

Selective Imaging of HCIO in the Liver Tissue In Vivo Using a Near-infrared Hepatocyte-specific Fluorescent Probe

Xu Jia,^[a] Chao Wei,^{*[a]} Zimeng Li,^[a] Liyan Liu,^[b] Mei Wang,^[a] Pingzhu Zhang,^[a] and Xiaoliu Li^{*[a]}

Abstract: Liver injury is typified by an inflammatory response. Hypochlorous acid (HCIO), an important endogenous reactive oxygen species, is regarded as a biomarker associated with liver injury. Near-infrared (NIR) fluorescent probes with the advantage of deep tissue penetrating and low autofluorescence interference are more suitable for bioimaging in vivo. Thus, in this work, we designed and synthesized a novel NIR hepatocyte-specific fluorescent probe named **NHF**. The probe **NHF** showed fast response (< 3 s), large spectral variation, and good selectivity to trace HCIO in buffer

Introduction

Hypochlorous acid is a colorless liquid with irritant odor. Because of its strong oxidation, hypochlorous acid/hypochlorite (HCIO/CIO⁻) has been widely used as an effective disinfectant for indoor air, drinking water, fruits, vegetables, and tableware.^[1] Thus, excess CIO⁻ residue in drinking water and the environment is harmful to human beings. Besides, HCIO is an important reactive oxygen species (ROS), which is mainly from the peroxidation reaction of H_2O_2 and chloride ion (Cl⁻) with the assistance of the heme myeloperoxidase.^[2] Endogenous HClO is involved in regulating various physiological and pathological processes.^[3] However, the imbalance of endogenous HCIO will cause cardiovascular diseases,^[4] inflammatory diseases,^[5] atherosclerosis,^[6] liver injury,^[7] cancer,^[8] etc. Among them, liver injury is a common disease that cannot be ignored, which is typified by an inflammatory response. HClO, an important endogenous ROS, is regarded as a biomarker associated with liver injury. Based on the above importance of HClO, the effective detection of HCIO in the liver in vivo is of vital importance.

[a] X. Jia, Dr. C. Wei, Z. Li, Dr. M. Wang, Prof. Dr. P. Zhang, Prof. Dr. X. Li Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education) Key Laboratory of Chemical Biology of Hebei Province College of Chemistry and Environmental Science Hebei University Wusi Dong Road 18, Baoding 071002 (P. R. China) E-mail: weichao@hbu.edu.cn lixl@hbu.cn
[b] L. Liu Medical Comprehensive Experimental Center Hebei University East Road Yuhua 342, Baoding 071000 (P. R. China)
[c] Supporting information for this article is available on the WWW under

https://doi.org/10.1002/asia.202100476

solution. By employing *N*-acetylgalactosamine (GalNAc) as the targeting ligand, probe **NHF** can be actively delivered to the liver tissue of zebrafish and mice. It is important that probe **NHF** is the first NIR hepatocyte-specific fluorescent probe, which successfully visualized the up-regulation of endogenous HCIO in the oxygen-glucose deprivation/reperfusion (OGD/R) model HepG2 cells and dynamically monitored APAP-induced endogenous HCIO in the liver tissue of zebrafish and mice.

It is accepted that fluorescent probe method is the most effective assay for HCIO detection in vitro and in vivo because of its easy preparation and operation, high selectivity and sensitivity, non-destructive to tissues, and high-fidelity imaging.^[9] Although many fluorescent HCIO probes have been reported, there are some problems with selective detection of hypochlorous acid in liver in vivo. The first is the selectivity of the probe. Most fluorescent probes have been designed based on the strong oxidizing property of HCIO.^[10] So, some reactive species having comparable oxidizability with HCIO, such as peroxynitrite (ONOO⁻), might interfere with the detection of HCIO.^[11] Second, the NIR fluorescent probe shows deep photon penetration, reduced photo damage and minimized background fluorescence, which is more suitable for monitoring the production and metabolism of endogenous HCIO in vivo.^[12] But, NIR fluorescent probe for HCIO detection in vivo is still insufficient. Third, the up-regulation of endogenous HCIO is associate with liver diseases. Unfortunately, the existing fluorescent probes are not yet available for in situ imaging of HCIO in the liver in vivo.^[13] Therefore, it is necessary to construct an ideal hepatocyte-specific probe with NIR emission wavelength and high selectivity to HClO (Table S1).

Recently, methylene blue (MB) based NIR fluorescent probes have been developed for rapid detection of HCIO with high selectivity in vitro and *in vivo* (Scheme 1a).^[14] We reported two GalNAc modified probes that can be specifically delivered to the liver *in vivo* due to the specific receptor-ligand interaction.^[15] Herein, by properly linking reduced MB to GalNAc, the first NIR hepatocyte-specific HCIO fluorescent probe (**NHF**) was designed and synthesized (Scheme 1b). As expected, probe **NHF** exhibited fast fluorescence response (<3 s) and excellent selectivity towards HCIO over other various ROS. Cell imaging experiments showed that probe **NHF** could be actively delivered to hepatocytes and used for monitoring the production of endogenous HCIO in OGD/R HepG2 cells. More

Chem Asian J. 2021, 16, 1–7 Wiley Online Library 1 These are not the final page numbers!

Scheme 1. a) the previous work. b) The design strategy of this work.

importantly, probe **NHF** was successfully applied to monitor acetaminophen-induced fluctuations of endogenous HCIO levels in the liver of zebrafish and mice.

Results and Discussion

Synthesis and identification of probe NHF. Probe **NHF** was easily obtained by the amidation reaction between compound 1 and GalNAc-NH₂ according to the synthetic route as shown in Scheme 2. The structure of probe **NHF** was identified by ¹H NMR, ¹³C NMR, and HRMS (Figure S1-S3).

Spectroscopic Properties. By modification with polyhydroxy carbohydrates, probe **NHF** displayed good water solubility. Thus, the absorption and fluorescence spectra were first respectively recorded in presence of different concentrations of HCIO in PBS (pH=7.4, 20 mM). As shown in Figure 1a and

Scheme 2. The synthesis route of probe NHF.

Figure 1. (a) Absorption and (b) fluorescence spectra of **NHF** (10 μ M) with different concentrations of HClO (1–30 μ M). (c) Time-dependent fluorescence intensity ($F_{700 nm}$) of probe **NHF** (10 μ M) in presence of HClO (0, 3, 6, 10, 20 μ M). (d) The fluorescence intensity ($F_{700 nm}$) of probe **NHF** (10 μ M) with and without HClO (100 μ M) in PBS with different pH values (4.0–10.0).

Chem Asian J. 2021, 16, 1–7 www.chemasianj.org 2 These are not the final page numbers! 2

Figure 1b, probe NHF is a near-infrared probe, its maximum absorption and emission peaks are close to 664 nm and 700 nm, respectively. After adding HCIO, obvious spectral enhancement appeared for absorption and fluorescence spectra. By fitting the absorptive intensities at 664 nm with the HClO concentration (0–8 μ M), a good linear relationship (y=0.0075 + 0.0603x, $R^2 = 0.999$) was appeared (Figure S4). To obtain the detection limit, we further recorded the emission intensity of probe NHF after reaction with a small amount of HCIO (0-1.0 equiv). By fitting the concentration of HCIO added and the intensities of probe NHF at 700 nm, the detection limit is calculated to be as low as 15 nM according to the $3\sigma/k$ method (Figure S5). The HRMS of the reaction solution between probe NHF and HCIO (M^+ = 284.11536) showed the formation of the MB dye (M^+ = 286.12159) (Figure S6), which indicated that the detection mechanism is well agree with other reported literatures^[14] (Scheme 1b).

To investigate the real-time detection ability of the probe, the time-dependent fluorescence spectra were respectively recorded after adding different concentrations of HCIO. As shown in Figure 1c, probe **NHF** reacts with HCIO very quickly. Even a small amount of HCIO (0.3 equiv) can be accomplished almost instantaneously. Therefore, the probe could be used for monitoring HCIO in real-time. The effect of pH on the fluorescence properties was also invulated. As shown in Figure 1d, probe **NHF** alone displayed almost constant intensity. After reaction with HCIO (10 equiv), obvious fluorescent enhancement appeared in a broad pH range between 4.0 to 10.0. The above results indicated that probe **NHF** could be used for real-time detection of trace HCIO in solution.

The specificity is an important parameter of the fluorescence probe. We further measured the fluorescence spectrum of probe NHF in the presence of different analysts. These analytes include cations (Li⁺, K⁺, Mg²⁺, Ca²⁺, Zn²⁺, Cu²⁺, Al³⁺, Fe³⁺, Cr²⁺, Ba²⁺, Ag⁺, NH⁴⁺), anions (F⁻, Cl⁻, Br⁻, l⁻, SO₄²⁻, $S_2O_3^{2-}$, NO_2^{-} , NO_3^{-} , CO_3^{2-} , $Cr_2O_7^{2-}$, CH_3COO^{-}), the amino acid (Ala, Arg, Asn, Asp, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val), and reactive oxygen/nitrogen/sulfur species (H₂O₂, KO₂, t-BuOOH, NO, ONOO⁻, SO₃²⁻, Cys, Hcy, GSH). As shown in Figure 2, except for HClO, various ions and amino acids do not influence the fluorescent properties of the probe NHF (Figure 2a-2c). Besides, ONOO⁻, a kind of reactive nitrogen species having comparable oxidizability with HClO, does not interfere with the detection of HCIO. Also, probe NHF can distinguish HClO over other analytes by naked eyes. In the presence of HCIO, the color of the probe solution changed from colorless to blue (Figure 2e). The above results showed probe NHF exhibits excellent selectivity for HClO and can detect HClO with both colorimetric and fluorescent dual-channels.

Cell selectivity of probe NHF. The cytotoxicity of probe NHF was evaluated using standard MTT methods, and the results showed the cell viability is higher than 85% with the concentration of the probe below 40 μ M (Figure S7). The cell selectivity was further performed using four kinds of cell lines including HepG2 cells, HeLa cells, A549 cells, and GES-1 cells. As shown in Figure 3, all the cells displayed ignorable fluorescence by incubating with probe NHF alone for 1 h (Figure 3a). Further

CHEMISTRY AN ASIAN JOURNAL Full Paper

Figure 2. The fluorescence intensity ($F_{700 \text{ nm}}$) of probe **NHF** (10 μ M) towards various analysts. (a) Cations (100 μ M): Lanes from 1 to 14: probe only, Li⁺, K⁺, Mg²⁺, Ca²⁺, Zn²⁺, Cu²⁺, Al³⁺, Fe³⁺, Cr²⁺, Ba²⁺, Ag⁺, NH₄⁺, HCIO (10 μ M); (b) Anions (100 μ M): Lanes from 1 to 13: probe obly, F⁻, Cl⁻, Br⁻, I⁻, SO₄²⁻, S₂O₃²⁻, NO₂⁻, NO₃⁻⁻, CO₃²⁻, Cr₂O₇²⁻, CH₃COO⁻, HCIO (10 μ M). (c) Amino acids (100 μ M): Lanes from 1 to 21: probe only, Ala, Arg, Asn, Asp, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val, HCIO (10 μ M). (d) Lanes from 1 to 13: probe only, H₂O₂ (100 μ M), KO₂ (100 μ M), HCIO (100 μ M), NO (100 μ M), HCIO (10 μ M), HCIO (5 μ M), HCIO (10 μ M), HCIO (1 μ M), HCIO (1 μ M), HCIO (1 μ M), HCIO (1 μ M) after adding different analysts. All experiments were carried out in PBS buffer (20 mM, pH 7.4) at room temperature for 5 min.

HepG2	HeLa	A549	GES-1
a ₁	a ₂	a ₃	a ₄
Probe only	20µm	20µm	20µm
b ₁	b ₂	b ₃	b ₄
A CAR			
Probe + HClO	-2. 20um	20um	20um

Figure 3. Fluorescence imaging of four kinds of cells incubated with probe NHF (10 μ M) only for 1 h (a) and further treated with HClO (100 μ M) for another 15 min (b).

treated with HCIO for 15 min, obvious red fluorescence appeared in HepG2 cells. While the other three cells still showed weak or ignorable fluorescence. That is might be ASGPR is expressed most heavily in the surface of hepatocyte, GalNAc as the specific ligand for ASGPR facilitate targeted delivery to HepG2 cells.^[16] Next, we further performed a competitive imaging experiment to confirm the mechanism of cell selectivity. Galactose was used as a competitive binding agent, which was pretreated to HepG2 cells for 30 min. As can be seen in Figure 4, red fluorescence in HepG2 cells decreased significantly

Figure 4. Fluorescence imaging of HepG2 cells incubated with **NHF** (10 μ M) for 1 h and further HCIO (100 μ M) for another 15 min in the presence of different concentrations of galactose (0, 15, 50, 200 μ M).

in a concentration-dependent manner. These imaging results implied that probe **NHF** could selectively transferred to HepG2 cells by specific interaction between GalNAc and ASGPR.

Imaging of HCIO in HepG2 cells. We further investigated the imaging capability of the probe in HepG2 cells. As shown in Figure S8, the more HCIO added, the brighter NIR fluorescence appeared, which implied probe **NHF** has good cell permeability and is responsive to exogenous HCIO well in HepG2 cells.

During the liver transplantation, blood reflowing after a short-term hypoxic environment will induce the production of ROS, and the result is the ischemia-reperfusion injury (HIRI). HCIO, one of the ROS, is an important mediator of inflammatory processes, which might be associated with HIRI.^[17] To imaging endogenous HCIO during HIRI, OGD/R model HepG2 cells were first established by cultured HepG2 cells in sugarless DMEM containing 0.5 mM sodium hydrosulfite for 30 min and then in high glucose DMEM for another 30 min.^[18] As shown in Figure 5, probe **NHF** treated OGD/R HepG2 cells displayed brighter red fluorescence than the control cells. The above imaging results indicated that probe **NHF** could be used to image exogenous and endogenous HCIO. Particularly worth mentioning is that the visualization of endogenous HCIO during OGD/R in HepG2 cells using fluorescent probes has not been any reports so far.

Figure 5. Fluorescence imaging of endogenous HClO in HepG2 cells (a) and OGD/R HepG2 cells (b). All cells were treated with probe NHF (10 μ M) for 1 h.

Chem Asian J. 2021, 16, 1–7 www.chemasianj.org 3 These are not the final page numbers! We also observed LPS/PMA induced endogenous HCIO production in HepG2 cells (Figure S9).

Imaging of HCIO in vivo. Encouraged by the imaging capability in HepG2 cells, probe NHF was used to visualize HClO in vivo. Zebrafish, a model animal, was first used for confocal fluorescence imaging studies. As shown in Figure 6, zebrafish incubated with probe NHF only for 1 h showed no fluorescence (Figure 6a), and very distinct red fluorescence was seen in the liver region of zebrafish after further treatment with HOCI (1.0 equiv) for 10 min (Figure 6b). While zebrafish cultured with GalNAc-free probe CP displayed divergent fluorescence in the liver and intestine (Figure S10). These results mean probe NHF can be targeted to the liver of zebrafish. Considering the drug metabolites may initiate an up-regulation of endogenous HClO level,^[19] we cultured zebrafish with acetaminophen (APAP), a commercial medicine used to relieve pain and fever, for 24 h, then treated with probe NHF for 1 h, obvious red fluorescence appeared in the liver of zebrafish (Figure 6c). The imaging

Figure 6. Fluorescence imaging of HClO in zebrafish. Zebrafish were cultured with probe NHF (10 μ M) for 1 h (a) or further added with HClO (10 μ M) for 10 min (b) or pretreated with APAP (1 mM) for 12 h (c) in the E3 culture medium.

Figure 7. Fluorescence imaging of HClO in mice (a, b) and the main organs of mice (c, d). Mice were injected with probe **NHF** (200 μ M, 100 μ L) only by i.v. injection for 15 min (a) or pre-incubated with APAP (300 mg/Kg) intraperitoneally for 8 h (b). (c, d) Main organs of mice in a and b (1: liver, 2: heart, 3: spleen, 4: lungs, 5: kidney).

Chem Asian J. 2021, 16, 1–7 www.chemasianj.org 4 These are not the final page numbers!

results showed probe **NHF** can monitor the changes of exogenous and endogenous HCIO in the liver tissue in zebra-fish.

To further demonstrate the application of the NIR probe, probe NHF was used to visualize HClO in mice. Experimental mice were first injected with APAP intraperitoneally for 8 h to induce the up-regulation of endogenous HClO, and then given an intravenous injection of probe NHF. The control mice were only treated via intraperitoneal injection of probe NHF. After reaction in vivo for 15 min, the mice were anesthetized for imaging. As can be seen in Figure 7b, the APAP pretreated mice showed clear fluorescence. Subsequently, the mice were sacrificed and the main organs were recovered (Figure 7c and 7d). The imaging is clear and proven that the selective localization of probe NHF is in the liver organ over other organs including the heart, spleen, lungs, and kidney. These imaging results indicated that probe NHF has good liver targeting ability. And it is also worth noting that NIR fluorescent probes for specific detection of HCIO in the liver in vivo are rarely reported. Probe NHF can be considered as an excellent tool for dynamic monitoring endogenous HClO in the liver region in vivo.

Conclusion

A novel NIR hepatocyte-specific fluorescent probe for HCIO was designed and synthesized. The probe can respond to trace HCIO in real time (< 3 s) with large spectral variation in buffer solution. The probe was able to achieve hepatocyte by the highly specific interaction between GalNAc and ASGPR, and first visualized the up-regulation of endogenous HCIO in the OGD/R HepG2 cells. In particular, this NIR probe can be applied to dynamically monitor HCIO in the liver tissue of zebrafish and mice in situ during APAP treatment.

Experimental Section

Materials and instruments

All chemicals were purchased from innochem and J&K (Beijing, China). All other reagents were analytical grade and used without further purification. The UV-vis absorption spectra were recorded on an Agilent Cary-5000 spectrophotometer. Fluorescence measurements were operated on a Hitachi F-7000 spectrofluorimeter. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AVANCE III 400 MHz spectrometer using d_6 -DMSO and CDCl₃ as the solvents. High-resolution mass spectra (HRMS) were obtained on a Bruker Fourier transform ion cyclotron resonance mass spectrometry. Fluorescence imaging of cells and zebrafish was carried out by an Olympus FV1000 confocal microscope. Fluorescence imaging of mice was performed on an IVIS Spectrum small animal optical in vivo imaging system.

Synthesis of probe NHF

To the solution of $GalNAc\text{-}NH_2$ (96 mg,0.30 mmol) and sodium carbonate (95 mg, 0.90 mmol) in 10 mL dry THF, compound 1

(104 mg, 0.30 mmol) in 5 mL dry THF was added dropwise. After sirring for 4 h at room temperature, the reaction solution was concentrated under reduced pressure. Probe **NHF** was obtained as a white solid via column chromatography (142 mg, yield 75%, dichlormethane/methol = 1/5). ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 7.62 (d, J=9.2 Hz, 1H), 7.26 (d, J=4.4 Hz, 2H), 6.70 (s, 2H), 6.66 (d, J=8.8 Hz, 2H), 5.96 (s, 1H), 4.24 (d, J=8.4 Hz, 1H), 3.78–3.72 (m, 1H), 3.71 (t, J=9.6 Hz, 1H), 3.61 (s, 1H), 3.52–3.45 (m, 6H), 3.40–3.34 (m, 3H), 3.28 (t, J=6.4 Hz, 4H), 3.20–3.13 (m, 2H), 2.88 (s, 12H), 1.79 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ (ppm): 170.1, 155.7, 149.0, 133.6, 128.7, 127.8, 111.7, 110.8, 101.9, 75.7, 71.9, 69.8, 69.7, 68.1, 67.8, 60.8, 55.4, 52.4, 40.7, 36.3, 23.6. HRMS (ESI, m/z): calculated for C₂₉H₄₁N₅O₈S [M]⁺, 619.2676, found 619.2676.

General procedures for spectra measurements

All spectra were obtained in PBS (20 mM, pH=7.4). Probe **NHF** was dissolved in DMSO to prepare a 5 mM stock solution and used at 10 μ M. The concentration of HCIO was determined by the absorptive intensity at 292 nm. Other reactive species were prepared according to reported literature.^[14b] The fluorescent spectra were excited at 620 nm and collected between 640 to 850 nm. The slide width for excitation and emission was 5.0 nm and 10.0 nm, respectively.

Fluorescence imaging in living cells

Four kinds of cells including HepG2 cells, HeLa cells, A549 cells, and GES-1 cells were respectively cultured in DMEM at 37 °C in the 5% CO₂ atmosphere. For the cell selectivity imaging, the above cells were treated with galactose (0, 15, 50, 200 μ M) for 30 min, than incubated with probe **NHF** (10 μ M) for 1 h and finally with HClO (100 μ M) for 15 min. For imaging exogenous HClO, HepG2 cells were first incubated with probe **NHF** (10 μ M) for another 15 min. For imaging endogenous HClO in OGD/R model HepG2 cells were treated with probe **NHF** (10 μ M) for 1 h. For imaging LPS/PMA induced endogenous HClO production, HepG2 cells were first treated with LPS (1 mg/mL⁻¹) for 12 h and PMA (1 mg/mL⁻¹) for 30 min and subsequent treatment with probe **NHF** (10 μ M) only for 1 h. The confocal images were excited at 633 nm and collected between 650 to 750 nm.

Fluorescence imaging in zebrafish

Zebrafish were purchased from Eze-Rinka Company (Nanjing, China) and cutured in E3 medium. Five day's old zebrafish were only incubated with **NHF** (10 μ M) for 1 h as control, further treated with HCIO (10 μ M) for 10 min to image exogenous HCIO. For monitoring endogenous HCIO, zebrafish were treated with acetaminophen (APAP, 1 mM) and probe **NHF** (10 μ M) for 24 h and 1 h, respectively. Confocal images were excited at 633 nm and collected between 650 to 750 nm.

Fluorescence imaging in mice

The 5-week-old Kunming Mice (female) were purchased from Beijing Vital River Laboratory Animal Technology Co. Ltd. All operation were performed acording the guidelines by the ethical committee of Hebei University. Mice in the control group were peritoneal injection with PBS (200 μ L), then probe **NHF** (200 μ M, 100 μ L) was given intravenously. In the experimental group, mice were peritoneal injection with APAP (300 mg/Kg, 200 μ L) for 8 h, and then injected probe **NHF** (200 μ M, 100 μ L PBS) at the same

region. Fluorescence images were taken at 15 min after probe addimiation. The mice were then euthanized and their major organs (heart, liver, spleen, lungs, kidneys) were quickly removed for imaging. All images were excited at 665 nm.

Acknowledgements

We sincerely thank Prof. Baoxiang Gao for his great support in confocal microscopy imaging. This work was supported by the Natural Science Foundation of Hebei Province (B2019201418, B2018201234), the Foundation of Hebei Education Department (QN2017015), and the Upgrading Program for Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education (Hebei University) (ts2020001).

Conflict of Interest

The authors declare no conflict of interest.

Keywords: hypochlorous acid • near-infrared fluorescent • hepatocyte-specific probe • liver tissue • bioimaging

- [1] J. Sun, F. Feng, Analyst 2018, 143, 4251-4255.
- [2] Z. Lou, P. Li, K. Han, Acc. Chem. Res. 2015, 48, 1358–1368.
- [3] S. J. Klebanoff, A. J. Kettle, H. Rosen, C. C. Winterbourn, W. M. Nauseef, J. Leukocyte Biol. 2013, 93, 185–198.
- [4] D. A. Ford, Clin. Lipidol. 2010, 5, 835-852.
- [5] D. I. Pattison, M. J. Davies, *Biochemistry* 2006, 45, 8152–8162.
- [6] S. Sugiyama, Y. Okada, G. K. Sukhova, R. Virmani, J. W. Heinecke, P. Libby, Am. J. Pathol. 2001, 158, 879–891.
- [7] a) A. C. Maritim, R. A. Sanders, J. B. Watkins, J. Biochem. Mol. Toxicol. 2003, 17, 24–38; b) T. Hasegawa, E. Malle, A. Farhood, H. Jaeschke, Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 289, G760–767.
- [8] R. A. Roberts, D. L. Laskin, C. V. Smith, F. M. Robertson, E. M. Allen, J. A. Doorn, W. Slikker, J. Toxicol. Sci. 2009, 112, 4–16.
- [9] a) D. Wu, L. Chen, Q. Xu, X. Chen, J. Yoon, Acc. Chem. Res. 2019, 52, 2158–2168; b) Y.-R. Zhang, Y. Liu, X. Feng, B.-X. Zhao, Sens. Actuators B 2017, 240, 18–36; c) R. Zhang, B. Song, J. L. Yuan, TrAC Trends Anal. Chem. 2018, 99, 1–33; d) M. G. Ren, K. Zhou, L. W. He, W. Y. Lin, J. Mater. Chem. B 2018, 6, 1716–1733.
- [10] a) H. D. Xiao, J. H. Li, J. Zhao, G. Yin, Y. W. Quan, J. Wang, R. Y. Wang, J. Mater. Chem. B 2015, 3, 1633–1638; b) J. Han, Y. Li, Y. Wang, X. Bao, L. Wang, L. Ren, L. Ni, C. Li, Sens. Actuators B 2018, 273, 778–783; c) B. C. Zhu, P. Li, W. Shu, X. Wang, C. Y. Liu, Y. Wang, Z. K. Wang, Y. W. Wang, B. Tang, Anal. Chem. 2016, 88, 12532–12538; d) F. Ali, S. Aute, S. Sreedharan, H. A. Anila, H. K. Saeed, C. G. Smythe, J. A. Thomas, A. Das, Chem. Commun. 2018, 54, 1849–1852; e) C. Zhang, Q. Nie, I. Ismail, Z. Xi, L. Yi, Chem. Commun. 2018, 54, 3835–3838; f) L. He, H. Xiong, B. Wang, Y. Zhang, J. Wang, H. Zhang, H. Li, Z. Yang, X. Song Anal, Chem. 2020, 92, 11029–11034; g) X. Wang, Y. Tao, J. Zhang, M. Chen, N. Wang, X. Ji, W. Zhao, Chem. Lett. 2020, 31, 2980–2984; i) Y. Deng, S. Feng, Q. Xia, S. Gong, G. Feng, Talanta 2020, 215, 120901.
- [11] G. Zheng, Z. Li, Q. Duan, K. Cheng, Y. He, S. Huang, H. Zhang, Y. Jiang, Y. Jia, H. Sun, Sens. Actuators B 2020, 310, 127890.
- [12] a) G. H. Cheng, J. L. Fan, W. Sun, J. F. Cao, C. Hu, X. J. Peng, *Chem. Commun.* 2014, *50*, 1018–1020; b) S. S. Ding, Q. Zhang, S. H. Xue, G. Q. Feng, *Analyst* 2015, *140*, 4687–4693; c) H. D. Xiao, K. Xin, H. F. Dou, G. Yin, Y. W. Quan, R. Y. Wang, *Chem. Commun.* 2015, *51*, 1442–1445; d) H. X. Zhang, J. Liu, C. L. Liu, P. C. Yu, M. J. Sun, X. H. Yan, J. P. Guo, W. Guo, *Biomaterials* 2017, *133*, 60–69; e) B. B. Deng, M. G. Ren, X. Q. Kong, K. Zhou, W. Y. Lin, *Sens. Actuators B* 2018, *255*, 963–969; f) H. J. Tong, Y. J. Zhang, S. N. Ma, M. H. Zhang, N. Wang, R. Wang, K. Y. Lou, W. Wang, *Chin. Chem. Lett.* 2018, *29*, 139–142; g) C. Duan, M. Won, P.

Chem Asian J. 2021, 16, 1–7 www.chemasianj.org 5 These are not the final page numbers! 77

CHEMISTRY AN ASIAN JOURNAL Full Paper

Verwilst, J. Xu, H. S. Kim, L. Zeng, J. S. Kim, Anal. Chem. 2019, 91, 4172–4178; h) Y.-J. Gong, M.-K. Lv, M.-L. Zhang, Z.-Z. Kong, G.-J. Mao, Talanta 2019, 192, 128–134; i) D. Shi, S. Chen, B. Dong, Y. Zhang, C. Sheng, T. D. James, Y. Guo, Chem. Sci. 2019, 10, 3715–3722; j) Y. Huang, Y. Zhang, F. Huo, Y. Liu, C. Yin, Dyes Pigm. 2020, 179, 108387; k) W. Zheng, J. Yang, Y. Shen, Y. Yao, G. Lv, S. Hao, C. Li, Dyes Pigm. 2020, 179, 108404.

- [13] a) Q. X. Duan, P. Jia, Z. H. Zhuang, C. Y. Liu, X. Zhang, Z. K. Wang, W. L. Sheng, Z. L. Li, H. C. Zhu, B. C. Zhu, X. L. Zhang, *Anal. Chem.* **2019**, *91*, 2163–2168; b) H. Zhang, Z. J. Li, M. Wang, T. R. Luo, L. Yi, J. Y. Wang, Sens. Actuators B **2019**, *279*, 102–110.
- [14] a) P. Wei, W. Yuan, F. F. Xue, W. Zhou, R. H. Li, D. T. Zhang, T. Yi, *Chem. Sci.* **2018**, *9*, 495–501; b) P. Wei, L. Liu, Y. Wen, G. Zhao, F. Xue, W. Yuan, R. Li, Y. Zhong, M. Zhang, T. Yi, *Angew. Chem. Int. Ed.* **2019**, *58*, 4547–4551; *Angew. Chem.* **2019**, *131*, 4595–4599.
- [15] a) Z. Guo, M. Wang, X. Li, X. Jia, X. Wang, P. Zhang, C. Wei, X. Li, *Chem. Commun.* **2020**, *56*, 14183–14186; b) M. Yao, X. Jia, M. Wang, X. Li, X. Wang, H. Qu, X. Li, C. Wei, *Dyes Pigm.* **2021**, *188*, 109151.

- [16] S. K. Mamidyala, S. Dutta, B. A. Chrunyk, C. Préville, H. Wang, J. M. Withka, A. McColl, T. A. Subashi, S. J. Hawrylik, M. C. Griffor, S. Kim, J. A. Pfefferkorn, D. A. Price, E. Menhaji-Klotz, V. Mascitti, M. G. Finn, J. Am. Chem. Soc. 2012, 134, 1978–1981.
- [17] M. Abu-Amara, S. Y. Yang, N. Tapuria, B. Fuller, B. Davidson, A. Seifalian, Liver Transplant. 2010, 16, 1016–1032.
- [18] W. Zhang, J. Liu, P. Li, X. Wang, S. Bi, J. Zhang, W. Zhang, H. Wang, B. Tang, *Biomaterials* **2019**, *225*, 119499.
- [19] X. Jiao, Y. Xiao, Y. Li, M. Liang, X. Xie, X. Wang, B. Tang, Anal. Chem. 2018, 90, 7510–7516.

Manuscript received: May 4, 2021 Revised manuscript received: May 22, 2021 Accepted manuscript online: May 25, 2021 Version of record online:

FULL PAPER

A novel NIR hepatocyte-specific fluorescent probe was designed and synthesized for real-time visualization of the upregulation of endogenous HCIO in the liver of zebrafish and mice in situ during APAP treatment.

X. Jia, Dr. C. Wei^{*}, Z. Li, L. Liu, Dr. M. Wang, Prof. Dr. P. Zhang, Prof. Dr. X. Li^{*}

1 – 7

Selective Imaging of HCIO in the Liver Tissue In Vivo Using a Nearinfrared Hepatocyte-specific Fluorescent Probe