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Abstract: The title synthesis was achieved by the reaction of t-but-
oxycarbonylguanidine with 3-bromo-1,1-dimethoxypropan-2-one
as a key step. Starting with 1-tert-butoxycarbonyl-2-tert-butoxycar-
bonylaminoimidazol-4-carbaldehyde thus obtained expeditious
synthesis of oroidin, hymenidin, dispacamide and monobromodis-
pacamide, the representative 2-aminoimidazole alkaloids, was ac-
complished.

Key words: 2-aminoimidazol-4-carbaldehydes, alkaloids, cycliza-
tions, total synthesis, heterocycles

Various structural types of 2-aminoimidazole alkaloids
including oroidin (1), hymenidin (2), dispacamide (3),
monobromodispacamide (4), sceptrin (5) and ageladine A
(6), have been isolated from marine sources (Figure 1).1

Their intriguing structures as well as diverse biological
activities, some of which are of interest from the pharma-
ceutical points of view, make these alkaloids attractive
synthetic targets, and numerous total syntheses have hith-
erto been reported.1,2

Taking into account the synthetic steps for constructing
their characteristic 2-aminoimidazole moieties, the total
syntheses so far achieved can be roughly classified into

two categories. One is the synthetic step where the 2-ami-
noimidazole ring is produced by condensing a guanidine
derivative with an a-haloketone3 or by reacting cyan-
amide with an a-aminoketone.2a The other step features
amination of the 2-position of the preformed imidazole
ring by the use of explosive azide or diazonium reagents.4

In both syntheses, the construction of the 2-aminoimida-
zole moiety is usually carried out at the later synthetic
stages. Accordingly, it is obvious that a number of the
congeners for natural 2-aminoimidazole alkaloids in
which the structures except for the 2-aminoimidazole
moiety are replaced with various structural motifs differ-
ent from those involved in natural products, cannot be
readily prepared in a large scale by applying the reported
methods.

Considering these facts delineated above, a novel synthet-
ic strategy was sought which can afford not only natural
2-aminoimidazole alkaloids but also their congeners more
efficiently than the methods reported.1 We have now
found that the 2-aminoimidazol-4-carbaldehyde deriva-
tives I (Figure 2) would be the best starting material for
the novel strategy. In addition to the characteristic 2-ami-
noimidazole moieties, I carry the 4-aldehyde groups that

Figure 1 Structures of representative 2-aminoimidazole alkaloids
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can be elaborated to various structural motifs. However, a
search of the literature soon disclosed that the synthesis of
I is scarcely explored. The only method reported by
Alain5 is anticipated to lack practicality due to its harsh re-
action conditions such as thermolysis. Therefore, we em-
barked on exploring a novel synthetic route to I more
efficient than that reported.5

Figure 2 Structures of 2-aminoimidazol-4-carbaldehyde derivati-
ves.

It was reported by Webber et al.6 that, as shown in
Scheme 1, the 2-acetamido-4-alkyl- or 4-arylimidazole
derivatives 9 can be prepared in good yields by the reac-
tion of acetylguanidine (7) and a-haloketones 8 in N,N-
dimethylformamide or acetonitrile. Expecting that apply-
ing the Webber reaction can readily produce I, we treated
3-bromo-1,1-dimethoxypropan-2-one (10) with 7 under
the same conditions as employed by Webber et al.6 How-
ever, as shown in Scheme 2, the desired product 117 was
obtained only in 1% yield along with complex reaction
products.8 Aiming to improve the disappointing results,
the same reaction was next examined by using tert-but-
oxycarbonylguanidine (12a)9 in place of 7. While it was
reported that 12a is usable for the Webber reaction simi-
larly to 7,3a the reaction of 10 with 12a had not been ex-
amined. To our delight, the reaction was found to take
place smoothly, affording 2-amino-1-tert-butoxycarbon-
yl-4-dimethoxymethylimidazole (14a)7 as the sole prod-
uct in 47% yield.8 Formation of the expected 2-tert-
butoxycarbonylamino-4-dimethoxymethylimidazole
(13a) corresponding to 9 and 11 was not observed at all.
This result distinctly differs from that reported.3a

The structure of 14a was verified by its spectral data7 and
single-crystal X-ray analysis (Figure 3).10 Interestingly,
when phenacyl bromide (15) being one of the typical sub-
strates for the Webber reaction6 was used in place of 10, a
mixture of 2-amino-1-tert-butoxycarbonyl-4-phenylimi-
dazole (16) and its 2-phenacyl derivative 17 was similarly
obtained in 22% and 37% yields, respectively.11 In this re-
action too, formation of the 2-tert-butoxycarbonylamino
derivative corresponding to 9 and 11 could not be detect-
ed. The reason why 12a gave the results obviously differ-
ent from those obtained with 7 is presently quite unclear.
However, an electronic effect rather than a steric effect
may account for the observed results.
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Scheme 2 Reactions of the acylguanidine derivatives (7 and 12a) with 3-bromo-1,1-dimethoxymethylpropan-2-one (10)
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The novel reaction to cleanly afford 14a from 10 and 12a
was further studied by employing various alkoxycarbon-
ylguanidines 12b–e and changing the reaction conditions.
These results are summarized in Table 1 and 2. It ap-
peared evident that 12a is the best alkoxycarbonylguani-
dine of choice and the chemical yield is almost unaffected
by the nature of the reaction solvent. The best yield real-
ized by using 12a is probably due to its stability under the
basic reaction conditions intensified by the increased ster-
ic hindrance. Under the optimized conditions (Table 1,
run 2),12 14a could be produced in more than 60% yield.

As shown in Scheme 3, 14a which becomes readily avail-
able in a large quantity was converted to 2-acylaminoim-
idazo-4-carbaldehydes 18 corresponding to I by
sequential acylation and deacetalization. Further protec-
tion of the 1-imino group in 18 with a tert-butoxycarbonyl
group furnished 2-acylamino-1-tert-butoxycarbonylimi-
dazol-4-carbaldehyde 19 which also corresponds to I. At-
tempted introduction of protective groups other than the
tert-butoxycarbonyl group into the 1-imino group of 18a
turned out fruitless.13

With paving the way to 19 completed, the total synthesis
of representative 2-aminoimidazole alkaloids, oroidin (1),
hymenidin (2), dispacamide (3) and monobromodispac-
amide (4), was next examined to explore the synthetic
utility of 19. Thus, as outlined in Scheme 4, Julia

Table 1 Synthesis of Various 2-Amino-1-alkoxycarbonyl-4-
dimethoxymethylimidazole Derivatives (14a,b,d,e) in THF or DMFa

Entry Product R Yield (%)b in THF in DMF

1 t-Bu (14a) 51 47

2c t-Bu (14a) 62 (64d)

3 Me (14b) <24e <8e

4 CH2CCl3 (14c) n.d.f n.d.f

5 Allyl (14d) 24 26

6 Benzyl (14e) 37 26

a All reactions were carried out on 0.25–1.0-mmol scale.
b Isolated yield.
c The reaction was performed at 50 °C for 6 h.
d The reaction was carried out on 10-mmol scale.
e This sample was contaminated by a minute amount of the unidenti-
fied byproduct.
f Not detected.

Table 2 Synthesis of 2-Amino-1-tert-butoxycarbonyl-4-dimeth-
oxymethylimidazole (14a) in Various Solventsa

Entry Solvent Yield (%)b Entry Solvent Yield (%)b

1 PhMe 42 6 MeCN 38

2 EtOAc 50 7 DMAc 47

3 THF 51 8 DMF 47

4 CH2Cl2 40 9 NMPd 44

5 EtOH 44 10 DMSO 51

a All reactions were performed on 0.25-mmol scale.
b Isolated yield.
c N,N-Dimethylacetamide.
d N-Methylpyrrolidone.
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olefination14 of 19a with sulfone 21 gave E olefin 22 in
62% yield along with the undesired Z olefin (10% yield).
Wittig reaction to produce 22 resulted in low yield and de-
creased E selectivity. Sulfone 21 was readily obtained
from commercially available 1-phenyl-5-mercapto-1H-
tetrazole (20) and N-(2-bromoethyl) phthalimide in 79%
yield (2 steps). Deprotection of 22 with hydrazine accom-
panied complete removal of the 1-tert-butoxycarbonyl
group and subsequent treatment with 4,5-dibromo-2-
trichloroacetylpyrrole15 afforded the protected oroidin de-
rivative 24a in 79% yield (2 steps). Final removal of the
tert-butoxycarbonyl group under acidic conditions gave
rise to oroidin (1) in 92% yield.4a,6,16,17 In a similar man-
ner, hymenidin (2)18 was prepared from 23 by way of
24b.19 Spectral and physical properties of 1 and 2 were
identical to those reported.4a,6,17,20

Finally, the synthesis of dispacamide (3) and monobromo-
dispacamide (4) was examined starting with 22. As shown
in Scheme 5, catalytic reduction of 22 followed by depro-
tection with hydrazine and complete removal of the 1-tert-
butoxycarbonyl group in the imidazole moiety gave
amine 25 in 64% yield (3 steps). This was converted to 3
and 4 following the procedure reported by Horne et al.21

with some modifications. Thus, after oxidation of 25 with
tetra-n-butylammonium tribromide, the aliphatic primary
amino group of the product was selectively protected with
the tert-butoxycarbonyl group to simplify the purification,
affording the 2-amino-D1-imidazolin-4-one derivative 26
in 40% yield (2 steps). Sequential deprotection and acyla-
tion with the pyrrole derivatives15,19 furnished dispacam-
ide (3) and monobromodispacamide (4) both as an
amorphous solids in 85% and 69% yields (2 steps), re-
spectively.22 Spectral data of 3 and 4 were in good agree-
ment with those reported.23

Scheme 5 Total synthesis of dispacamide (3) and monobromodis-
pacamide (4). Reagents and conditions: (a) H2 (4 kg/cm2), 10% Pd–
C–EtOH, 50 °C, 13 h; (b) H2NNH2–EtOH, 50 °C,6 h; (c) 20% HCl–
EtOH, r.t., overnight, 64% (3 steps from 22); (d) tetra-n-butylammo-
nium tribromide–DMSO, r.t., 1.5 h; (e) Boc2O–MeOH, r.t., overnight,
40% (2 steps from 25); (f) 20% HCl–EtOH, r.t., overnight; (g) 4,5-di-
bromo-2-trichloroacetylpyrrole or 4-bromo-2-trichloroacetylpyrrole,
Na2CO3–DMF, r.t., overnight, 85% for 3 (2 steps from 26), 69% for 4
(2 steps from 26).

As described above, we have succeeded in exploring a
novel synthetic route to 2-aminoimidazol-4-carbaldehyde
derivatives I, the versatile synthetic intermediates for 2-
aminoimidazole alkaloids, by featuring the reaction of
tert-butoxycarbonylguanidine (12a) with 3-bromo-1,1-

dimethoxymethylpropan-2-one (10) as a key step. Start-
ing with 1-tert-butoxycarbonyl-2-tert-butoxycarbonyl-
aminoimidazol-4-carbaldehyde (19a) thus obtained,
expeditious synthesis of oroidin (1), hymenidin (2), dis-
pacamide (3) and monobromodispacamide (4), the repre-
sentative 2-aminoimidazole alkaloids, was accomplished,
realizing the synthetic utility of I.
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