

PII: S0040-4020(97)10149-1

Stereoselective Alkenylation of Aldehydes with Phosphorus Carbanions: Preparation of *E*- and *Z*-2-Alkoxy- and 2-Aryloxy-2-Alkenoates.

Pierfausto Seneci,*\$ Isabelle Leger, Michel Souchet and Guy Nadler

SmithKline Beecham, Unité de Recherche, 4, Rue du Chesnay-Beauregard, 35760 Saint Grégoire, France

Abstract: Eighteen phosphorus-based alkenylation reagents 1a-6c were synthesized and condensed with n-butyraldehyde 7a and benzaldehyde 7f. They were condensed with the aldehydes 7b-e,g-n to produce 2-methoxy-2-alkenoates 8a-n and 2-phenoxy-2-alkenoates 9a-n. A discussion on different selectivities for the alkenylation reagents under different experimental conditions (base, solvent, temperature), the influence of the aldehydes on the geometrical outcome (electron rich or poor substituents, steric hindrance) and the selection of the most E- and Z- selective reaction conditions for each class of aldehydes are reported. Namely, triphenyl phosphonium salt 1a at RT in THF with DBU was better for Z-selectivity while trifluoroethylphosphonates 5b, 6b and 6c at -78° in THF with KN(SiMe₃)₂ were better for E-selectivity. © 1997 Elsevier Science Ltd.

The Z- and E- 2-alkoxy- or 2-aryloxy-2-alkenoate moieties (Figure 1) are structural features found in many natural and semisynthetic products, such as carbohydrates,¹ steroids,² alkaloids,³ pigments,⁴ and often their presence is related to, or even essential for specific biological activities as antibiotics,⁵ antivirals,⁶ immunostimulants⁷ and hypolipidemics.²

One of our research projects required a methodology for preparing pure *E*- and *Z*- isomers of 2-alkoxy- and 2aryloxy-2-alkenoates with different R and R₁ groups (R₂=H). We chose the olefination of aldehydes 7 with phosphorus (*P* from now on) carbanions to prepare the desired compounds, *E*-,*Z*-8 (R=Me, Scheme 1) and *E*-,*Z*-9 (R=Ph, Scheme 1). The *P* anions were derived from phosphonium salts 1,2 (R=Me,Ph, Wittig reagents⁸), phosphine oxides 3,4 (R=Me,Ph, Horner reagents⁹) or phosphonates 5,6 (R=Me,Ph, Horner-Wadsworth-Emmons reagents¹⁰) where the methoxy and the phenoxy groups were selected as representatives of α -substitution on the *P* reagents.

^{\$} Present Address: GlaxoWellcome, Via Fleming 4, 37100 Verona, Italy; Fax: 39-45-9218196; Email: pfs37082@ggr.co.uk

P. SENECI et al.

Many excellent recent reviews dealing with the olefination of carbonyl compounds by P based reagents were published^{30,8c,10a,10b} and from their evaluation some general considerations regarding the theoretical E/Z ratio for the reactions between compounds 1-6 and aldehydes 7 can be made.

Scheme 1

The presence of an electron-withdrawing group α to the *P* atom such as the carboxylate (stabilized *P* carbanions) was shown to produce generally *E*-2-unsubstituted alkenoates.^{8b,8e} The few examples of reactions with α -alkoxyphosphonoacetates, with α -aryloxyphosphonoacetates and with α -alkoxy- α -triphenylphosphonium acetate bromides reported in the literature¹¹ produced, with high selectivity, the corresponding *Z*-2-alkoxy or aryloxyalkenoates (priority of the OR group to the COOR, Figure 1). These *Z*-isomers could be also obtained from mixtures of *E*-and *Z*-compounds via base-catalyzed isomerization. Preparation of the *E*-2-substituted alkenoates would have required the adaptation of known techniques used for the preparation of *Z*-2-unsubstituted alkenoates from stabilized *P* carbanions.¹²

We chose to prepare a large set of P compounds 1-6 and react them with a model aliphatic and aromatic aldehyde. This allowed us to establish good methods for obtaining pure E- or Z- compound prior to submitting a large set of diverse aldehydes to these procedures. This second phase was aimed at establishing some general rules for the synthesis of geometrically pure 2-alkoxy- or 2-aryloxyalkenoates.

Results and Discussion

We prepared 18 alkenylation reagents (Figure 2), namely the methoxyphosphonium ylides 1a-h, the phenoxyphosphonium ylides 2a-c, the methoxy- and phenoxyphosphine oxides 3 and 4, the methoxyphosphonates 5a,b and the phenoxyphosphonates 6a-c. Their syntheses were accomplished by α -bromination of either methyl methoxy- or phenoxyacetate, followed then by the reaction with trialkyl or triarylphosphines¹³ for 1a-h or 2a-c, with ethyl diphenylphosphinite¹⁴ for 3 and 4 or with triethyl phosphite¹⁵ for 5a and 6a (Scheme 2).

Scheme 2

The synthesis of the 2,2,2,-trifluoroethylphosphonates **5b**, **6b** and **6c** was realized from **5a** and **6a** by chlorination with phosphorus pentachloride and substitution with 2,2,2-trifluoroethanol^{12c} (Scheme 3).

Scheme 3

17100

While the reaction starting from 5a produced only the bis(trifluoroethyl) compound 5b, from 6a we obtained, via incomplete chlorination, also the monoethyl-monotrifluoroethylphosphonate 6c that was not previously reported as a Horner-Wadsworth-Emmons reagent.

Some of these reagents were known as inducers of inverse geometry for alkenations producing Z-2unsubstituted alkenoates^{12+c}: the phosphonium salts $1f_{,g}^{12a,12b}$ and the trifluoroethylphosphonates 5b and 6b.^{12c} In analogy to this, we considered these reagents as potential *E*-inducers for our 2-alkoxy- and 2-aryloxy-2-alkenoates.

We selected as model aldehydes butanal (7a) and benzaldehyde (7f). We searched the optimal conditions using phosphonium salts 1a,b and 2a,b, reacting them with 7a and 7f in different experimental conditions. The results are summarized in Table I, where entries producing an isomeric ratio of 80/20 or better are highlighted (last column on the right, underlined with a single line when the Z-isomer is preponderant, with a double line when the E-isomer is more abundant). All the reactions from here on were performed on a 2-mmol scale as unoptimized single experiments, and various amounts of starting aldehyde were recovered, for additional details, see the Experimental Section.

entry	aldehyde	P reagent	solvent	base	yield	E/Z ratio ^b
	(1.5eq.)	(1.0eq.)		(1.1eq.)	(E+Z)	
1	n-PrCHO	la	THF	DBU	63	8a: <u>8/92</u>
2	n-PrCHO	1a	THF	TMG	59	8a: <u>8/92</u>
3	n-PrCHO	1a	THF	DBU/LiBr	46	8a: <u>10/90</u>
4	n-PrCHO	1a	CH ₂ Cl ₂	DBU	60	8a: <u>12/88</u>
5	n-PrCHO	1a	MeOH	KOMe	39	8a: <u>10/90</u>
6	n-PrCHO	1a	THF, reflux, 4h	DBU	76	8a: <u>15/85</u>
7	n-PrCHO	1b	THF	DBU	51	8a: 50/50
8	n-PrCHO	1b	THF	DBU/LiBr	65	8a: <u>15/85</u>
9	n-PrCHO	2a	any ^c	any ^c	ND ^d	-
10	n-PrCHO	2b	THF	DBU	60	9a: 36/64
11	n-PrCHO	2b	THF	DBU/LiBr	47	9a: <u>19/81</u>
12	PhCHO	1 a	THF	DBU	82	8f: <u>6/94</u>
13	PhCHO	1 a	THF	TMG	69	8f: <u>8/92</u>
14	PhCHO	1a	THF	DBU/LiBr	76	8f: <u>5/95</u>
15	PhCHO	1a	CH ₂ Cl ₂	DBU	72	8f: <u>8/92</u>
16	PhCHO	1a	MeOH	DBU	80	8f: <u>7/93</u>
17	PhCHO	<u>1a</u>	THF, reflux, 4h	DBU	91	8f: <u>16/84</u>
18	PhCHO	_1b	THF	DBU	74	8f: 64/36
19	PhCHO	1b	THF	DBU/LiBr	74	8f: 48/52
20	PhCHO	2a	any ^c	any ^c	ND	
21	PhCHO	2b	THF	DBU	61	9f: 40/60
22	PhCHO	2b	THF	DBU/LiBr	43	9f: 50/50

Table I. Wittig reaction between P reagents 1a,b-2a,b and aldehydes 7a,f

^a Reactions carried out at rt for 24h except for entries 6 and 17; for other details, see Experimental Section; ^b calculated by NMR (+/- 2%); ^c all the experimental conditions used with 1a were tried unsuccessfully;^d not detectable (<2%).

The reaction with methoxyarylphosphonium salt 1a was strongly Z-selective, as expected,¹¹ and the selectivity was not significantly affected by changes of solvent or base. Reactions at lower temperature were too slow (data not shown), while higher temperatures reduced the Z-selectivity (compare entries 1 with 6, 12 with 17). The corresponding phenoxy salt 2a did not react with 7a, f under any of the conditions tried, including high temperatures and excess of reagents, probably due to the additional steric hindrance of the phenoxy group.

Reaction with the alkylphosphonium salts 1b and 2b was not very selective, and again various solvents or bases did not influence significantly the E/Z ratio (data not shown). The only exception was the use of LiBr and DBU with 7a (compare entries 7 with 8 and 10 with 11) that increased Z-selectivity.

We selected DBU as a base and THF as a solvent at rt for 24 hours as a Wittig experimental procedure, applying it subsequently to the other phosphonium salts 1c-h and 2c. The results are summarized in Table II.

The reaction with salts 1c-e and 2c did not show a significant selectivity, as seen for 1b and 2b. The substituted aryl salts 1f,g, that were potential *E*-inducers, ^{12a,12b} failed to react under any experimental conditions most likely due to steric hindrance problems as already seen for 2a. The resin-bound salt 1h gave yields and *Z*-selectivities comparable with its "free" analog 1a (compare entries 28 and 34 respectively with entries 1 and 12, Table I), so that this resin bound Wittig reagent could be used for the synthesis of combinatorial libraries of functionalized *Z*- α -alkoxy- or α -aryloxy- α , β -unsaturated carboxylic acid derivatives.

Then we moved to the phosphine oxides 3 and 4, whose behaviour in the Horner reaction with aldehydes 7a,f is reported in Table III. The reaction produced directly the alkenes, while the intermediate erythro and three β -hydroxyphosphine oxides, that should have been the reaction products at least with nBuLi,¹⁶ were not observed.

Under the both chosen experimental conditions the phosphine oxides showed generally moderate Z-selectivity and lower yields than the Wittig phosphonium salts. Due to these results, we did not investigate further the use of phosphine oxide reagents.

Finally we moved to the phosphonates **5a,b** and **6a-c** The results of their Horner-Wadsworth-Emmons reaction with aldehydes **7a,f** are reported in Table IV.

While the ethyl phosphonates **5a** and **6a**, as expected, did not show *E*-selectivity when treated as in entries 43, 44, 53 and 54 (for **6a**, data not shown), the use of strong dissociating conditions improved the *E*-selectivity for reactions using aldehyde **7a** (entries 45 and 49). The best *E*-selectivities were obtained, as expected, ^{12e} with the mono- and ditrifluoroethylphosphonates **5b**, **6b** and **6c** using KN(SiMe₃)₂ as a base and 18-crown-6 as a chelating agent (entries 48, 50, 52 and 58), with the only exception of the reaction between **7f** and **6b**, where no selectivity was found (entries 60 and 62). Other experimental conditions employing the same trifluoroethylphosphonates (entries 46 and 56, 47 and 57) were less *E*-selective.

entry	aldehyde (1.5)	P reagent (1.0)	yield (E+Z)	E/Z ratio ^b
23	n-PrCHO	1c	56	8a: 50/50
24	n-PrCHO	2c	48	9a: 41/59
25	n-PrCHO	1d	72	8a: 55/45
26	n-PrCHO	1e	21	8a: 35/65
27	n-PrCHO	1f,1g	ND ^c	-
28	n-PrCHO	1h	77	8a : <u>19/81</u>
29	PhCHO	1c	68	8f: 62/38
30	PhCHO	2c	59	9f: 50/50
31	PhCHO	1d	86	8f: 62/38
32	PhCHO	_1e	16	8f: 35/65
33	PhCHO	1f,1g	ND ^c	-
34	PhCHO	1h	86	8f: <u>8/92</u>

Table II. Wittig reaction between P reagents 1c-h and aldehydes 7a,f*

^a Reactions carried out at rt for 24h with DBU (1. leq) in THF; for other details, see Experimental Section; ^b calculated by NMR (+/- 2%); ^c all the experimental conditions used with 1a (Table I) were tried unsuccessfully.

entry	aldehyde	P reagent	base	T(°C), t(h)	yield	E/Z ratio ^b
	(1.5eq)	(1.0eq)	(1.1eq)		(E+Z)	
35	n-PrCHO	3	nBuLi	-78° to rt, 16	32	8a: 60/40
36	n-PrCHO	3	DBU	rt, 24	47	8a: 60/40
37	n-PrCHO	4	nBuLi	-78° to rt, 16	52	9a : 30/70
38	n-PrCHO	4	DBU	rt, 24	44	9a : <u>19/81</u>
39	PhCHO	3	nBuLi	-78° to rt, 16	64	8f: <u>18/82</u>
40	PhCHO	3	DBU	rt, 24	55	8f: <u>18/82</u>
41	PhCHO	4	nBuLi	-78° to rt, 16	64	9f: 25/75
-42	PhCHO	4	DBU	rt, 24	49	9f: 30/70

Table III. Horner reaction between phosphine oxides 3,4 and aldehydes 7a,f.ª

* Reactions carried out in THF as solvent; for other details, see Experimental Section; ^b calculated by NMR (+/- 2%).

entry	aldehyde	P reagent	base	T(°C),t(h),	yield	E/Z ratio ^e
	(1.5eq)	(1.0eq)	(1.1eq ^b)	solvent	(E+Z)	
43	n-PrCHO	5 a	NaH	-78°,2,THF	85	8a: 50/50
44	n-PrCHO	5 a	DBU	rt,24,THF	62	8a: 40/60
45	n-PrCHO	5 a	d	-78°,2,THF	75	8a: <u>90/10</u>
46	n-PrCHO	5b	e	-78°,2,THF	77	8a: 68/32
47	n-PrCHO	5b	f	-20°,2,THF	67	8a: 65/35
48	n-PrCHO	5b	d	-78°,2,THF	72	8a: <u>≥95/5</u>
49	n-PrCHO	6a	d	-78°,2,THF	68	9a: <u>87/13</u>
50	n-PrCHO	6b	d	-78°,2,THF	63	9a: <u>85/15</u>
51	n-PrCHO	6b	DBU/LiCl	rt,16,MeCN	66	9a: 57/43
52	n-PrCHO	6c	d	-78°,2,THF	72	9a: <u>≥95/5</u>
53	PhCHO	5a	NaH	-78°,2,THF	76	8f: 36/64
54	PhCHO	5a	DBU	rt,24,THF	67	8f: <u>16/84</u>
55	PhCHO	5a	d	-78°,2,THF	84	8f: 24/76
56	PhCHO	5b	c	-78°,2,THF	76	8f: 73/27
57	PhCHO	5b	f	-20°,2,THF	65	8f: 71/29
58	PhCHO	5b	d	-78°,2,THF	79	8f: <u>90/10</u>
59	PhCHO	6a	d	-78°,2,THF	79	9f: 50/50
60	PhCHO	6b	d	-78°,2,THF	72	9f : 51/49
61	PhCHO	6b	DBU/LiCl	rt,16,MeCN	70	9f: <u>87/13</u>
62	PhCHO	6c	d	-78°,2,THF	68	9f: 45/55

Table IV. Horner-Wadsworth-Emmons reaction of phosphonates 5a,b and 6a-c with aldehydes 7a,f

^a For other details, see Experimental Section; ^b except for ^{daf}, see below; ^c calculated by NMR (+/-2%); ^d KN(SiMe₃)₂ (2.0eq), 18crown-6 (5.0eq); ^c LiN(SiMe₃)₂ (2.0eq), 12-crown-4 (5.0eq); ^f KOtBu (2.0eq), 18-crown-6 (5.0eq).

Rather surprisingly, milder deprotonation conditions reported to produce Z-2-unsubstituted alkenes from basesensitive aldehydes and trifluoroethylphosphonates^{12e} were less effective than $KN(SiMe_3)_2$ on aldehyde 7a (compare entries 50 and 51) but significantly better on aldehyde 7f (compare entries 60 and 61). We planned to test the two experimental conditions on different aldehydes to check the occurrence of this phenomenon. The comparison among the phenoxymono- (6c) and ditrifluoroethylphosphonate (6b) showed that the former has at least the same *E*-selectivity as the latter (compare entries 50 with 52, 60 with 62). This reagent was considered worthy of further investigations.

A comparison with reported data^{12c} for 2-unsubstituted and 2-methyl-2-alkenoates showed a reduced *E*-selectivity for the α -oxytrifluoroethylphosphonates when using benzaldehyde (compare *E*/Z values for entry 58 and especially 60 with the reported values of >50/1 for trifluoroethylphosphonoacetate and of 30/1 for 2-methyltrifluoroethylphosphonoacetate^{12c}). This may result from additional steric hindrance (alkyl substituents larger than methyl were reported to slow down the phosphonate oxide elimination, increasing the equilibration/elimination ratio) and/or from electronic effects of the substituted oxygen atom.

The results obtained with aldehydes 7a and 7f allowed us to select some representative procedures to be tested on a wide selection of aldehydes. The reaction with phosphonium salt 1a was chosen to prepare Z-isomers 8 with a good selectivity, while the alkyl salts 1c and 2b were chosen to check the behaviour of alkoxy- and aryloxyalkylphosphonium salts. Trifluoroethylphosphonates 5b, 6b and 6c were selected to prepare the *E*-isomers 8 and 9 using $KN(SiMe_3)_2/18$ -crown-6 or DBU/LiCl.

The selected aldehydes are shown in Figure 3. We chose α -branched acyclic (7b,c) and cyclic (7d) aliphatic aldehydes, an α,β -unsaturated aldehyde (7e) and some aromatic aldehydes with additional steric hindrance due to various electron-donating substituents (7g-i), electron-withdrawing substituents (7j-l) and alkyl groups (7m,n). In order to determine the configuration of the pure geometric isomers obtained from the olefinations, we used the NMR mixed coupling constant between the 1-carbon and the 3-hydrogen of the resulting alkenoates (Table V). A small value (1-4 Hz) was characteristic for a *cis Z*-configuration, while a value between 8 and 11 Hz was due to a *trans E*-configuration; all the values obtained for the different isomers are reported in Table V.

The purification of single isomers was generally performed by preparative TLC. These samples were used to determine the E- or Z-configuration of compounds 8,9. Some of the values in Table V are missing because the corresponding isomer was not obtained in a sufficient quantity for performing the necessary NMR experiments. An additional analytical characterization (¹H NMR, IR, MS, microanalysis) was performed on the purified reaction products (pure isomers or E/Z mixtures, see Experimental Section for more details).

n-PrCHO	i-PrCHO	t-BuCHO
7a	7b	7c
cyclohexyICHO	PhCH=CHCHO	PhCHO
7d	7e	7f

G-PhCHO

7g G=2-OMe; **7h** G=2,4,5-triOMe; **7i** G=3,4,5-triOMe; **7j** G=2-NO₂; **7k** G=2,6-diNO₂; **7l** G=3-NO₂,4-Cl; **7m** G=2-Me; **7n** G=2,4,6-triMe

Figure 3

	R ₁			OR
			c	10
compounds	<i>E</i> -8 C ₁ (δ), ³ J _{CH} (Hz)	<i>E</i> -9 C ₁ (δ), ³ J _{CH} (Hz)	Ζ-8 C ₁ (δ), ³ J _{CH} (Hz)	Z-9 C ₁ (δ), ³ J _{CH} (Hz)
8,9a	163.8 10.6	163.1 9.6	NM ^b	163.0 <1.0
8,9b	163.8 9.9	163,7 9.6	164.4 2.8	163.7 3.5
8,9c	NM	NM	NM	NM
8,9d	163.6 9.2	NM	164.3 2.1	163.8 2.8
8,9e	NM	163.4	163.2 2.1	NM
8,9f	164.2 9.5	163.58 9.2	164.7 3.2	163.97 2.8
8,9g	NM	163.9 9.9	NM	164.1 2.8
8,9h	164.4 9.9	163.9 10.7	164.8 2.8	164.4 2.1
8,9i	164.5 9.2	NM	164.5 3.6	163.8 2.3
8,9j	163.0 10.7	162.7 9.2	163.8 3.3	NM
8,9k	162.1 8.9	162.1 9.2	NM	NM
8,91	163.1 9.9	162.7 9.5	163.6 3.3	163.1 <1.0
8,9m	163.9 10.3	NM	165.0 2.8	NM
8.9n	163.0 10.5	NM	164.5 3.7	163.8 2.8

Table V. E- and Z-attribution for 8,9a-n (NMR).⁴

* spectra recorded in CDCl₃ at 300°K with a 200MHz instrument,; ^b not measured.

At first we submitted the aliphatic aldehydes 7b-d and the unsaturated 7e to the selected panel of olefination reactions. The results are shown in Table VI.

The presence of alkyl substituents at the α -carbon required prolonged reaction times (Wittig) or increased temperatures (Horner-Wadsworth-Emmons), and significant amounts of starting aldehydes were recovered. The behaviour of various *P* reagents was similar to that observed for 7a but with somewhat reduced selectivities due to the α -branching, as already observed for 2-unsubstituted trifluoroethylphosphonates.^{12c} Generally, good to excellent selectivities were obtained with aldehydes 7b,d, while the more hindered 7c either failed to react (entries 69, 72 and 73) or gave lower yields and sometimes also reduced selectivity (entry 74). The DBU/LiBr conditions on 6c produced a slightly reduced selectivity compared to the classical KN(SiMe₃)/18-crown-6 conditions (entries 74 and 75).

entry	aldehyde (1.5eq)	P reagent (1.0eq)	base (1.1eq ^b)	T(°C),t(h), solvent	yield (E+Z)	E/Z ratio ^e
63	7b	1a	DBU	rt,48,THF	62	8b: <u>10/90</u>
64	7b	1c	DBU	rt,48,THF	46	8b: 65/35
65	7b	5b	d	-78° to rt,24,THF	61	8b: <u>80/20</u>
66	7b	2b	DBU	rt,48,THF	26	9b: 44/56
67	7b	6b	d	-78° to rt,24,THF	57	9b: <u>89/11</u>
68	7b	6c	đ	-78° to rt,24,THF	57	9b: <u>88/12</u>
69	7c	1a	DBU	reflux,48,THF	TOP ^e	-
70	7c	1c	DBU	rt,48,THF	7	8c: 60/40
71	7c	5b	d	-78° to rt,24,THF	38	8c: <u>83/17</u>
72	7c	2b	DBU	reflux,48,THF	TOP ^e	-
73	7c	6b	d	-78° to rt,24,THF	TOP	-
74	7c	6c	d	-78° to rt,24,THF	18	9c: 66/34
75	7c	<u>6c</u>	DBU/LiCl	rt,16,MeCN	25	9c: 55/45
76	7d	1 a	DBU	rt,48,THF	26	8d: <u>8/92</u>
77	7d	1c	DBU	rt,48,THF	27	8d: 63/37
78	7d	_5b	d	-78° to rt,24,THF	69	8d: <u>83/17</u>
79	7d	2b	DBU	rt,48,THF	10	9d: 45/55
80	7d	6b	d	-78° to rt,24,THF	64	9d: <u>93/7</u>
81	7d	6c	a	-78° to rt,24,THF	76	9d: <u>≥95/5</u>
82	7e	1a	DBU	rt,24,THF	77	8e: <u>15/85</u>
83	7e	5b		-78°,2,THF	70	8e: <u>90/10</u>
84	7e	2b	DBU	rt,24,THF	59	9e: 50/50
85	7e	6b	d	-78°,2,THF	72	9e: <u>95/5</u>
86	7e	6c	d	-78°,2,THF	74	9e: <u>91/9</u>

Table VI. Alkenation reactions of aldehydes 7b-e^a

^a For other details, see Experimental Section; ^b except for ^d, see below; ^c calculated by NMR (+/-2%); ^d KN(SiMe₃)₂ (2.0eq), 18crown-6 (5.0eq); ^e traces of product (<5%).

The unsaturated trans-cynnamaldehyde 7e afforded, with good yields and selectivities, the expected Z-8 (entry 82) and E-8, E-9 isomers (entries 83, 85 and 86).

Then we moved to substituted aromatic aldehydes, starting from methoxysubstituted compounds 7g-i. The reactivity of these aldehydes was reduced in comparison with benzaldehyde 7f, and prolonged reaction times and/or increased temperatures, as seen for 7b-d, had to be used (Table VII).

entry	aldehyde	P reagent	base	T(°C),t(h), solvent	yield	E/Z ratio ^e
	(1.5eq)	(1.0eq)	(1.1eq")		(<i>E</i> +Z)	
87	7g	1a	DBU	rt,48,THF	61	8g: <u>5/95</u>
88	7g	5b	d	-78° to rt,24,THF	57	8g: 50/50
89	7g	5b	DBU/LiCl	rt,16,MeCN	60	8g: 44/56
90	7g	6b	d	-78° to rt,24,THF	54	9g: 75/25
91	7g	6b	DBU/LiCl	rt,16,MeCN	61	9g:78/22
92	7g	6c	d	-78° to rt,24,THF	61	9g : 75/25
93	7h	1a	DBU	reflux,48,THF	ND°	-
94	7h	1c	DBU	rt,48,THF	24	8h : 41/59
95	7h	5b	d	-78° to rt,24,THF	59	8h: <u>82/18</u>
96	7h	2b	DBU	reflux,48,THF	TOP	-
97	7h	6b	d	-78° to rt,24,THF	43	9h : 61/39
9 8	7h	6c	d	-78° to rt,24,THF	48	9h: <u>82/18</u>
99	7i	1a	DBU	rt,48,THF	52	8i : <u>7/93</u>
100	7i	1c	DBU	rt,48,THF	38	8i : 67/33
101	7i	5b	d	-78° to rt,24,THF	52	8i : 60/40
102	7i	2b	DBU	rt,48,THF	20	9i: <u>>5/95</u>
103	7i	6b	d	-78° to rt,24,THF	48	9i : 67/33
104	7i	<u>6c</u>	d	-78° to rt,24,THF	46	9i: <u>80/20</u>

Table VII. Alkenylation reactions of aldehydes 7g-i*

^a For other details, see Experimental Section; ^b except for ^d, see below; ^e calculated by NMR (+/-2%); ^d KN(SiMe₃)₂ (2.0eq), 18crown-6 (5.0eq); ^e not detectable (<2%); ^f traces of product (<5%).

The Z-selectivity for reagent 1a was confirmed (entries 87 and 99) except for compound 7h, which proved to be virtually unreactive with phosphonium salts (entries 93, 94 and 96). The trifluoroethylphosphonates 5b and 6c gave good *E*-selectivities with aldehydes 7h, i (entries 95 and 101, 98 and 104), while worse results were obtained with trifluoroethylphosphonate 6b (entries 97 and 103). Aldehyde 7g gave moderate *E*-selectivity with the three trifluoroethylphosphonates (entries 88, 90 and 92). The use of DBU/LiCl as reaction conditions (entries 89 and 91) produced results comparable to the ones obtained with KN(SiMe₃)₂ and 18-crown-6.

An alkenylation of nitrosubstituted benzaldehydes 7j-l was then attempted. Their reactivity was higher than that observed with benzaldehyde and reaction yields were generally improved, except for entry 114 (Table VIII).

The behaviour of 71 with the phosphonium salts 1a, 1c and 2b was normal (entries 118, 119 and 121), while good Z-selectivity was attained for aldehyde 7j with 1c (entry 106) and not with 1a (entry 105) and good or excellent E-selectivity was obtained by reaction of 7k with the Wittig salts 1a, 1c and 2b (entries 111, 112 and 114).

The "inverse" behaviour of the di-orthonitrosubstituted 7k was found also with P reagents 6b,c (entries 115 and 116), that produced excellent Z-selectivities, while only with reagent 5b the expected isomer E-8k was obtained with good selectivity (entry 113). Both the hindrance of the two nitro substituents in ortho position and their strong electron-withdrawing properties could have played a significant role in the reactivity of aldehyde 7k; nevertheless, the

partial reversion obtained by the use of DBU/LiCl with trifluoroethylphosphonate 6c (compare entries 117 and 116) pointed also towards a strong influence of the reaction conditions.

The mono-orthonitrosubstituted 7j showed no selectivity when reacted with 5b (entry 107) and good *E*-selectivity with 6b, c (entries 109 and 110). The compound 7l showed a generally poor selectivity with phosphonates 5b, 6b and 6c (entries 120, 122 and 123); the use of DBU/LiCl increased only marginally the *E*-selectivity with reagent 6c (compare entries 123 and 124).

entry	aldehyde	P reagent	base	T(°C),t(h),	yield	E/Z ratio ^c
	(1.5eq)	(1.0eq)	(1.1 eq⁵)	solvent	(E+Z)	
105	7j	1 a	DBU	rt,24,THF	89	8 j: 34/66
106	7j	1c	DBU	rt,24,THF	90	8j : <u>88/12</u>
107	7 <u>j</u>	5b	ď	-78°,2,THF	93	8j : 45/55
108	7j	2b	DBU	rt,24,THF	42	9j: 62/38
109	7j	6b	đ	-78°,2,THF	65	9j: <u>90/10</u>
110	7j	6c	d	-78°,2,THF	66	9j: <u>80/20</u>
Ш	7k	1 a	DBU	rt,24,THF	87	8k: <u>83/17</u>
112	7k	1c	DBU	rt,24,THF	81	8k: <u>93/7</u>
113	7k	5b	đ	-78°,2,THF	89	8k: <u>92/8</u>
114	7k	2b	DBU	rt,24,THF	18	9k: <u>81/19</u>
115	7k	6b	d	-78°,2,THF	82	9k: <u>12/88</u>
116	7k	6c	d	-78°,2,THF	84	9k: <u>>5/95</u>
117	7k	6c	DBU/LiCl	rt,16,MeCN	83	9k: 55/45
118	71	1 a	DBU	rt,24,THF	85	81: <u>8/92</u>
119	71	1c	DBU	rt,24,THF	87	81 : 65/35
120	7ì	5b	d	-78°,2,THF	88	81 :70/30
121	71	2b	DBU	rt,24,THF	82	91 : 41/59
122	71	6b	d	-78°,2,THF	86	91 : 37/63
123	71	6с	d	-78°,2,THF	87	91 : 50/50
124	71	6с	DBU/LiCl	rt,16,MeCN	84	91: 58/42

Table VIII. Alkenylation reactions of aldehydes 7j-l^a

⁶ For other details, see Experimental Section; ^b except for ^d, see below; ^c calculated by NMR (+/-2%); ^d KN(SiMe₃)₂ (2.0eq), 18crown-6 (5.0eq).

Finally we examined the behaviour of methylsubstituted aromatic aldehydes 7m,n (Table IX). Their reactivity was comparable to that of the methoxy-substituted aldehydes 7g-i.

The monosubstituted aldehyde 7m reacted with moderate to good yields with all the P reagents, and the expected Z- (entry 125) and E-selectivities (entries 127, 129 and 130) were found. The more hindered aldehyde 7n gave poor yields (or failed to react as in entries 135 and 136), while the expected behaviour with the different P reagent in terms of selectivity was generally found.

entry	aldehyde (1.5eq)	P reagent (1.0eq)	base (1.1eq ^b)	T(°C),t(h), solvent	yield (E+Z)	E/Z ratio ^e
125	7m	1a	DBU	rt,48,THF	61	8m: 15/85
126	7m	1c	DBU	rt,48,THF	69	8m: 78/22
127	7m	5b	d	-78° to rt,24,THF	78	8m: <u>90/10</u>
128	7m	2b	DBU	rt,48,THF	32	9m : 60/40
129	7m	6b	d	-78° to rt,24,THF	61	9m: <u>82/18</u>
130	7m	6c	a	-78° to rt,24,THF	59	9m: <u>80/20</u>
131	7n	1a	DBU	rt,48,THF	9	8n: <u>>5/95</u>
132	7n	1c	DBU	rt,48,THF	27	8n: 59/41
133	7n	5b	d	-78° to rt,24,THF	48	8n: 50/50
134	7 n	2b	DBU	rt,48,THF	8	9n: <u>13/87</u>
135	7n	6b	d	-78° to rt,24,THF	TOP	-
136	7n	6c	d	-78° to rt,24,THF	ND ^r	-

Table IX. Alkenylation reactions of aldehydes 7m,n^a

^a For other details, see Experimental Section; ^b except for ^d, see below; ^o calculated by NMR (+/-2%); ^d KN(SiMe₃)₂ (2.0eq), 18crown-6 (5.0eq); ^o traces of product (<5%); ^f not detectable (<2%).

To evaluate the obtained results in terms of the geometrical outcome, we planned to divide the aldehydes 7 into 7 different "classes": aliphatic (7a), α -branched aliphatic (7b-d), α , β -unsaturated (7e), aromatic (7f), electron-rich aromatic (7g-i), electron-poor aromatic (7j-l) and alkyl substituted aromatic (7m-n). We considered, among the P

	1a	1c	5b	2b	6b,c
7a	+++Z	-	+++E	++Z	+++E
7b-d	++Z	+ <i>E</i>	+++ <i>E</i>	-	++ <i>E</i>
7e	++Z	•	++++E	-	+++E
7f	+++Z	-	+++E	-	++E
7g	+++Z	NDb	-	ND	+ <i>E</i>
7h	NR ^c	-	++ <i>E</i>	NR	++E
7i	++++Z	+ <i>E</i>	+ <i>E</i>	+++Z	++ <i>E</i>
7j	+Z	++E	-	+E	++++E
7k	++ <i>E</i>	+++E	+++E	++E	+++Z
71	+++Z	+ <i>E</i>	+ <i>E</i>	-	-
7m	++Z	+ <i>E</i>	+++E	+2	++E
7n	+++Z	-	-	++Z	NR

Table X. Geometrical outcome for the alkenylation of aldehydes 7a-m^a

* the most selective results were considered when a reaction was repeated in different experimental conditions;

^b reaction not performed; ^c no reaction products.

reagents, as 2-methoxy the aryl phosphonium salts (1a), the alkylphosphonium salts (1c) and the trifluoroalkylphosphonates (5b); as 2-phenoxy, the alkylphosphonium salts (2b) and the trifluoroalkylphosphonates (6b,c). The results for each class are reported in Table X and roughly classified with a "-" (E/Z from 60/40 to 40/60), with a "+" (ratio from 80/20 to 60/40), with a "++" (ratio from 90/10 to 80/20) and with a "++" (ratio from >95/5 to 90/10).

In general, the availability of Z- (1a) or E- (5b) 2-methoxyalkenoates and of E-(6b,c) 2-phenoxyalkenoates was proved with selectivities from good to excellent and with yields from moderate to excellent starting from different aldehydes. The lack of reactivity of the 2-phenoxy aryl phosphonium salt 2a prevented the preparation of pure Z-2phenoxyalkenoates that were sometimes available using the salt 2b (Table X). The chemical yields were generally good to excellent, with the exception of some attempts with hindered aliphatic (7c) or aromatic (7h) aldehydes. Among the aromatic aldehydes the lack of steric hindrance and expecially the presence of one or more electron withdrawing substituents were shown to increase the reactivity of the aldehydes and the chemical yields of the reactions.

Among the aldehydes 7a-e, the behaviour was very similar with somewhat reduced selectivities for branched aldehydes when compared to linear saturated (7a) or unsaturated (7e) ones, as expected.^{12c} While the simple 7f behaved similarly to the aliphatic aldehydes, the substituted aromatic aldehydes presented different behaviours among members of the same class, expecially in presence of strong electron-withdrawing substituents. It was then necessary to examine the individual behaviour of each of aldehydes 7g-n (Table X).

While some compounds showed a partial or complete loss of selectivity when compared with benzaldehyde, either in Z- (7j with 1a) or in E-producing conditions (7g, 7j and 7n with 5b, 7g and 7l with 6b,c), the E- or Z-selectivity was always in the same direction but for 2,6-dinitrobenzaldehyde 7k. This aldehyde showed a pronounced selectivity with all the reagents, but with a complete inversion with the most selective P reagents, giving good E selectivity when reacted with 1a and excellent Z-selectivity with 6b and 6c (see comments to Table VIII for a more detailed discussion).

Further attempts, aimed to clarify the uncommon behaviour of aldehyde 7k by using other di-orthosubstituted electron poor aldehydes and to expand the range of the alkoxy or aryloxy substituents in position 2, are currently in progress.

EXPERIMENTAL SECTION

General.

Solvents and reagents were purified and dried by standard techniques.¹⁸ Solvents were removed using a Buchi EL 131 rotary evaporator at bath temperatures varying from rt to 50°C. The reactions and the final compounds were analyzed by direct phase TLC using Merck Kieselgel 60 F_{254} thin-layer plates with eluent mixtures including CH₂Cl₂, MeOH, AcOEt and n-heptane. IR spectra (CDCl₃ solution) were recorded on a Perkin-Elmer 850 spectrometer and the values are reported in cm⁻¹ (υ). ¹H NMR spectra were recorded at 200 MHz with a Bruker AC 200 at 303°K in CDCl₃. The chemical shifts (δ) are reported in ppm downfield from the nternal reference, tetramethylsilane (TMS, δ 0.00). The coupling constants (J) are reported in Hz. Mass spectra were recorded on a Varian MAT 311 instrument under chemical ionization (CI) conditions (70eV, ion source emperature 140°). Mass spectra of pure isomer couples were recorded and found to be undistinguishable, so the

spectra were recorded as routine without isolation of pure single isomers. A Model 1106 Carlo Erba instrument was used for elemental analysis utilizing standard techniques.

Methyl 2-bromo-2-methoxyacetate: A suspension of methyl 2-methoxyacetate (88.2 g, 874 mmoles), NBS (151 g, 847 mmoles) and benzoyl peroxide (400 mg, catalytic) was refluxed for 4 hours. The resulting suspension was cooled to rt, filtered and concentrated at reduced pressure. The residual oil was distilled producing a fraction of pure title compound, b.p. 80-82°/0.1mm Hg (134 g, 73.2 mmoles, yield 86.5%). $\delta_{\rm H}$ 6.01 (1H, s, CH), 3.85 (3H, s, OMe), 3.58 (3H, s, COOMe). Methyl 2-bromo-2-phenoxyacetate (eb. 150-153°/10mm Hg) was prepared in 82.0% yield by the same procedure.

Methyl 2-methoxy-2-(triphenylphosphonium)acetate bromide (1a): A suspension of methyl 2bromo-2-methoxyacetate (13.0 g, 71.0 mmoles) and triphenylphosphine (18.7 g, 71.0 mmoles) in toluene (100 mL) was stirred vigorously at rt overnight. The reaction mixture was filtered, the precipitate was washed thoroughly with Et₂O and dried for 24 hours at 50° under vacuum. This produced pure 1a (28.1 g, 63.2 mmoles, yield 89.1%) as a white solid, m.p. 138-140° dec. $\delta_{\rm H}$ 8.15 (1H, d, J=13.0Hz, CH), 7.50-8.05 (15H, m, Ar), 3.85 (3H, s, OMe), 3.55 (3H, s, COOMe). Compounds 1b-h, 2a-c, 3, 4, 5a and 6a were prepared by the same procedure using phosphines,¹³ phosphinites¹⁴ or phosphites¹⁵.

Methyl 2-(di(2',2',2'-trifluoroethoxy)phosphoryl)-2-phenoxyacetate (6b) and Methyl 2-(ethoxy(2',2',2'-trifluoroethoxy)phosphoryl)-2-phenoxyacetate (6c): PCl₅ (37.5 g, 180 mmoles) was added portionwise under vigorous stirring at 0° to phosphonate **6a** (24.17 g, 70 mmoles) and the reaction mixture was warmed to rt during 1 hour. After heating at 75° for 3 hours the crude mixture was cooled to rt and distilled first at 20mm Hg to eliminate POCl₃ (30°-40°), then at 0.04mm Hg where a first fraction of PCl₅ (28-35°) was followed by a yellow oil, b.p. 122-135°/0.04mm Hg (16.6 g, theoretically 60 mmoles). This crude dichloride was dissolved in benzene (80 mL) at 0° with stirring and a solution of 2,2,2-trifluoroethanol (10.1 mL, 130 mmoles) and DIEA (23 mL, 130 mmoles) was added dropwise at 0°C. The reaction mixture was gently warmed to rt, stirring was continued for 2 hours, then the solvent was concentrated and the residue chromatographed on silica gel (EtOAc/n-heptane 1/4 as eluant mixture). A first fraction of **6b** (9.56 g, 23.3 mmoles, yield 33.3%) and a second of **6c** (7.52 g, 21.1 mmoles, yield 30.1%) were obtained. **6b**: R_f 0.39 (4/1 n-heptane/AcOEt); $\delta_{\rm H}$ 7.31 (2H, m, Ar), 7.08 (1H, t, Ar), 6.94 (2H, d, Ar), 5.19 (1H, d, J=19.6, CH), 4.54 (4H, m, CH₂), 3.86 (3H, s, OMe). **6c**: R_f 0.25 (4/1 n-heptane/AcOEt); $\delta_{\rm H}$ 7.31 (2H, m, Ar), 5.00 (2H, m, CH₂CF₃), 4.34 (2H, m, CH₂CH₃), 3.84 (3H, s, OMe), 1.39 (3H, dt, CH₃).

Wittig reaction with methyl 2-methoxy-2-(triphenylphosphonium)acetate bromide 1a. Z-Methyl-3-(4-chloro-3-nitrophenyl)-2-methoxy-2-propenoate (Z-8l): A suspension of 1a (890 mg, 2.0 mmoles) and DBU (330µL, 2.2 mmoles) in THF (20 mL) was stirred for 10 minutes at rt. Aldehyde 7l (560 mg, 3.0 mmoles) was added and stirring at rt continued for 24 hours. The solvent was then concentrated at reduced pressure, the residue was taken up with AcOEt (30 mL) and washed with saturated NH₄Cl solution (10 mL) and brine (2x10 mL). The organic phase was dried (MgSO₄), evaporated at reduced pressure and finally chromatographed on silicagel (9/1 n-heptane/AcOEt as eluant mixture) to give 8l (461mg, 1.70 mmoles, yield 85.0%) as an oily 8/92 E/Z mixture (NMR). Z-8l: R_f (9/1 n-heptane/AcOEt); υ_{max} /cm⁻¹: 1728, 1709, 1602, 1540, 1355; m/z 273 (33), 271 (M, 100), 197 (27), 181 (21), 123 (26) and 59 (35); $\delta_{\rm H}$ 8.35 (1H, d, 2-H Ar), 8.03 (1H, dd, 6-H Ar), 7.75 (1H, d, 5-H Ar), 6.83 (1H, s, CH=), 3.86 (3H, s, OMe), 3.84 (3H, s, COOMe); $\delta_{\rm C}$ 163.58 (C1), ${}^{3}_{\rm CH}$ =3.34; microanalysis: found C, 48.53; H, 3.74; N, 5.12; Cl(org.), 12.97, calculated for C₁₁H₁₀CINO₅ C, 48.64; H, 3.71; N, 5.16; Cl(org.) 13.05%. Wittig reaction with methyl 2-methoxy-2-(tributylphosphonium)acetate bromide 1c. E- and Z-Methyl 2-methoxy-4-methyl-2-pentenoate (E- and Z-8b): A suspension of 1c (770 mg, 2.0 mmoles) and DBU (330 μ L, 2.2 mmoles) in THF (20 mL) was stirred for 10 minutes at rt. Freshly distilled aldehyde 7b (275 μ L, 3.0 mmoles) was added and stirring at rt continued for 48 hours. The solvent was then evaporated at reduced pressure, the residue was taken up with AcOEt (30 mL) and washed with saturated NH₄Cl solution (10 mL) and brine (2x10 mL). The organic phase was dried (MgSO₄), concentrated at reduced pressure and finally chromatographed on silica gel (19/1 n-heptane/AcOEt as eluant mixture) to give 8b (145 mg, 0.92 mmoles, yield 45.8%) as an oily 65/35 E/Z mixture (NMR). This mixture was submitted to preparative TLC (39/1 n-heptane/AcOEt, 5 runs) to give a first fraction of Z-8b (31 mg) and a second of E-8b (47 mg). E-8b: R_f 0.13 (39/1 n-heptane/AcOEt); υ_{max}/cm^{-1} : 1730, 1625, 1240; δ_{H} 4.98 (1H, d, J=9.6Hz, CH=), 3.78 (3H, s, OMe), 3.54 (3H, s, COOMe), 3.22 (1H, m, CH-(CH₃)₂), 1.01 (6H, d, CH-(CH₃)₂); δ_{C} 163.79 (C₁), 3 J_{CH}=9.93. Z-8b: R_f 0.15 (9/1 n-heptane/AcOEt); υ_{max}/cm^{-1} : 1732, 1620, 1258; δ_{H} 6.09 (1H, d, J=9.9Hz, CH=), 3.77 (3H, s, OMe), 3.65 (3H, s, COOMe), 2.87 (1H, m, CH-(CH₃)₂), 1.03 (6H, d, CH-(CH₃)₂); δ_{C} 164.43 (C₁), 3 J_{CH}=2.84. E/Z-8b: m/z 158 (M, 13), 143 (38), 115 (20), 111 (34), 99 (43) and 83 (100); microanalysis: found C, 60.61; H, 8.99, calculated for C₈H₁₄O₃ C, 60.74; H, 8.92%.

Horner-Wadsworth-Emmons reaction with methyl 2-(di(2',2',2',2'-trifluoroethoxy)phosphoryl)-2methoxyacetate 5b (KN(SiMe₃)/18-crown-6). 2E,4E Methyl 2-methoxy-5-phenyl-2,4-pentadienoate (E-8e): To a solution of 5b (700 mg, 2.0 mmoles) and 18-crown-6 (2.65 g, 10.0 mmoles) in dry THF (20 mL) stirred under an Ar atmosphere at -78°C (dry ice/acetone bath) was added KN(SiMe₃)₂ (0.5 M solution in toluene, 8 mL, 4.0 mmoles) dropwise under stirring. After 10 minutes 7e (380 μ L, 3.0 mmoles) was added and stirring ar-78°C continued for 2 hours. The reaction was then quenched with saturated NH₄Cl solution (2 mL), warmed to rt, diluted with Et₂O (30 mL) and washed with brine (3x30 mL). The organic phase was dried (MgSO₄), evaporated at reduced pressure and finally chromatographed on silicagel (9/1 n-heptane/AcOEt as eluant mixture) to give 8e (310 mg, 1.41 mmoles, yield 70.0%) as an oily 90/10 *E/Z* mixture (NMR). *E*-8e: R_f 0.43 (9/1 n-heptane/AcOEt); υ_{max} /cm⁻¹: 1738, 1692, 1602, 1638, 1602, 1390; *m/z* 218 (M, 30), 159 (27), 116 (23), 115 (44), 105 (52), 83 (25) and 77 (100); $\delta_{\rm H}$ 7.86 (1H, dd, J=11.3,15.3Hz, 4-CH), 7.20-7.55 (5H, m, Ar), 6.65 (1H, d, J=15.8Hz, 5-CH), 6.08 (1H, d, 3-CH), 3.87 (3H, s, OMe), 3.72 (3H, s, COOMe); $\delta_{\rm C}$ 163.71 (C₁), ³J_{CH}=10.15; microanalysis: found C, 71.36; H, 6.52, calculated for C₁₃H₁₄O₃ C, 71.54; H, 6.47%.

Wittig reaction with methyl-2-phenoxy-2-(triethylphosphonium)acetate bromide 2b. E- and Z-Methyl-3-(4-chloro-3-nitrophenyl)-2-phenoxy-2-propenoate (E- and Z-91): A suspension of 2b (730 mg, 2.0 mmoles) and DBU (330µL, 2.2 mmoles) in THF (20 mL) was stirred for 10 minutes at rt. Aldehyde 71 (560 mg, 3.0 mmoles) was added and stirring at rt continued for 24 hours. The solvent was then concentrated at reduced pressure, the residue was taken up with AcOEt (30 mL) and washed with saturated NH₄Cl solution (10 mL) and brine (2x10 mL). The organic phase was dried (MgSO₄), evaporated at reduced pressure and finally chromatographed on silica gel (4/1 n-heptane/AcOEt as eluant mixture) to give 91 (547 mg, 1.64 mmoles, yield 81.5%) as an oily 59/41 E/Z mixture (NMR). Half of this mixture was chromatographed on preparative TLC (9/1 n-heptane/AcOEt, 5 runs) to produce a first fraction of E-9I (52 mg) and a second one of Z-9I (47 mg). E-9I: Rf 0.16 (9/1 n-heptane/AcOEt); υ_{max} /cm⁻¹: 1760, 1724, 1640, 1380; δ_{H} 7.88 (1H, d, 2-H Ar), 7.00-7.55 (7H, m, Ar), 6.48 (1H, s, CH=), 3.71 (3H, s, COOMe); δ_c 162.67 (C₁), ${}^{3}J_{CH}=9.47$. Z-91: R_f 0.14 (9/1 n-heptane/AcOEt); υ_{max}/cm⁻¹: 1735, 1710, 1600, 1355; δ_H 8.36 (1H, d, 2-H Ar), 8.02 (1H, dd, 6-H Ar), 7.75 (1H, d, 5-H Ar), 7.278 (1H, s, CH=), 6.90-7.40 (5H, m, Ar), 3.76 (3H, s, COOMe); δ_{C} 163.13 (C₁), ${}^{3}J_{CH}$ <1.00. E/Z-91: m/z 335 (30), 333 (M, 88), 274 (29), 202 (56), 166 (21), 165 (22), 110 (47), 107 (80), 94 (41) and 77 (100), microanalysis: found C, 57.53; H, 3.78; N, 4.15; Cl(org.), 10.54, calculated for C₁₆H₁₂ClNO₅ C, 57.58; H, 3.62; N, 4.20; Cl(org.) 10.62%.

Horner-Wadsworth-Emmons reaction with methyl 2-(di(2',2',2',2'-trifluoroethoxy)phosphoryl)-2phenoxyacetate 6b (KN(SiMe₃)/18-crown-6). E-Methyl 2-phenoxy-2-hexenoate (E-9a): To a solution of 6b (820 mg, 2.0 mmoles) and 18-crown-6 (2.65 g, 10.0 mmoles) in dry THF (20 mL) stirred under Ar atmosphere at -78°C (dry ice/acetone bath) was added KN(SiMe₃)₂ (0.5 M solution in toluene, 8 mL, 4.0 mmoles) dropwise under stirring. After 10 minutes 7a (280 μ L, 3.0 mmoles) was added and stirring at -78°C continued for 2 hours. The reaction was then quenched with saturated NH₄Cl solution (2 mL), warmed to RT, diluted with Et₂O (30 mL) and washed with brine (3x30 mL). The organic phase was dried (MgSO₄), evaporated at reduced pressure and finally chromatographed on silica gel (19/1 n-heptane/AcOEt as eluant mixture) to give 9a (278 mg, 1.26 mmoles, yield 63.0%) as an oily 85/15 *E/Z* mixture (NMR). *E*-9a: R_f 0.41 (19/1 n-heptane/AcOEt); ν_{max} /cm⁻¹: 1726, 1650, 1595, 1498, 1375; *m/z* 234 (M, 100), 159 (37), 131 (45), 119 (20), 105 (36), 94 (28) and 77 (74); $\delta_{\rm H}$ 6.80-7.50 (5H, m, Ar), 5.94 (1H, t, J=7.8Hz, CH=), 3.72 (3H, s, COOMe); 2.59 (2H, dt, J=7.8Hz, =CHCH₂), 1.64 (2H, m, *CH*₂CH₃), 0.93 (3H, t, CH₂CH₃); $\delta_{\rm C}$ 163.14 (C₁), ³J_{CH}=9.58; microanalysis: found C, 70.80; H, 7.36, calculated for C₁₃H₁₆O₃ C, 70.89; H, 7.32%.

Horner-Wadsworth-Emmons reaction with methyl 2-(ethoxy(2',2',2'-trifluoroethoxy)phosphoryl)-2phenoxyacetate 6c (KN(SiMe₃)/18-crown-6). E-Methyl 2-phenoxy-3-(2,4,5-trimethoxyphenyl)-2-propenoate (E-9h): To a solution of 6c (820 mg, 2.0 mmoles) and 18-crown-6 (2.65 g, 10.0 mmoles) in dry THF (20 mL) stirred under Ar atmosphere at -78°C (dry ice/acetone bath) was added KN(SiMe₃)₂ (0.5 M solution in toluene, 8 mL, 4.0 mmoles) dropwise under stirring. After 10 minutes 7h (590 mg, 3.0 mmoles) was added at -78°C, then stirring was continued for 24 hours gently warming the reaction mixture to rt. The reaction was then quenched with saturated NH₄Cl solution (2 mL), diluted with Et₂O (30 mL) and washed with brine (3x30 mL). The organic phase was dried (MgSO₄), evaporated at reduced pressure and finally chromatographed on silica gel (4/1 n-heptane/AcOEt as eluant mixture) to give 9h (265 mg, 0.94 mmoles, yield 47.5 %) as an oily 82/18 *E/Z* mixture (NMR). *E*-9h: R_f 0.18 (4/1 n-heptane/AcOEt); υ_{max}/cm^{-1} : 1715, 1670, 1635, 1605, 1410; *m/z*; δ_{H} 6.95-7.35 (7H, m, Ar), 6.87 (1H, s, CH=), 3.96 (3H, s, OMe), 3.85 (3H, s, OMe), 3.80 (3H, s, OMe), 3.72 (3H, s, COOMe); δ_C 163.90 (C₁), ³J_{CH}=10.65; microanalysis: found C, 59.49; H, 6.49, calculated for C₁₄H₁₈O₆ C, 59.57; H, 6.43%.

Horner-Wadsworth-Emmons reaction with methyl 2-(di(2',2',2'-trifluoroethoxy)phosphoryl)-2phenoxyacetate 6b (DBU/LiCl). E-Methyl 2-phenoxy-3-phenyl-2-propenoate (E-9f): A suspension of 6b (820mg, 2.0 mmoles), DBU (330 μ L, 2.2 mmoles) and anhydrous LiCl (95 mg, 2.2 mmoles) in dry THF (20 mL) was stirred under an Ar atmosphere for 10 minutes at rt. Redistilled aldehyde 7f (310 μ L, 3.0 mmoles) was added and stirring at rt continued for 16 hours. The solvent was then concentrated at reduced pressure, the residue was taken up with AcOET (30 mL) and washed with saturated NH₄Cl solution (10 mL) and brine (2x10 mL). The organic phase was dried (MgSO₄), evaporated at reduced pressure and finally chromatographed on silica gel (19/1 n-heptane/AcOEt as eluant mixture) to give 9f (354 mg, 1.39 mmoles, yield 69.5%) as an oily 87/13 *E/Z* mixture (NMR). *E*-9f: R_f 0.28 (9/1 n-heptane/AcOEt); υ_{max}/cm^{-1} : 1724, 1642, 1358; *m/z* 268 (M, 100), 195 (15), 167 (39), 165 (25), 119 (17), 118 (96), 94 (37) and 77 (43); $\delta_{\rm H}$ 6.85-7.90 (10H, m, Ar), 6.73 (1H, s, CH=), 3.66 (3H, s, COOMe); $\delta_{\rm C}$ 163.95 (C₁), ³J_{CH}=9.81; microanalysis: found C, 75.46; H, 5.60, calculated for C₁₆H₁₄O₃ C, 75.58; H, 5.55%.

REFERENCES

- (a) Shigemori, H.; Miyoshi, E.; Shizuri, Y.; Yamamura, S. Tetrahedron Lett., 1989, 30, 6389. (b) Estendorfer, S.; Ledl, F.; Severin, T. Tetrahedron, 1990, 46, 5617.
- Simonyan, A. V.; Vasilenko, Y. K.; Oganesyan, E. T.; Skul'te, I. V.; Konopleva, G. Y.; Parfent'eva, E. P. Khim.-Farm. Zh., 1991, 25, 38.
- 3. Bosch, J.; Salas, M.; Amat, M.; Alvarez, M.; Morgo, I.; Adrover, B. Tetrahedron, 1991, 47, 5269.
- 4. Brouillard, R.; Lang, J. Can. J. Chem., 1990, 68, 755.
- (a) Donia, S. G. J. Serb. Chem. Soc., 1990, 55, 381. (b) El-Naggar, A. M.; Hamada, S. M. Indian J. Chem., Sect. B, 1981, 20B, 486.
- 6. Maudrin, J.; Barrere, B.; Chantegrel, B.; Deshayes, C.; Quash, G.; Doutehau, A. Bull. Soc. Chim. Fr., 1994, 131, 400.
- 7. Bashang, G.; Hartmann, A.; Wacker, O. US 4640911, 1987.
- (a) Maercker, A. Org. React. (N.Y.), 1965, 14, 270. (b) Maryanoff, B. E.; Reitz, A. B. Chem. Rev., 1989, 89, 863. (c) Kelly, S. E. in "Comprehensive Organic Synthesis", ed. B. M. Trost, Pergamon Press, Oxford, 1991, vol. 1, 755.
- 9. (a) Horner, L.; Hoffmann, H. M. R.; Wippel, H. G.; Klahre, G. Chem. Ber., 1959, 92, 2499. (b) Ref. 8c.
- (a) Boutagy, J.; Thomas, R. Chem. Rev., 1974, 74, 87. (b) Seyden-Penne, J. Bull. Soc. Chim. Fr., 1988, 238.
 (c) Ref. 8c.
- (a) Grell, W.; Machleidt, H. Liebigs Ann. Chem., 1966, 699, 53. (b) Bach, K. K.; El-Seedi, H. R.; Jensen, H. M.; Nielsen, H. B.; Thomsen, I.; Torssell, K. B. G. Tetrahedron, 1994, 50, 7543. (c) Paquet, F.; Sinay, P. J. Am. Chem. Soc., 1984, 106, 8313. (d) Haigh, D. Tetrahedron, 1994, 50, 3177.
- (a) Tsukamoto, M.; Schlosser, M. Synlett, 1990, 605. (b) Patil, V.; Schlosser, M. Synlett, 1993, 125. (c) Clark Still, W.; Gennari, C. Tetrahedron Lett., 1983, 24, 4405.
- 13. (a) Engelhardt, M.; Plieninger, H.; Schreiber, P. Chem. Ber., 1964, 97, 1713. (b) Ref. 11b.
- 14. van der Goorbergh, J. A. M., van der Gen, A. Tetrahedron Lett., 1980, 21, 3621.
- 15. Schultz, A. G.; Napier, J. J.; Ravichandran, R. J. Org. Chem., 1983, 48, 3408.
- 16. (a) Buss, A. D.; Warren, S. J. Chem. Soc. Perkin Trans. I, 1981, 100. (b) Ref. 9a.
- 17. Hammond, G. B.; Blagg Cox M.; Wiemer, D. F. J. Org. Chem., 1990, 55, 128.
- 18. Vogel, A.I. "A *Textbook of practical organic chemistry*", 4th edition, Longman, New York, **1978**, 264 and references cited therein.

(Received in Belgium 3 July 1997; accepted 6 October 1997)