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A B S T R A C T

Benzoylformamide (BFA) derivatives are proposed as new photocaged bases with good solubility in

epoxy resin. Initially their structures were confirmed by 1H NMR, 13C NMR, and elemental analysis. Next,

we detail their thermal stability, solubility behavior, and photolysis products. Furthermore, the model

photo-latent anion polymerization (AP) of epoxide system in the presence of BFA-dBA (N,N-dibenzyl-2-

oxo-2-phenylacetamide) as a photocaged base has been investigated, and excellent photopolymeriza-

tion profile is obtained.

� 2014 Jian-Wen Yang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights

reserved.

Contents lists available at ScienceDirect

Chinese Chemical Letters

jo u rn al h om epag e: ww w.els evier .c o m/lo cat e/cc le t
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50

51
52
1. Introduction

In recent years, photopolymerizations have received revitalized
interest as they promise a wide range of economic and ecological
advantages, while photoinitiators (PIs) and photoinitiating sys-
tems (PISs) have been the subject of intense studies [1–
7]. However, the design and preparation of highly versatile PIs,
which are able to initiate versatile PISs such as free radical
polymerization (FRP), cationic polymerization (CP), and free
radical promoted cationic photopolymerization (FRPCP), is an
on-going challenge in chemical and material sciences with many
applications in a wide range of industrial fields ranging from
radiation curing, imaging, and optics technologies to medicine and
microelectronics areas [8]. In this context, many new structures of
PIs were reported recently [9–17] and exhibited a good radical
initiating ability. Nevertheless, there is still room for the
continuous discovery of new versatile PIs.

Indeed, the already reported photosensitive quaternary ammo-
nium salt (QAS) [18–21], as an archetypical photocaged base, not
only can liberate the amine molecules that allow for anionic
polymerization of epoxides, but also immediately initiate FRP of
acrylates [22–24]. However, this type of photocaged base is not
soluble in monomers and common organic solvents, limiting its
53
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practical use in UV curing applications [25]. Improving the
solubility attained or meeting new or promising possibilities for
applications require a continuous search of new structures.
Following our works in the area of photocaged bases [26–31],
we explore here the possibility of using benzoylformamide (BFA)
derivatives as photocaged bases of anionic polymerization.

As known, photochemistry of BFA involved in photocyclization
or asymmetric synthesis has already been investigated in organic
chemistry [32–36]. Previous researchers had elucidated that the
photocleavage of BFA usually processed the identical pathway,
yielding oxazolidin-4-ones, b-lactams, and mandelic acid deriva-
tives [37,38]. However, to the best of our knowledge, BFAs have not
been reported as PIs in photopolymerization. Furthermore, few
reports have been concerned with Norrish type II photolysis
products of BFAs possessing alicyclic-amine [39,40], and we
speculate novel heterocyclic photolytic compounds may be
produced. The involved mechanisms will be investigated by
UV–vis spectra, NMR, CG-MS, ESI-MS, and RTIR experiments.

2. Experimental

Methyl benzoylformate (MBF, >99.0%) was provided by
Changzhou Tronly (China). Piperidine (PD, �99.5%), 4-benzylpi-
peridine (BPD, 98%), morpholine (ML, 99%), pyrrolidine (PRL, 99%),
N-isopropylaniline (iPA, 99%), dibenzylamine (dBA, 98%), and
oxalyl chloride (98%) were purchased from Aladdin-reagent
(China). Bisphenol A epoxy resin (E51, Blue Star New Chemical
 as new photocaged bases for photo-latent anion polymerization,
2
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Scheme 1. Structures of the benzoylformamides (BFAs) 1–6.
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aterial) was used as received. All other chemicals used were
alytical grade and used without further purification.
The NMR spectra were obtained on a Varian 300 MHz

ectrometer with CDCl3 and TMS as the solvent and internal
andard, respectively. UV–vis absorption spectra were obtained

 an Agilent 8453 spectrophotometer. Thermogravimetric (TG)
sts were performed in the 40–500 8C range, using a TG-209
tzsch thermogravimetric analyzer at a heating speed of 20 8C/

in under N2 atmosphere. Elemental analysis was obtained on an
ementar Vario EL analyzer. Gas chromatography–mass spec-
ometry (GC–MS) spectra were obtained from a Finnigan Voyager

–MS. Electrospray ionization mass spectra (ESI-MS) were
quired on a Thermo Finnigan LCQ DECA XP ion trap mass
ectrometer, equipped with an ESI source. Epoxide conversions
ere monitored by Nicolet 5700 Fourier transform infrared
ectroscopy.
Representative procedure for synthesis of benzoylformamides

cept BFA-iPA: Methyl benzoylformate (10 mmol) in methanol
0 mL) was added dropwise to a stirred mixture of amine
0 mmol) and methanol (20 mL) at 55 8C and then stirred for 3 h,
stilled to concentrate the solution, and crystallized in the
frigerator. The crystal was filtered, washed with cooled
ethanol, and dried in vacuum to give white crystals.

1-(Phenylglyoxylyl)piperidine (BFA-PD): Yield: 30.3%. lH NMR
00 MHz, CDCl3): d 1.54–1.58 (m, 2H), 1.69–1.73 (m, 4H), 3.28–
32 (t, 2H, J = 6.0 Hz), 3.70–3.72 (m, 2H), 7.48–7.53 (t, 2H,

 6.0 Hz), 7.61–7.66 (t, 1H, J = 6.0 Hz), 7.93–7.96 (d, 2H,
 9.0 Hz). 13C NMR (300 MHz, CDCl3): d 24.7, 25.8, 26.6, 42.5,
.4, 129.2, 129.7, 133.4, 134.9, 165.5, 192.0. Anal. calcd. for

3H15NO2: C, 71.87; H, 6.96; N, 6.45%. Found: C, 71.59; H, 7.31; N,
36.

1-(Phenylglyoxylyl)-4-benzyl-piperidine (BFA-BPD): Yield:
.2%. lH NMR (300 MHz, CDCl3): d 1.14–1.36 (m, 2H), 1.59–

64 (m, 1H), 1.78–1.82 (m, 2H), 2.54–2.56 (d, 2H, J = 6.0 Hz), 2.69–
76 (t, 1H, J = 12.0 Hz), 2.94–3.03 (t, 1H, J = 15.0 Hz), 3.50–3.54 (d,

, J = 12.0 Hz), 4.61–4.66 (d, 1H, J = 15.0 Hz),7.08–7.11 (d, 2H,
 9.0 Hz), 7.14–7.19 (t, 1H, J = 9.0 Hz), 7.23–7.27 (t, 2H, J = 6.0 Hz),

45–7.50 (t, 2H, J = 6.0 Hz), 7.58–7.63 (t, 1H, J = 6.0 Hz), 7.90–7.92
, 2H, J = 6.0 Hz). 13C NMR (300 MHz, CDCl3): d 32.0, 32.7, 38.5,
.8, 43.2, 46.6, 126.3, 128.5, 129.2, 129.7, 133.4, 134.8, 139.8,
5.5, 192.0. Anal. calcd. for C20H21NO2: C, 78.15; H, 6.89; N, 4.56%.
und: C, 77.75; H, 7.04; N, 4.15.
1-(Phenylglyoxylyl)morpholide (BFA-MP): Yield: 27.8%. lH
R (300 MHz, CDCl3): d 3.35–3.38 (t, 2H, J = 3.0 Hz), 3.62–3.65

 2H, J = 3.0 Hz), 374–3.80 (m, 4H), 7.46–7.51 (t, 2H, J = 9.0 Hz),
60–7.65 (t, 1H, J = 6.0 Hz), 7.92–7.95 (d, 2H, J = 9.0 Hz). 13C NMR
00 MHz, CDCl3): d 42.0, 46.6, 66.9, 67.0, 129.2, 129.8, 133.4,
5.0, 165.5, 191.1. Anal. Calcd for C12H13NO3: C, 65.74; H, 5.98; N,

39%. Found: C, 65.56; H, 6.11; N, 6.25.
1-(Phenylglyoxylyl)pyrrolidine (BFA-PrD): Yield: 34.5%. lH
R (300 MHz, CDCl3): d 1.89–2.02 (m, 4H), 3.40–3.45 (t, 2H,

 6.0 Hz), 3.63–3.68 (t, 2H, J = 6.0 Hz), 7.46–7.52 (t, 2H,
 9.0 Hz),7.59–7.65 (t, 1H, J = 9.0 Hz), 7.96–8.00 (d, 2H,
 9.0 Hz). 13C NMR (300 MHz, CDCl3): d 24.3, 26.2, 45.5, 46.9,
9.1, 129.9, 133.0, 134.8, 165.0, 191.6. Anal. calcd. for C12H13NO2:

 70.92; H, 6.45; N, 6.89%. Found: C, 70.71; H, 6.48; N, 6.35.
N,N-Dibenzyl-2-oxo-2-phenylacetamide (BFA-dBA): Yield:

.8%. lH NMR (300 MHz, CDCl3): d 3.86 (s, 4H), 7.18–7.37 (m,
H), 7.43–8.01 (m, 5H). 13C NMR (300 MHz, CDCl3): d 50.1, 128.6,
9.0, 130.2, 131.5, 133.6, 134.3, 170.6, 194.9. Anal. calcd. for

2H19NO2: C, 80.22; H, 5.81; N, 4.25%. Found: C, 80.11; H, 5.94; N,
16.

N-Isopropylbenzoylformanilide (BFA-iPA): To a CH2Cl2 solution
0 mL) of benzoylformic acid (3.00 g, 30.0 mmol) prepared from
ethyl benzoylformate by basic hydrolysis with aqueous NaOH
lution (quantitative) was added catalytic amount of DMF
Please cite this article in press as: M.-H. He, et al., Benzoylformamide
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(1 drop) and oxalyl chloride (1.9 mL, 22.0 mmol). The reaction
mixture was stirred for 4 h at room temperature until generation of
gases stopped and then cooled to 0 8C. To this was added a solution
of N-isopropylanilin (3.2 mL, 29.9 mmol) and Et3N (7.0 mL,
50.2 mmol). The reaction mixture was stirred at room temperature
for 1 h and then quenched by adding water. Organic materials were
extracted 3 times with ethyl acetate, and then the combined
extracts were washed successively with a 5% HCl aqueous solution
and saturated NaCl solution, dried over anhydrous MgSO4,
evaporated to give the corresponding product, and recrystallized
from ethyl acetate to give colorless crystals. Yield: 35.4%. lH NMR
(300 MHz, CDCl3): d 1.22–1.24 (d, 6H, J = 6.0 Hz), 5.01–5.15 (m, 1H,
J = 6.0 Hz), 7.05–7.78 (m, 10H). 13C NMR (300 MHz, CDCl3): d 21.2,
47.0, 128.8, 129.1, 129.4, 131.2, 133.8, 134.2, 135.7, 166.8,
190.0. Anal. Calcd for C17H17NO2: C, 76.38; H, 6.41; N, 5.24%.
Found: C, 75.89; H, 6.50; N, 5.16.

Photodecomposition of BFA-dBA: First, BFA-dBA in acetonitrile
(1 � 10�4 g/mL) was put into a quartz cell. Next, the photodecom-
position was carried out by optical cable-directed UV lamp (RW-
UVA-F200U, Runwing Co. China) over time (0 min, 1 min, 2 min,
3 min), then UV–vis spectra were measured.

Photoinitiated thermal anion polymerization: Mixtures of BFA-
dBA (5 � 10�4 mol) and a commercial epoxide E51 (1 g) were
spread on KBr plates. The mixtures were irradiated on the UV
curing machine for 10 min. In all photochemical experiments, the
optical cable-directed UV lamp operating in the 200–400 nm range
(RW-UVA-F200U, Runwing Co., China) was used as the irradiation
source, and the light intensity at the surface level of the cured
samples was 20 mW/cm2 measured by a UV-radiometer (type UV-
A, Photoelectric Instrument Factory, Beijing Normal University).
Then some of the mixtures were baked at high temperature. The
results were observed visually and measured quantitatively by FT-
IR spectra.

3. Results and discussion

In this paper, we endeavor to synthesize BFAs possessing
alicyclic-amine in order to test the photochemical characteristics.
Furthermore, their Norrish type II photolysis products may involve
basic heterocyclic compounds, which is of particular current
interest as they can be exploited in the design of new photocaged
bases. Hence, BFAs 1–5 (Scheme 1) with different amide
substituents were successfully synthesized from methyl benzoyl-
formate (MBF) by transesterification reaction with secondary
amine (Scheme 2a) [41]. Due to the weak basicity of N-
isopropylanilin, transesterification reaction with MBF was difficult,
but BFA-iPA can be prepared according to the literature (Scheme
2b) [42]. The structures of BFAs 1–6 were confirmed by 1H NMR,
13C NMR, and elemental analysis.

Thermal stability is one of the important parameters of
photocaged bases. When the stability of the initiator is very
low, the pot life may be short, making the system less useful.
Indeed, the observed order of thermal stability for BFAs is BFA-BPD
s as new photocaged bases for photo-latent anion polymerization,
02
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Scheme 2. Synthesis of BFAs 1–6.
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Fig. 2. UV–vis absorption spectra of BFAs in chloroform (1 � 10�4 g/mL).
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(246.6 8C) > BFA-iPA (188.6 8C) > BFA-MP (172.2 8C) > BFA-PD
(168.6 8C) > BFA-PrD (164.6 8C) > BFA-dBA (139.2 8C) (Fig. 1,
Table 1). Noting that the initial decomposition temperatures of
all BFAs are above 135 8C, we conclude the BFAs have good thermal
stability at room temperature. Among the BFAs studied, BFA-BPD is
the most stable one, while BFA-dBA has the worst thermal stability.
In the paper, we focus on the photochemistry properties of BFAs.
Actually, since the thermal stability of BFAs is quite different, this
may be used for thermal latent anion polymerization of epoxy
resin, and detailed research is worthy of further exploration.

Introducing the amide group to benzoyl skeleton drastically
changes the solubility behavior of the BFAs. Of these photocaged
bases, liquid BFA-PrD is readily soluble in the bisphenol A epoxy
resin E51, BFA-PD, BFA-BPD, BFA-MP, BFA-iPA and BFA-dBA
showed moderate solubility after adequate mixing at 50 8C. Thus,
BFA derivatives as photocaged base exhibit sufficient solubility in
E51, and may provide a promising future for its practical use in UV
curing applications.

The absorption spectra of the investigated BFAs in chloroform
are given in Fig. 2. All BFAs exhibit similar absorption character-
istics with maxima at 286 nm and 355 nm, and a tail over 400 nm,
exhibiting a red shift compared with that of the parent compound,
methyl benzoylformate (MBF, lmax = 255 nm), due to the presence
of the amide substituents on the benzoyl skeleton.
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Fig. 1. Thermogravimetric profiles of BFAs with heating rate at 20 8C/min under N2.

Table 1
Thermal stability of BFAs.

BFA BFA-PD BFA-BPD BFA-MP BFA-PrD BFA-iPA BFA-dBA

TG(oC)a 168.6 246.6 172.2 164.6 188.6 139.2

a Determined by thermogravimetric analysis as the point of 5% weight loss.

Please cite this article in press as: M.-H. He, et al., Benzoylformamides
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In the paper, BFA-dBA was selected here for the model
mechanistic investigation i.e. this photocaged base was character-
ized both by the UV absorption properties and photopolymeriza-
tion (see below). As shown in Fig. 3, photolysis of BFA-dBA in
chloroform was investigated by UV-vis spectroscopy. BFA-dBA
exhibits a strong UV absorption with molar extinction coefficients
of 1.52 � 103 L mol�1 cm�1 at 288 nm, which is attributed to the
p–p* transition; the maximum at 368 nm with molar extinction
coefficients of 7.38 � 101 L mol�1 cm�1 can be explained by the n–

p* transition. Furthermore, distinct decreases in absorption bands
at 288 nm and 368 nm were observed with prolonged irradiation
time.

The photolysis products formed from irradiated BFA-dBA in
chloroform were identified by 1H NMR, followed by GC–MS and
ESI-MS assisted product analysis. From Fig. 4, most proton signals
in BFA-dBA weakened after 30 min irradiation, meanwhile new
protons Ha (10.0 ppm), Hb (8.3 ppm), and Hc (4.8 ppm) appeared.
According to the literature [43], we can speculate that the above-
mentioned new protons should correspond to –CHO in benzalde-
hyde and –CH55N– and –CH2–Ph in N-benzylidenebenzylamine,
respectively. Normalized by an internal standard peak at TMS, the
ratios of the photolysis products were calculated by the internal
standard method. As shown in Scheme 3, after 30 min irradiation,
the yields of benzaldehyde and N-benzylidenebenzylamine were
48.5% and 21%, respectively. Due to a superposition with the parent
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Fig. 3. UV–vis spectral changes of BFA-dBA in chloroform (1 � 10�4 g/mL) being

irradiated over time.
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olecule BFA-dBA, the signals of N-dibenzylamine are difficult to
tect by NMR. Moreover, GC–MS study of the photolysis products
nfirmed the formation of benzaldehyde (M0 = 106) and N-
nzylidenebenzylamine (M0 = 195). Astonishingly, basic photoly-

 compounds from irradiated BFA-dBA were detected by pH-
dicator paper. Since GC-MS failed to detect an amine compound,
I-MS was employed to probe photogenerated base in Fig. 5. It
ould be noticed that the detection of protonated dibenzylamine
A+ (m/z = 198.2) after irradiation was direct evidence for the

rmation of dBA from BFA-dBA, and thus BFA-dBA also can act as a
vel photocaged base. We speculate that the photolysis of BFA-
A may undergo Norrish type II elimination reaction, and the
otolysis products of BFA-dBA are identified as benzaldehyde, N-
nzylidenebenzylamine, N-dibenzylamine and some unknown
bstances. Taking the foregoing points into consideration, the
otolysis products of BFA-dBA can be listed in Scheme 3.
This BFA-dBA also can provide a promising future for its

plication to photolatent amine-catalytic ring-opening polymer-
ation (ROP) of epoxide systems. The chemical transformation in

 E51 film containing BFA-dBA was followed by monitoring the
aracteristic band of the epoxide ring at 915 cm�1 in FT-IR spectra

 obtain some information concerning the photo-latent amine
talytic reaction (Fig. 6). After UV-exposure of 10 min, no
teration of the spectral shape (Fig. 6, curve 2) was observed
ter 60 min at room temperature compared to the pristine E51
ig. 6, curve 1), suggesting that the crosslinking of the epoxide is
t essentially induced before post-exposure baking. When the
m was heated at 120 8C after UV-exposure, the peak intensity of
e epoxide at 915 cm�1 gradually decreased over time (curve
4). This situation is visualized by plotting the decreased peak
Please cite this article in press as: M.-H. He, et al., Benzoylformamides as new photocaged bases for photo-latent anion polymerization,
Chin. Chem. Lett. (2014), http://dx.doi.org/10.1016/j.cclet.2014.10.002
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area as a function of heating time, as given in Fig. 7. No marked
spectral alteration was observed within 9 min, but the absorption
band of epoxide abruptly decreased thereafter, and 80% conversion
was obtained after 100 min baking. These results indicate that the
crosslinking reaction of E51 can be induced by the photogenerated
dibenzylamine from BFA-dBA.

4. Conclusions

Benzoylformamides (BFAs) derivatives as novel photocaged
bases were designed and synthesized. Initially their structures were
confirmed by 1H NMR, 13C NMR, and elemental analysis. Next, we
detail their thermal stability, solubility behavior and photolysis
products. The results show that BFAs have good thermal stability at
room temperature and exhibit sufficient solubility in epoxy resin
E51. Meanwhile, photolysis products of BFA-dBA are identified as
benzaldehyde, N-benzylidenebenzylamine, N-dibenzylamine and
some unknown substances. Furthermore, the model photo-latent
anion polymerization (AP) of epoxide system in the presence of
BFA-dBA (N, N-Dibenzyl-2-oxo-2-phenylacetamide) as a photo-
caged base has been investigated, and 80% conversion was obtained
at 100 min baking after UV-exposure of 10 min. This photodecom-
position reaction is of particular interest as it is can facilitate the
design of new photocaged bases with very promising properties.
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