyl-4-(p-tolyl)-1H-pyrazolo[3,4-b]pyridin-6-yl)-3H-benzo[f]chromen-3-
one (9b)

Yellow solid, m.p.: >300 ◦C; IR (KBr, cm−1) ν: 2968, 1972, 1779, 1572, 1505, 1413, 1360, 1207, 1088, 961,
898, 806, 758, 728, 690, 642; 1H-NMR (400 MHz, CF3COOD) δ (ppm): 10.13 (s, 1H, ArH), 9.15–9.09 (m,
2H, ArH), 8.87–8.84 (m, 1H, ArH), 8.63–8.60 (m, 1H, ArH), 8.54–8.40 (m, 9H, ArH), 8.25–8.24 (m, 2H,
ArH), 3.76–3.74 (m, 2H, CH2), 3.37 (s, 3H, CH3), 3.06 (s, 3H, CH3), 1.88–1.87 (m, 3H, CH3); 13C-NMR
(75 MHz, CF3COOD) δ (ppm): 162.8, 155.1, 148.6, 145.6, 145.4, 142.0, 139.8, 138.2, 135.0, 133.3, 131.7,
131.1, 130.3, 129.9, 129.6, 129.3, 128.7, 128.5, 127.6, 126.9, 125.6, 121.0, 120.4, 115.9, 115.4, 112.7, 21.9, 19.5,
13.4, 11.7; HRMS: m/z cacld. for C35H28N3O2 [M + H]+ 522.2182, Found 522.2180.

4.3.7. 2-(5-Ethyl-4-(4-methoxyphenyl)-3-methyl-1-phenyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-3H-benzo[f]
chromen-3-one (9c)

Yellow solid, m.p.: >300 ◦C; IR (KBr, cm−1) ν: 2967, 1711, 1597, 1571, 1505, 1412, 1286, 1249, 1211,
1048, 982, 897, 849, 806, 758, 690, 641, 587; 1H-NMR (400 MHz, CF3COOD) δ (ppm): 9.29 (s, 1H, ArH),
8.28–8.23 (m, 2H, ArH), 7.99 (d, J = 8.4 Hz, 1H, ArH), 7.76 (t, J = 7.6 Hz, 1H, ArH), 7.69–7.56 (m, 7H,
ArH), 7.50 (d, J = 8.4 Hz, 2H, ArH), 7.35 (d, J = 8.4 Hz, 2H, ArH), 4.06 (s, 3H, OCH3), 2.93–2.88 (m, 2H,
CH2), 2.23 (s, 3H, CH3), 1.02 (t, J = 7.2 Hz, 3H, CH3); 13C-NMR (75 MHz, CF3COOD) δ (ppm): 162.9,
160.9, 160.5, 155.2, 148.4, 145.8, 145.7, 140.0, 138.3, 135.3, 133.5, 131.8, 131.2, 130.4, 130.0, 129.4, 129.2,
128.7, 127.7, 125.8, 125.3, 121.3, 120.6, 116.0, 115.5, 114.9, 112.8, 55.1, 22.1, 13.4, 12.0; HRMS: m/z cacld.
for C35H28N3O3 [M + H]+ 538.2131, Found 538.2111.

4.3.8. 2-(5-Ethyl-4-(3-methoxyphenyl)-3-methyl-1-phenyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-3H-benzo[f]
chromen-3-one (9d)

Yellow solid, m.p.: >300 ◦C;.IR (KBr, cm−1) ν: 2965, 2023, 1785, 1712, 1573, 1504, 1382, 1357, 1285, 1158,
1136, 1046, 782, 759, 712, 689, 588; 1H-NMR (400 MHz, DMSO-d6) δ (ppm): 9.23 (s, 1H, ArH), 8.66 (d,
J = 8.4 Hz, 1H, ArH), 8.29–8.23 (m, 3H, ArH), 8.10 (d, J = 8.0 Hz, 1H, ArH), 7.73–7.62 (m, 3H, ArH),
7.54–7.47 (m, 3H, ArH), 7.25 (t, J = 7.6 Hz, 1H, ArH), 7.14–7.12 (m, 1H, ArH), 7.03–7.01 (m, 2H, ArH),
3.84 (s, 3H, OCH3), 2.58–2.56 (m, 2H, CH2), 1.96 (s, 3H, CH3), 0.89 (t, J = 7.2 Hz, 3H, CH3); 13C-NMR
(75 MHz, DMSO-d6) δ (ppm): 160.2, 159.6, 154.2, 153.9, 148.7, 145.3, 142.9, 140.1, 139.6, 137.3, 134.3,
130.5, 130.4, 130.1, 129.6, 129.5, 129.4, 129.0, 127.8, 126.8, 125.9, 123.1, 121.4, 120.6, 117.2, 115.8, 114.6,
113.5, 55.8, 22.5, 16.0, 14.2; HRMS: m/z cacld. for C35H27N3O3 (M)+ 537.2052, Found 537.2053.

4.3.9. 2-(4-(4-Bromophenyl)-5-ethyl-3-methyl-1-phenyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-3H-benzo[f]
chromen-3-one (9e)

Yellow solid, m.p.: >300 ◦C;.IR (KBr, cm−1) ν: 2968, 2032, 1775, 1721, 1574, 1385, 1357, 1285, 1166, 1047,
782, 759, 712, 681, 588; 1H-NMR (400 MHz, DMSO-d6) δ (ppm): 10.19 (s, 1H, ArH), 8.57–8.53 (m, 2H,
ArH), 8.43 (d, J = 9.2 Hz, 1H, ArH), 8.06 (d, J = 8.0 Hz, 1H, ArH), 7.86 (t, J = 7.6 Hz, 1H, ArH), 7.78–7.23
(m, 10H, ArH), 2.79 (s, 2H, CH2), 2.54(s, 3H, CH3), 1.35 (t, J = 7.2 Hz, 3H, CH3); 13C-NMR (75 MHz,
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DMSO-d6) δ (ppm): 165.7, 159.3, 157.7, 152.3, 151.4, 144.7, 141.6, 138.9, 134.8, 132.3, 131.0, 129.7, 126.7,
125.2, 121.4, 118.1, 113.1, 111.4, 111.3, 109.6, 107.5, 21.9, 17.0, 14.6; HRMS: m/z cacld. for C34H24BrN3O2

(M)+ 585.1052, Found 585.1057.

4.3.10. 2-(5-Ethyl-3-methyl-1-phenyl-4-(pyridin-4-yl)-1H-pyrazolo[3,4-b]pyridin-6-yl)-3H-benzo[f]
chromen-3-one (9f):

Yellow solid, m.p.: >300 ◦C; IR (KBr, cm−1) ν: 2965, 1972, 1783, 1573, 1505, 1413, 1362, 1089, 961, 898,
805, 758, 693, 642; 1H-NMR (400 MHz, CF3COOD) δ (ppm): 10.09 (s, 1H, ArH), 9.11–9.05 (m, 2H, ArH),
8.80 (d, J = 8.0 Hz, 1H, ArH), 8.60–8.35 (m, 10H, ArH), 8.21–8.19 (m, 2H, ArH), 3.72–3.70 (m, 2H, CH2),
3.01 (s, 3H, CH3), 1.83 (t, J = 6.8 Hz, 3H, CH3);13C-NMR (75 MHz, CF3COOD) δ (ppm): 162.8, 155.0,
148.5, 145.5, 145.4, 142.0, 139.7, 138.1, 135.0, 133.3, 131.6, 131.0, 130.2, 129.8, 129.5, 129.2, 128.7, 128.5,
127.5, 126.8, 125.5, 121.0, 120.4, 115.8, 115.3, 112.6, 21.8, 13.3, 11.6; HRMS: m/z cacld. for C33H25N4O2

[M + H]+ 509.1978, Found 509.1963.

4.3.11. 2-(5-Ethyl-4-(furan-2-yl)-3-methyl-1-phenyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-3H-benzo[f]chromen-
3-one (9g):

Yellow solid, m.p.: >300 ◦C; IR (KBr, cm−1) ν: 2966, 1720, 1629, 1566, 1412, 1383, 1264, 1084, 959, 852,
797, 766, 724, 691, 640, 617; 1H-NMR (400 MHz, CF3COOD) δ (ppm): 9.24 (s, 1H, ArH), 8.21 (d, J = 9.2
Hz, 1H, ArH), 7.95 (d, J = 8.8 Hz, 1H, ArH), 7.65–7.63 (m, 2H, ArH), 7.62–7.55 (m, 6H, ArH), 7.46 (d, J
= 9.2 Hz, 1H, ArH), 7.39 (m, 3H, ArH), 2.93–2.87 (m, 2H, CH2), 2.21 (s, 3H, CH3), 1.03 (t, J = 7.6 Hz,
3H, CH3); 13C-NMR (75 MHz, CF3COOD) δ (ppm): 163.0, 160.2, 156.0, 148.7, 145.7, 142.1, 140.0, 137.9,
135.2, 133.5, 131.9, 131.5, 130.7, 130.5, 129.8, 129.0, 127.1, 126.9, 125.8, 121.2, 118.0, 115.4, 113.7, 112.2,
22.1, 13.6, 11.8; HRMS: m/z cacld. for C32H24N3O3 [M + H]+ 498.1818, Found 498.1831.

4.3.12. 2-(5-Ethyl-3-methyl-1,4-diphenyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-9-methoxy-3H-benzo[f]chromen-
3-one (9h)

White solid, m.p.: 248–250 ◦C; IR (KBr, cm−1) ν: 2968, 1724, 1631, 1573, 1507, 1434, 1414, 1384, 1354,
1281, 1241, 1135, 1105, 980, 960, 905, 827, 789, 758, 705, 692, 636; 1H-NMR (400 MHz, DMSO-d6) δ (ppm):
9.32 (s, 1H, ArH), 8.24 (d, J = 8.0 Hz, 2H, ArH), 8.17 (d, J = 9.2 Hz, 1H, ArH), 8.00–7.97 (m, 2H, ArH),
7.61–7.57 (m, 3H, ArH), 7.51–7.46 (m, 5H, ArH), 7.27–7.24 (m, 2H, ArH), 3.91 (s, 3H, OCH3), 2.54–2.53
(m, 2H, CH2), 1.89 (s, 3H, CH3), 0.86 (t, J = 7.6 Hz, 3H, CH3); 13C-NMR (75 MHz, DMSO-d6) δ (ppm):
160.3, 160.2, 154.5, 154.4, 148.7, 145.5, 142.8, 140.6, 139.5, 135.9, 134.0, 131.5, 131.0, 130.5, 129.6, 129.1,
129.0, 128.9, 127.0, 125.9, 125.7, 120.6, 118.7, 115.8, 114.3, 112.8, 102.7, 56.3, 22.5, 15.8, 14.2; HRMS: m/z
cacld. for C35H28N3O3 [M + H]+ 538.2131, Found 538.2122.

4.3.13. 2-(5-Ethyl-3-methyl-1-phenyl-4-(p-tolyl)-1H-pyrazolo[3,4-b]pyridin-6-yl)-9-methoxy-3H-benzo[f]
chromen-3-one (9i)

Yellow solid, m.p.: >300 ◦C; IR (KBr, cm−1) ν: 2966, 1720, 1628, 1570, 1417, 1383, 1264, 1084, 959, 904,
832, 796, 761, 725, 691, 678, 640, 602; 1H-NMR (400 MHz, CF3COOD) δ (ppm): 9.24 (s, 1H, ArH), 8.20
(d, J = 9.2 Hz, 1H, ArH), 7.95 (d, J = 8.8 Hz, 1H, ArH), 7.65–7.54 (m, 8H, ArH), 7.46 (d, J = 9.2 Hz, 1H,
ArH), 7.39 (d, J = 7.6 Hz, 3H, ArH), 4.04 (s, 3H, OCH3), 2.92–2.87 (m, 2H, CH2), 2.52 (s, 3H, CH3), 2.20
(s, 3H, CH3), 1.02 (t, J = 7.6 Hz, 3H, CH3); 13C-NMR (75 MHz, CF3COOD) δ (ppm): 162.9, 160.1, 155.9,
148.6, 145.6, 145.5, 142.0, 139.8, 137.8, 135.1, 133.4, 131.8, 131.4, 130.6, 130.4, 129.6, 128.9, 127.0, 126.8,
125.7, 121.1, 117.9, 115.3, 113.6, 112.1, 55.3, 22.0, 19.6, 13.5, 11.8; HRMS: m/z cacld. for C36H30N3O3 [M +

H]+ 552.2287, Found 552.2246.

4.3.14. 2-(5-Ethyl-4-(4-methoxyphenyl)-3-methyl-1-phenyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-9-methoxy-
3H-benzo[f]chromen-3-one (9j)

White solid, m.p.: 256–258 ◦C; IR (KBr, cm−1) ν: 2965, 2145, 1735, 1717, 1629, 1572, 1463, 1381, 1286,
1227, 1077, 960, 887, 884, 805, 691, 604, 567; 1H-NMR (400 MHz, DMSO-d6) δ (ppm): 9.33 (s, 1H, ArH),
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8.23 (d, J = 8.0 Hz, 2H, ArH), 8.19 (d, J = 8.8 Hz, 1H, ArH), 8.01–7.99 (m, 2H, ArH), 7.52–7.48 (m, 3H,
ArH), 7.39–7.38 (m, 2H, ArH), 7.28–7.25 (m, 2H, ArH), 7.16 (d, J = 8.8 Hz, 2H, ArH), 3.92 (s, 3H, OCH3),
2.87 (s, 3H, OCH3), 2.56–2.55 (m, 2H, CH2), 1.95 (s, 3H, CH3), 0.87 (t, J = 7.2 Hz, 3H, CH3); 13C-NMR
(75 MHz, DMSO-d6) δ (ppm): 160.3, 160.2, 159.7, 154.6, 154.4, 148.8, 145.5, 142.9, 140.6, 139.6, 134.0,
131.5, 131.0, 130.9, 130.4, 129.7, 127.8, 127.1, 125.9, 125.7, 120.6, 118.8, 116.2, 114.3, 112.8, 102.7, 56.4, 55.7,
22.5, 15.8, 14.5; HRMS: m/z cacld. for C36H30N3O4 [M + H]+ 568.2236, Found 568.2248.

4.3.15. 2-(3,5-Dimethyl-1,4-diphenyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-3H-benzo[f]chromen-3-one (9k)

Yellow solid, m.p.: >300 ◦C; IR (KBr, cm−1) ν: 2934, 2173, 1710, 1598, 1572, 1438, 1278, 965, 909, 820, 791,
692, 651, 633, 585; 1H-NMR (400 MHz, CF3COOD) δ (ppm): 9.33 (s, 1H, ArH), 8.29–8.24 (m, 2H, ArH),
8.00–7.97 (m, 1H, ArH), 7.72–7.61 (m, 11H, ArH), 7.48–7.47 (m, 2H, ArH), 2.42 (s, 3H, CH3), 2.22 (s,
3H, CH3); 13C-NMR (75 MHz, CF3COOD) δ (ppm): 155.3, 148.3, 146.2, 145.8, 139.9, 138.5, 133.5, 132.4,
131.8, 131.1, 130.8, 130.4, 130.0, 129.4, 129.3, 129.0, 128.7, 127.7, 126.9, 125.7, 120.6, 120.4, 115.9, 115.5,
112.9, 14.5, 12.0; HRMS: m/z cacld. for C33H24N3O2 [M + H]+ 494.1869, Found 494.1887.

4.3.16. 2-(3,5-Dimethyl-1-phenyl-4-(p-tolyl)-1H-pyrazolo[3,4-b]pyridin-6-yl)-3H-benzo[f]chromen-3-one (9l)

Yellow solid, m.p.: 286–290 ◦C; IR (KBr, cm−1) ν: 3078, 2187, 1719, 1626, 1606, 1575, 1507, 1447, 1380,
1212, 1093, 963, 813, 790, 741, 685; 1H-NMR (400 MHz, CF3COOD) δ (ppm): 9.35 (s, 1H, ArH), 8.31 (d, J
= 9.2 Hz, 1H, ArH), 8.27 (d, J = 7.6 Hz, 1H, ArH), 8.02 (d, J = 8.4 Hz, 1H, ArH), 7.79 (t, J = 7.2 Hz, 1H,
ArH), 7.72–7.57 (m, 9H, ArH), 7.39 (d, J = 7.6 Hz, 2H, ArH), 2.55 (s, 3H, CH3), 2.46 (s, 3H, CH3), 2.29 (s,
3H, CH3); 13C-NMR (75 MHz, CF3COOD) δ (ppm): 154.3, 147.5, 145.2, 144.5, 141.3, 138.9, 137.5, 132.5,
130.8, 130.2, 129.4, 129.0, 128.8, 128.4, 128.3, 128.1, 127.7, 126.7, 126.0, 124.7, 119.6, 119.5, 114.9, 114.4,
18.6, 14.0, 10.9; HRMS: m/z cacld. for C34H26N3O2 [M + H]+ 508.2025, Found 508.2020.

4.3.17. 2-(4-(4-Methoxyphenyl)-3,5-dimethyl-1-phenyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-3H-benzo
[f]chromen-3-one (9m)

White solid, m.p.: 258–260 ◦C; IR (KBr, cm−1) ν: 2904, 2342, 1735, 1631, 1574, 1427, 1367, 1240, 1200,
1158, 1103, 1061, 849, 818, 759, 712, 668, 589; 1H-NMR (400 MHz, DMSO-d6) δ (ppm): 9.20 (s, 1H, ArH),
8.66 (d, J = 8.4 Hz, 1H, ArH), 8.28 (t, J = 7.6 Hz,3H, ArH), 8.11 (d, J = 8.0 Hz, 1H, ArH), 7.75–7.63 (m,
3H, ArH), 7.50 (t, J = 8.0 Hz, 2H, ArH), 7.37 (d, J = 8.4 Hz, 2H, ArH), 7.26 (t, J = 7.2 Hz, 1H, ArH), 7.16
(d, J = 8.4 Hz, 2H, ArH), 3.87 (s, 3H, OCH3), 2.13 (s, 3H, CH3), 2.02 (s, 3H, CH3); 13C-NMR (75 MHz,
DMSO-d6) δ (ppm): 159.8, 159.6, 154.2, 154.0, 149.0, 145.3, 142.7, 140.3, 139.6, 134.3, 130.6, 130.5, 129.6
129.5, 128.1, 126.7, 125.8, 124.9, 123.1, 120.6, 117.1, 115.9, 114.4, 113.6, 55.7, 16.3, 14.7; HRMS: m/z cacld.
for C34H26N3O3 [M + H]+ 524.1974, Found 524.1978.

4.3.18. 2-(4-(3-Methoxyphenyl)-3,5-dimethyl-1-phenyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-3H-benzo[f]
chromen-3-one (9n)

White solid, m.p.: 260–263 ◦C; IR (KBr, cm−1) ν: 2970, 2372, 1718, 1573, 1505, 1410, 1362, 1279, 1239,
1142, 1054, 1019, 988, 970, 877, 815, 786, 744, 714, 670, 586; 1H-NMR (400 MHz, DMSO-d6) δ (ppm):
9.19 (s, 1H, ArH), 8.66 (d, J = 8.4 Hz, 1H, ArH), 8.29–8.25 (m, 3H, ArH), 8.10 (d, J = 8.0 Hz, 1H, ArH),
7.75–7.63 (m, 3H, ArH), 7.52–7.48 (m, 3H, ArH), 7.25 (t, J = 7.6 Hz, 1H, ArH), 7.13–7.11 (m, 1H, ArH),
7.00–6.98 (m, 2H, ArH), 3.84 (s, 3H, OCH3), 2.13 (s, 3H, CH3), 2.00 (s, 3H, CH3); 13C-NMR (75 MHz,
DMSO-d6) δ (ppm): 159.7, 159.6, 154.3, 154.0, 148.9, 145.2, 142.7, 140.4, 139.6, 137.6, 134.3, 130.5, 130.3,
129.6, 129.5, 129.4, 129.0, 128.1, 126.8, 125.9, 124.5, 123.1, 121.3, 120.6, 117.1, 115.5, 114.7, 114.6, 113.6,
55.8, 16.2, 14.4; HRMS: m/z cacld. for C34H26N3O3 [M + H]+ 524.1974, Found 524.1978.

4.3.19. 2-(3,5-Dimethyl-1-phenyl-4-(p-tolyl)-1H-pyrazolo[3,4-b]pyridin-6-yl)-9-methoxy-3H-benzo[f]
chromen-3-one (9o)

Yellow solid, m.p.: 288–290 ◦C; IR (KBr, cm−1) ν: 2929, 1718, 1631, 1600, 1346, 1239, 1204, 1173, 1149,
1125, 1019, 852, 827, 795, 749, 690, 643, 606; 1H-NMR (400 MHz, CF3COOD) δ (ppm): 9.28 (s, 1H, ArH),
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8.22 (d, J = 8.8 Hz, 1H, ArH), 7.96 (d, J = 8.8 Hz, 1H, ArH), 7.65–7.62 (m, 6H, ArH), 7.56–7.54 (m, 2H,
ArH), 7.46 (d, J = 8.8 Hz, 1H, ArH), 7.41–7.35 (m, 3H, ArH), 4.04 (s, 3H, OCH3), 2.52 (s, 3H, CH3), 2.44
(s, 3H, CH3), 2.26 (s, 3H, CH3); 13C-NMR (75 MHz, CF

3COOD) δ (ppm): 159.0, 158.9, 155.0, 147.4, 145.2,
144.4, 141.2, 138.8, 137.0, 132.4, 130.7, 130.4, 129.6, 129.4, 128.8, 128.2, 128.1, 126.0, 125.8, 124.6, 119.4,
116.6, 115.2, 114.1, 112.5, 54.2, 18.5, 14.0, 10.9; HRMS: m/z cacld. for C35H28N3O3 [M + H]+ 538.2131,
Found 538.2130.

4.3.20. 9-Methoxy-2-(4-(4-methoxyphenyl)-3,5-dimethyl-1-phenyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-3H-
benzo[f]chromen-3-one (9p)

Yellow solid, m.p.: 287–289 ◦C; IR (KBr, cm−1) ν: 1716, 1630, 1611, 1571, 1513, 1464, 1385, 1246, 1107,
1033, 960, 832, 795, 754, 691; 1H-NMR (400 MHz, CF3COOD) δ (ppm): 9.29 (s, 1H, ArH), 8.23 (d, J = 8.8
Hz, 1H, ArH), 7.56 (d, J = 8.8 Hz, 1H, ArH), 7.65–7.63 (m, 6H, ArH), 7.48–7.42 (m, 3H, ArH), 7.39–7.35 (m,
3H, ArH), 4.07–4.05 (m, 6H, 2 × OCH3), 2.46 (s, 3H, CH3), 2.30 (s, 3H, CH3); 13C-NMR (75 MHz, CF

3COOD)
δ (ppm): 159.6, 159.0, 155.0, 147.2, 145.1, 144.6, 138.9, 137.0, 132.4, 130.7, 130.4, 129.6, 129.3, 128.3, 128.1,
125.8, 124.6, 116.6, 114.0, 112.5, 54.3, 54.0, 14.0, 11.1; HRMS: m/z cacld. for C35H28N3O4 [M + H]+

554.2080, Found 554.2093.

4.3.21. 2-(3,5-Dimethyl-1,4-diphenyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-9-methoxy-3H-benzo[f]chromen-3-
one (9q)

Yellow solid, m.p.: 252–254 ◦C; IR (KBr, cm−1) ν: 2961, 1725, 1629, 1582, 1557, 1435, 1397, 1335, 1290,
1250, 1219, 1196, 999, 906, 819, 797, 753, 695, 625; 1H-NMR (400 MHz, DMSO-d6) δ (ppm): 9.29 (s, 1H,
ArH), 8.28–8.26 (m, 2H, ArH), 8.17 (d, J = 9.2 Hz, 1H, ArH), 8.01–7.98 (m, 2H, ArH), 7.62–7.57 (m, 3H,
ArH), 7.52–7.43 (m, 5H, ArH), 7.28–7.25 (m, 2H, ArH), 3.92 (s, 3H, OCH3), 2.11 (s, 3H, CH3), 1.95 (s, 3H,
CH3); 13C-NMR (75 MHz, DMSO-d6) δ (ppm): 160.2, 159.7, 154.6, 154.5, 148.9, 145.3, 142.6, 140.8, 139.6,
136.2, 134.0, 131.5, 131.1, 129.7, 129.2, 129.1, 127.4, 125.9, 125.7, 124.5, 120.7, 118.7, 115.5, 114.3, 112.9,
102.8, 56.3, 16.2, 14.5; HRMS: m/z cacld. for C34H26N3O3 [M + H]+ 524.1974, Found 524.1988.

4.3.22. 2-(3-Methyl-1,4-diphenyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-3H-benzo[f]chromen-3-one (9r)

Yellow solid, m.p.: 268–270 ◦C; IR (KBr, cm−1) ν: 2935, 2355, 1729, 1667, 1553, 1092, 891, 818, 746, 694,
657, 631, 585; 1H-NMR (400 MHz, CF3COOD) δ (ppm): 10.22 (s, 1H, ArH), 8.61–8.57 (m, 2H, ArH), 8.46
(d, J = 9.2 Hz, 1H, ArH), 8.09 (d, J = 8.0 Hz, 1H, ArH), 7.90 (t, J = 7.6 Hz, 1H, ArH), 7.82–7.76 (m, 11H,
ArH), 7.70 (d, J = 8.8 Hz, 1H, ArH), 2.58 (s, 3H, CH3); 13C-NMR (75 MHz, CF

3COOD) δ (ppm): 163.5, 159.1,
155.0, 147.5, 145.0, 144.8, 140.3, 138.7, 132.9, 132.4, 131.1, 130.4, 130.3, 130.0, 129.8, 128.8, 128.3, 127.9,
127.4, 127.3, 122.6, 120.1, 114.3, 114.1, 113.5, 11.9; HRMS: m/z cacld. for C32H22N3O2 [M + H]+ 480.1712,
Found 480.1726.

4.3.23. 2-(4-(4-Methoxyphenyl)-3-methyl-1-phenyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-3H-benzo[f]chromen-3-
one (9s)

Yellow solid, m.p.: >300 ◦C; IR (KBr, cm−1) ν: 2988, 2355, 1987, 1730, 1512, 1089, 1066, 959, 810, 809, 788,
765, 689, 654, 633, 599; 1H-NMR (400 MHz, CF3COOD) δ (ppm): 11.03 (s, 1H, ArH), 9.43 (d, J = 8.4 Hz,
1H, ArH), 9.34–9.30 (m, 2H, ArH), 8.94 (d, J = 8.0 Hz, 1H, ArH), 8.75 (t, J = 7.6 Hz, 1H, ArH), 7.66–7.63
(m, 8H, ArH), 8.54 (t, J = 9.2 Hz, 1H, ArH), 8.23 (d, J = 8.8 Hz, 2H, ArH), 4.95 (s, 3H, OCH3), 3.50 (s, 3H,
CH3); 13C-NMR (75 MHz, CF

3COOD) δ (ppm): 164.3, 159.2, 155.9, 148.2, 145.7, 145.3, 141.1, 139.8, 133.6,
131.3, 130.9, 130.6, 129.7, 128.8, 128.2, 126.6, 123.5, 120.9, 117.1, 115.1, 114.6, 55.1, 13.1; HRMS: m/z cacld.
for C33H24N3O3 [M + H]+ 510.1818, Found 510.1835.

4.3.24. 2-(5-Ethyl-1-methyl-3,4-diphenyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-3H-benzo[f]chromen-3-one (9t)

Yellow solid, m.p.: 285–288 ◦C; IR (KBr, cm−1) ν: 2396, 1732, 1574, 1353, 1099, 1515, 1088, 1076, 959,
810, 803, 704; 1H-NMR (400 MHz, CF3COOD) δ (ppm): 10.26 (s, 1H, ArH), 9.25 (d, J = 8.8 Hz, 2H,
ArH), 8.95 (d, J = 8.0 Hz, 1H, ArH), 8.73 (t, J = 7.6 Hz, 1H, ArH), 8.63 (t, J = 7.6 Hz, 1H, ArH), 8.46 (d,
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J = 7.6 Hz, 1H, ArH), 8.26 (t, J = 7.6 Hz, 1H, ArH), 8.21–8.14 (m, 3H, ArH), 8.09–8.02 (m, 4H, ArH),
7.94 (d, J = 7.6 Hz, 2H, ArH), 5.31 (s, 3H, CH3), 3.87–3.85 (m, 2H, CH2), 1.84 (t, J = 7.2 Hz, 3H, CH3);
13C-NMR (75 MHz, CF

3COOD) δ (ppm): 162.9, 155.3, 150.3, 146.0, 145.4, 140.3, 138.2, 134.3, 131.2, 131.1,
130.2, 129.9, 129.5, 129.3, 128.5, 128.3, 127.9, 127.8, 127.6, 127.1, 120.5, 119.3, 116.3, 115.5, 34.9, 21.8, 13.1;
HRMS: m/z cacld. for C34H26N3O2 [M + H]+ 508.2025, Found 508.2027.

4.3.25. 2-(1,5-Dimethyl-3,4-diphenyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-9-methoxy-3H-benzo[f]chromen-3-
one (9u)

Yellow solid, m.p.: 260–262 ◦C; IR (KBr, cm−1) ν: 2697, 2551, 1783, 1708, 1628, 1567, 1511, 1469, 1441,
1387, 1330, 1218, 1149, 1017, 976, 898, 845, 796, 756, 725, 702, 601; 1H-NMR (400 MHz, CF3COOD) δ
(ppm): 10.10 (s, 1H, ArH), 9.03 (d, J = 9.2 Hz, 1H, ArH), 8.76 (d, J = 8.8 Hz, 1H, ArH), 8.66–8.65 (m,
1H, ArH), 8.28 (d, J = 8.8 Hz, 1H, ArH), 8.20 (d, J = 9.2 Hz, 1H, ArH), 8.12 (d, J = 7.6 Hz, 1H, ArH),
8.05–7.99 (m, 3H, ArH), 7.91–7.87 (m, 4H, ArH), 7.81 (d, J = 7.6 Hz, 2H, ArH), 5.18 (s, 3H, OCH3), 4.85
(s, 3H, CH3), 3.21 (s, 3H, CH3). 13C-NMR (75 MHz, CF

3COOD) δ (ppm): 162.3, 160.0, 156.0, 150.1, 146.1,
145.8, 140.3, 138.0, 131.5, 131.4, 130.6, 130.3, 129.5, 128.5, 128.3, 128.2, 128.0, 127.9, 127.2, 126.7, 117.5,
113.5, 112.2, 112.1, 103.0, 55.2, 34.8, 15.1. HRMS: m/z cacld. for C34H26N3O3 [M + H]+ 554.2080, Found
554.2093.

4.3.26. 9-Methoxy-2-(4-(4-methoxyphenyl)-1,5-dimethyl-3-phenyl-1H-pyrazolo[3,4-b]pyridin-6-yl)-3H-
benzo[f]chromen-3-one (9v)

Yellow solid, m.p.: 240–244 ◦C; IR (KBr, cm−1) ν: 2932, 1720, 1624, 1608, 1564, 1512, 1463, 1383, 1353,
1289, 1249, 1208, 1173, 1025, 970, 902, 836, 801, 698, 664, 607; 1H-NMR (400 MHz, CF3COOD) δ (ppm):
10.15 (s, 1H, ArH), 9.09 (d, J = 9.2 Hz, 1H, ArH), 8.82 (d, J = 9.2 Hz, 1H, ArH), 8.72–8.71 (m, 1H, ArH),
8.34 (d, J = 9.2 Hz, 1H, ArH), 8.26 (d, J = 9.2 Hz, 1H, ArH), 8.17–8.13 (m, 1H, ArH), 8.02–7.95 (m, 4H,
ArH), 7.89–7.87 (m, 2H, ArH), 7.69–7.66 (m, 2H, ArH), 5.23 (s, 3H, OCH3), 4.90 (s, 3H, OCH3), 4.72 (s,
3H, CH3), 3.31 (s, 3H, CH3); 13C-NMR (75 MHz, CF

3COOD) δ (ppm): 162.4, 160.3, 156.1, 150.0, 146.0, 145.9,
140.3, 138.1, 131.5, 130.4, 129.4, 128.7, 128.1, 128.0, 127.6, 126.8, 125.1, 117.5, 114.2, 113.5, 55.2, 55.1, 34.9,
15.1; HRMS: m/z cacld. for C35H28N3O4 [M + H]+ 524.1974, Found 524.1972.

Supplementary Materials: The following are available online, Crystal date of compound 7a [47], 1H NMR and
13C NMR Spectra of all compounds and GC-MS spectra of Scheme 4B.
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