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A series of low-coordinate, paramagnetic iron complexes in a
tris(thioether) ligand environment have been prepared. Reduction
of ferrous {[PhTttBu]FeCl}2 [1; PhTttBu ) phenyltris((tert-butylthio)-
methyl)borate] with KC8 in the presence of PR3 (R ) Me or Et)
yields the high-spin, monovalent iron phosphine complexes
[PhTttBu]Fe(PR3) (2). These complexes provide entry into other low-
valent derivatives via ligand substitution. Carbonylation led to
smooth formation of the low-spin dicarbonyl [PhTttBu]Fe(CO)2 (3).
Alternatively, replacement of PR3 with diphenylacetylene produced
the high-spin alkyne complex [PhTttBu]Fe(PhCCPh) (4). Lastly, 2
equiv of adamantyl azide undergoes a 3 + 2 cycloaddition at 2,
yielding high-spin dialkyltetraazadiene complex 5.

The monovalent oxidation state of iron is receiving
increasing attention because of its implication in biocatalytic
hydrogen and ammonia production and its potential in
promoting group-transfer reactions. The iron-only hydroge-
nase enzymes reduce protons to H2 at an active site of
composition Fe2(CO)3(CN)2(µ-S2(CH2)2X).1 The unusual
organometallic diiron subcluster is proposed to redox cycle
via a number of states including reduced states that are
formally iron(I).2 The more structurally complex iron
molybdenum cofactor of nitrogenase is a metallocluster
featuring low-coordinate iron sites in sulfur-rich environ-
ments that facilitate N2 reduction.3 These developments have
stimulated a high level of activity within the coordination
chemistry community4,5 wherein emphasis can be placed on
elucidating fundamental aspects of the geometric and elec-
tronic structure and establishing how such structural features
dictate chemical reactivity. Our interests in this regard are

the preparation and examination of high-spin monovalent iron
complexes5,6 in a sulfur-rich ligand environment. While the
spectroscopic characteristics of heme and nonheme iron
complexes have been extensively examined, similar data for
low-coordinate, i.e., CN < 5, low-valent, high-spin com-
plexes are limited. Thus, a comparison with the data derived
from the examination of metalloproteins is tenuous. Herein,
we present the synthesis, structure, electron paramagnetic
resonance (EPR), Mössbauer and magnetic properties of a
series of monovalent iron complexes supported by the
tris(thioether)borate ligand [PhTttBu].7 Ligand substitution
allows for the introduction of a range of donors including
those that are potentially redox-active and, thus, confounds
simple electronic structure descriptions.8

In contrast to the synthesis of [PhTttBu]MX derivatives of
Ni, Co, Zn, and Cd, entry into [PhTttBu]-ligated iron
chemistry is quite sensitive to the nature of the metal salt.7,9

After canvassing a number of potential precursors, we
established that FeCl2(THF)1.5 leads to the target complex,
albeit in a stepwise fashion. The addition of [PhTttBu]Tl to
FeCl2(THF)1.5 in THF generates the colorless “ate” complex
{[κ2-PhTttBu]FeCl2}Tl ·THF (see the Supporting Information
for details). Removal of the volatiles followed by dissolu-
tion in toluene precipitates TlCl, generating light-yellow
{[PhTttBu]FeCl}2 (1). Unlike the Co, Ni, and Zn analogues,
1 is dimeric in the solid state as revealed by X-ray diffraction
(Figure S6 in the Supporting Information, SI). The magnetic
susceptibility of 1 (SQUID; Figure S1 in the SI) follows the
Curie law, with µeff ) 5.1 µB per Fe (10–290 K), indicating
no detectable exchange coupling between the metals. The
4.5 K Mössbauer parameters of 1, at δ ) 0.96(3) mm/s and
∆EQ ) 3.45(2) mm/s, are in the range expected for a high-
spin ferrous site and similar to those of ferrous rubredoxin.10
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The addition of 3 equiv of PR3 (R ) Me or Et) to 1 generates
a light-yellow solution. Subsequent stirring over KC8 produces
a deep-blue solution from which monovalent [PhTttBu]Fe(PR3)
(2R) is isolated in moderate yields. The molecular structure of
2Et is depicted in Figure 1. The molecule is pseudo-C3-
symmetric, with the phosphine residing on the 3-fold axis. The
phosphine complexes display µeff ) 3.9(1) µB for 2Me and 4.1(1)
µB for 2Et, consistent with three unpaired electrons, i.e., S )
3/2. Both derivatives exhibit axial EPR signals at 5 K with
effective g values of 4.26 and 2.05 and E/D ) 0 (Figure S2 in
the SI). There is no discernible superhyperfine coupling to the
31P NMR nucleus, suggesting that little unpaired spin density
resides on that nucleus. The EPR spectrum of S ) 1/2
[PhTttBu]Ni(PMe3) also does not display such coupling.11

Mössbauer spectra of 2Me exhibit δ ) 0.76(3) mm/s and ∆EQ

) 1.88(3) mm/s at 4.5 K. The isomer shift is higher than those
reported for the few iron(I) complexes published.5

2 has proven to be a useful synthon via ligand substitution
for the preparation of derivatives containing the [PhTttBu]Fe
fragment (Scheme 1). Exposure of a pentane solution of 2 to a
CO atmosphere results in conversion to the dicarbonyl, 3. The
IR spectrum contains two intense νCO bands at 1984 and 1911
cm-1, which appear at 1938 and 1867 cm-1 in samples prepared
from 13CO. For comparison, Peters’ [PhBP3]Fe(CO)2 exhibits

nearly identical values, νCO ) 1979 and 1914 cm-1,6a whereas
Chirik’s formally iron(0) complexes have expectedly lower
energy bands.12 The molecular structure of 3 (Figure 1) is that
of a square pyramid, with two thioether sulfurs and two
carbonyls defining the equatorial plane. The apical thioether
bond length is longer, at Fe-S1 ) 2.361(2) Å, than the
equatorial Fe-S bonds, 2.307(2) and 2.327(2) Å. This observa-
tion is surprising given the strong trans influence of CO ligands.
In [PhBP3]Fe(CO)2, the apical Fe-P bond length is shorter than
the equatorial ones. The room temperature magnetic moment
of 3, determined in solution by the method of Evans,13 is µeff

) 1.7(1) µB, consistent with an S ) 1/2 spin state. Moreover,
complex 3 displays an isomer shift of 0.21 mm/s (162 K),
consistent with a low-spin complex and a rhombic EPR signal,
g ) 2.13, 2.07, and 2.00 (Figure S3 in the SI), similar to the
signal reported for the oxidized state of the H cluster of
hydrogenase II, g ) 2.078. 2.027, and 1.99.14 A sample of 3
prepared with 13CO exhibits superhyperfine coupling to the two
13C nuclei, with A1 ) 30 MHz, A2 ) 30.5 MHz, and A3 ) 36
MHz.

The addition of diphenylacetylene to 2 generates an olive-
green alkyne complex, 4. The geometry at the iron is square
pyramidal, τ ) 0.06, 15 when considering the alkyne carbons
in two of the equatorial positions. The Fe-C bond lengths,
1.971(3) and 1.961(3) Å, reflect symmetric alkyne coordination.
The C-C bond length, 1.280(4) Å, of the diphenylacetylene
ligand is lengthened compared to the free alkyne, 1.210(3) Å.16

The C-C bond length is indistinguishable from that in
(iPrPDI)Fe(PhCCPh)17 while somewhat longer than that found
in several lower coordinate �-diketiminate derivatives.6b The
νCC mode at 1804 cm-1 is at much lower energy than for the
free ligand, 2217 cm-1.18 Thus, there is significant electronic
back-donation to the diphenylacetylene ligand, with the ferrous
state relevant. The paramagnetically shifted 1H NMR spectral
features of 4 are more similar to those of other ferrous
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Figure 1. Molecular structures of 2-5 as determined by X-ray diffraction. Thermal ellipsoids are at the 30% level, and H atoms are omitted.

Scheme 1

COMMUNICATION

1890 Inorganic Chemistry, Vol. 47, No. 6, 2008



complexes, i.e., 1 and [PhTttBu]Fe(Me),19 than to those of the
monovalent species 2 and 3. 4 is high-spin, S ) 3/2, as indicated
by its magnetic moment, µeff ) 4.1(1) µB, and rhombic EPR
signals, g ) 6.42, 1.64, and 1.29 and E/D ) 0.228 (Figure S4
in the SI). Preliminary Mössbauer spectra of 4 reveal δ )
0.62(3) mm/s and ∆EQ ) 1.62(2) mm/s, which do not contradict
its assignment as an iron(I) S ) 3/2 species. The pseudo-three-
coordinate LFe(PhCCH) prepared by Holland et al. displays
parameters δ ) 0.44(2) mm/s and ∆EQ ) 2.02(2) mm/s.5b

Lastly, we are interested in preparing higher valent
complexes of [PhTttBu]Fe, specifically imidoiron(III), using
the group-transfer approach.6a,20 It was surprising that the
addition of 1-adamantyl azide to 2 did not yield imido-
iron(III) [PhTttBu]Fe(NAd). Instead, the dark-orange diada-
mantyltetraazadiene, 5, was isolated. 5 has an S ) 3/2 ground
state as indicated by its magnetic moment, µeff ) 3.8(1) µB

and its rhombic EPR spectrum with g ) 5.47, 2.28, and 1.57
and E/D ) 0.305 (Figure S4 in the SI). The similarities
between the EPR and spectral data of 4 and 5 provide
empirical evidence for similar degrees of charge transfer onto
the ligands PhCCPh and Ad2N4, respectively.

The molecular structure of 5 (Figure 1) features a four-
coordinate iron site of roughly tetrahedral stereochemistry with
the [PhTttBu] ligand coordinated in a κ2 fashion. The Ad2N4 unit
binds symmetrically through its 1 and 4 nitrogens, Fe-N1 )
1.943(3) Å and Fe-N4 ) 1.947(3) Å. The resulting five-
membered metallacycle is planar with N-N bond lengths of
N1-N2 ) 1.324(4) Å, N3-N4 ) 1.317(4) Å, and N2-N3 )
1.337(5) Å. The similarity of the N-N bond distances suggests
a resonance structure with electron delocalization across the ring
[Figure 2 (resonance form B)].21 These structural parameters
are inconsistent with limiting resonance contributors in which
the Ad2N4 ligand is either neutral (A) or dianionic (C) because
each predicts localized N-N and NdN bonds. Interestingly,
the electronic spectrum of 5 contains a low-energy absorption
band in the near-IR, λmax ) 950 nm (ε ) 112 M-1 cm-1). A
similar feature was reported for the 19-electron anions, [CpCo(1,4-

R2N4)]–, in which the unpaired electron was determined to reside
in a delocalized π* orbital of the metallacycle based on XR
calculations.22 While we consider resonance form B as a
description consistent with the experimental data, it can be
problematic to overemphasize such assignments. As noted by
Trogler, “. . . tetrazabutadiene complexes defy a simple descrip-
tion.”21 Recent reports of the complex redox behavior and
electronic structures of iron R-diimine complexes highlight this
cautionary note.8 Experiments aimed at the characterization of
the electronic structures of 4 and 5, augmented by density
functional theory calculations, are in progress.

A plausible reaction pathway leading to tetraazadiene com-
plexes was proposed first by Stone et al.23 The formation of 5
would initiate with group transfer to iron(I) generating a putative
imidoiron(III) intermediate, [PhTttBu]Fe(NAd). Clear precedents
of similar adducts are available in the systematic studies of
Peters and co-workers that demonstrate that four-coordinate
imidoiron complexes may be accessed in the ferrous, ferric,
and iron(IV) oxidation states.24 In the present case, the imi-
doiron(III) intermediate reacts further with a second 1 equiv of
AdN3 via a 3 + 2 cyclization, leading to 5. This last step may
be favored because of the ability of [PhTttBu] to deligate one
thioether substituent, thus providing sufficient space for the 3
+ 2 cycloaddition to proceed. Additional studies are warranted
to further investigate the mechanism of this reaction.

In summary, we have established entry into monovalent iron
coordination complexes in a sulfur-rich ligand environment.
High-spin iron(I) complex 2 is a synthon for a number of new
complexes via ligand substitution. While 2 and 3 appear to be
bona fide monovalent iron species, high-spin 4 and 5 exhibit
distinct spectral and structural characteristics indicative of back-
donation to the alkyne and tetraazadiene ligands, respectively.
The interesting and more complex electronic structures of 4
and 5 are the subject of ongoing studies.
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Figure 2. Resonance structures of 5: high-spin iron(I) with (N4Ad2)0 (A),
high-spin iron(II) with an antiferromagnetically coupled N4Ad2 radical anion
(B), and intermediate-spin iron(III) with (N4Ad2)2- (C).
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