Tetrahedron, 1966, Vol. 22, pp. 231 to 233. Pergamon Press Ltd. Printed in Northern Ireland

AXIAL AND EQUATORIAL THIOLS-II

3β- AND 3α-THIOL DERIVATIVES OF 5β-PREGNAN-20-ONE AND 5β-ANDROSTAN-17-ONE

D. A. SWANN and J. H. TURNBULL Royal Military College of Science, Shrivenham, Wiltshire, England

(Received 15 July 1965; in revised form 12 August 1965)

Abstract— 3β - and 3α -thiol 5β -pregnan-20-ones and 5β -androstan-17-ones have been prepared as examples of axial and equatorial thiol epimers in *cis*-fused fixed ring systems. The conformation of the epimers has been established by IR and NMR measurements.

IN AN earlier paper¹ we discussed the preparation and conformation of epimeric 3thiols in the cholestane and 5α -androstan-17-one series. In these epimers the 3-thiol group is linked to *trans*-fused chair rings. We now describe the preparation and orientation of epimeric 3-thiols in the 5 β -pregnan-20-one and 5 β -androstan-17-one series. These epimers are represented by structures I and II in which the 3-thiol group is now linked respectively β - (axial) and α -(equatorial) to *cis*-fused chair rings.

As in the A/B trans-fused series we have observed characteristic differences between the thiol epimers in their IR and NMR spectra. This has enabled us to distinguish between axial and equatorial thiol groups and to assign configurations to each epimer.

Thiols were prepared from the corresponding hydroxy compounds by conversion to the *p*-toluenesulphonates followed by the thiouronium method, as described previously.¹ In the 5β -pregnan-20-one series 3α -hydroxy- 5β -pregnan-20-one (III, $\mathbf{R} = C_{10}\mathbf{H}_{16}\mathbf{O}$ X = OH) was converted into 3β -thiol- 5β -pregnan-20-one (IV,

 $R = C_{10}H_{16}O X = SH$). By similar reaction sequences 3β -hydroxy- 5β -pregnan-20-one (IV, $R = C_{10}H_{16}O X = OH$) afforded 3α -thiol- 5β -pregnan-20-one (III, $R = C_{10}H_{16}O X = SH$). In the 5β -androstan-17-one series, 3α -hydroxy and 3β -hydroxy

¹ D. A. Swann and J. H. Turnbull, Tetrahedron 20, 1265 (1964).

 5β -androstan-17-ones (III, IV, $R = C_8 H_{12}O$ X = OH) likewise afforded their respective 3β - and 3α -thiols (IV, III, $R = C_8 H_{12}O$ X = SH). The thioacetolysis reaction was used as an alternative route to the thiols in the 5β -androstane series but proved unsatisfactory in the 5β -pregnane series.

Assignment of configuration

The stereochemical configuration of the epimeric thiols and their S-acetyl derivatives was assigned, as in the previous paper,¹ on the basis of their characteristic C-S stretching frequencies in the IR spectrum, and by the position of the 3-proton peak in the NMR spectrum. The 3β -(equatorial) thiols of Δ^5 -pregnen-20-one (V, $R = C_{10}H_{16}O$) and Δ^5 -androsten-17-one (V, $R = C_8H_{12}O$) were used as reference compounds.

The data (Table 1) are very similar to those previously obtained in the 5α -series. In each case the 3α -thiols and their S-acetyl derivatives show characteristic equatorial

TABLE 1 C-S Stretching frequencies of thiol epimers, $\nu \text{ cm}^{-1}$				
5β-Pregnan-20-one	738	734	755	762
5β-Androstan-17-one	739	739	756	762
Δ ^s -Pregnen-20-one	761	768		
∆ ^s -Androsten-17-one	761	768		_

C-S absorption bands in the region 755-762 cm⁻¹. In the 3 β -thiols the axial C-S absorption bands appear in each case in the lower frequency range 734-739 cm⁻¹, as expected. The assignments are confirmed by the PMR spectra. The 3 β -thiols (IV R = C₈H₁₂O, R = C₁₀H₁₆O X = SH) show peaks centred at 6.41 τ and 6.42 τ respectively, indicating that the 3-protons are equatorial and therefore the 3-thiol groups are β -(axial). Conversely the epimeric thiols (III R = C₈H₁₂O, R = C₁₀H₁₆O X = SH) both show a broad band at 7.25 τ indicating the 3-protons are axial and therefore the 3-thiol groups are α -(equatorial). It is evident that inversion occurs during the thiouronium and thioacetolysis replacement reactions at C₃ in AB *cis*-fused saturated ring systems. These systems therefore conform to the behaviour of the *trans*-fused systems described previously.

EXPERIMENTAL

IR Spectra in the 10-23 μ region were measured in CS₂ solution on a Grubb-Parsons Spectromaster. The PMR spectra were determined on 5% solutions in CDCl₃ using a Varian A60 Spectrometer operating at 60 mc. The signals are referred to in the τ Scale (Me₄Si = 10.00 τ) with tetramethylsilane as an internal reference. M.ps were determined with a Kofler hot stage. Derivatives were prepared by the same procedures described in the previous paper, except where otherwise indicated.

3β-Tosyloxy-5β-androstan-17-one m.p. 132° (dec). (Found: C, 70.00; H, 8.13 Calc. for C₂₆H₃₆O₄S: C, 70.3; H, 8.17%.)

 3α -Thioacetyl-5 β -androstan-17-one. 3α -thiol-5 β -androstan-17-one (20 mg), anhydrous pyridine

(0.5 ml), acetic anhydride (0.5 ml) were cooled to 0° and acetyl chloride (0.25 ml) added drop by drop. The solution was allowed to stand at room temp for 2 hr, poured on ice and the solid recrystallized from EtOH, m.p. 120°. This was also prepared by the reaction of potassium thiol acetate on 3β -tosyloxy- 5β -androstan-17-one and recrystallized from EtOH m.p. 120°.

The m.p. was not depressed on mixing. (Found: C, 72.42; H, 8.92; S, 9.39. C₁₁H₁₂O₂S requires: C, 72.35; H, 9.27; S, 9.22%)

 3α -Isothiouronium-5 β -androstan-17-one tosylate m.p. 262°. (Found: N, 5·17. C₂,H₄₀O₄S₂N₂ requires: N, 5·38%.)

 3α -Thiol-5 β -androstan-17-one. This was prepared by hydrolysis of the isothiouronium salt and the thioacetyl derivative and recrystallized from EtOH m.p. 143-144°. (Found: C, 74.5; H, 9.75; S, 10.67. C₁₉H_{a0}OS requires: C, 74.41 H, 9.88; S, 10.45%.)

3α-Tosyloxy-5β-androstan-17-one m.p. 147°. (Found: C, 70·17; H, 8·18. C_{se}H_{se}O₄S requires: C, 70·23; H, 8·17%.)

 3β -Thioacetyl- 5β -androstan-17-one. This was prepared in a similar manner to the 3α -thioacetyl and recrystallized from EtOH m.p. 150°. (Found: S, 9.9 C₂₁H₂₂O₂S requires: S, 9.2%.)

 3β -Isothiouronium- 5β -androstan-17-one tosylate m.p. 259°. (Found: N, 5·21 C₁₇H₄₀O₄S₁N₂ requires: N, 5·38%.)

 3β -Thiol- 5β -androstan-17-one. This was prepared by hydrolysis of the isothiouronium salt and the thioacetyl derivative and recrystallized from EtOH m.p. 125-126°. (Found: C, 74.62; H, 9.99; S, 10.42 C₁₉H₄₀O S requires: C, 74.41; H, 9.88; S, 10.45%.)

 3β -Tosyloxy- 5β -pregnan-20-one. This was recrystallized from MeOH m.p. 133° (dec). (Found: C, 70.56; H, 8.46; C₁₈H₄₀O₄S requires: C, 71.14; H, 8.55%.)

 3α -Thioacetyl-5 β -pregnan-20-one. This was prepared by acetylating the 3-thiol by the method used in the 5 β -androstane series and recrystallized from EtOH m.p. 110°. (Found: S, 8.47 C₂₂H₂₀O₂S requires: S, 8.52%.)

 3α -Isothiouronium-5 β -pregnan-20-one tosylate m.p. 190°. (Found: N, 5.06 C₃₃H₄₄O₄S₂N₃ requires: N, 5.11%.)

 3α -Thiol-5 β -pregnan-20-one. This was prepared by hydrolysis of the 3α -isothiouronium tosylate and recrystallized from EtOH m.p. 126–128°. (Found: C, 75·14; H, 9·94; S, 9·56 C₂₁H₂₄OS requires: C, 75·37; H, 10·27; S, 9·58 %.)

 3α -Tosyloxy-5 β -pregnan-20-one. This was recrystallized from MeOH m.p. 176°. (Found: C, 71.06; H, 8.71 C₂₈H₄₀O₄S requires: C, 71.14; H, 8.55%.)

 3β -Thioacetyl-5 β -pregnan-20-one. This was prepared by acetylating the 3β -thiol by the method used in the 5β -androstane series and recrystallized from EtOH m.p. 86°. (Found: S, 8.76 C₂₂H₂₆O₂S requires: S, 8.51%.)

 3β -Isothiouronium- 5β -pregnan-20-one tosylate m.p. 242–243°. (Found: N, 4.78 C₂₅H₄₄O₄S₂N₂ requires: N, 5.11%.)

 3β -Thiol-5 β -pregnan-20-one. This was prepared by hydrolysis of the 3β -isothiouronium tosylate and recrystallized from MeOH m.p. 106–107°. (Found: C, 75·41; H, 10·11; S, 9·17 C₂₁H₂₄OS requires: C, 75·37; H, 10·27; S, 9·58%.)

 3β -Thiol- Δ^{5} -pregnen-20-one.^a This was prepared by the thiouronium route and recrystallized from EtOH m.p. 154°. (Found: C, 75.41; H, 9.99, S, 9.49. Calc. for C₃₁H₃₅O S: C, 75.83; H, 9.72; S, 9.64%.)

 3β -Thioacetyl- Δ^{s} -pregnen-20-one.³ This was prepared by acetylating the thiol using the method described in 5β -androstane series and recrystallized from EtOH, m.p. 169–170°. (Found: C, 73·40; H, 9·18; S, 8·30 Calc. for C₂₃H₂₄O₂S; C, 73·72; H, 9·17; S, 8·56%.)

 3β -Thiol- Δ^{5} -androsten-17-one.² This was prepared by the thiouronium route and recrystallized from EtOH m.p. 176°. (Found: C, 74.53, H, 9.40; S, 10.85. Calc. for C₁₉H₁₈OS; C, 74.93; H, 9.29; S, 10.53%.)

 3β -Thioacetyl- Δ^{s} -androsten-17-one.^{*} This was prepared by acetylating the thiol using the method described in the 5β -androstane series and recrystallized from EtOH m.p. 191-192°. (Found: C, 72·32; H, 8·77; S, 9·35. Calc. for C₁₉H₂₈O₂S: C, 72·74; H, 8·74; S, 9·25%.)

Acknowledgments—We are very grateful to Dr. J. E. Page of Glaxo Research for furnishing the NMR data and for helpful discussions.

* F. A. Kincl, Chem. Ber. 93, 1043 (1960).

⁸ A. Segaloff and R. B. Gabbard, Steroids 5, 219 (1965).