

PII: S0960-894X(96)00274-0

SYNTHESIS AND OPIOID BINDING PROPERTIES OF 2-CHLOROACRYLAMIDO DERIVATIVES OF 7,8-DIHYDROMORPHINANS

Ian Hutchinson^a, Sydney Archer^{*}^a, Kevin P. Hill^b and Jean M. Bidlack^b

aDepartment of Chemistry, Rensselaer Polytechnic Institute, Troy, New York, 12180 bDepartment of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 612 Elmwood Ave. Rochester, New York, 14642

Abstract: 14 β -2-chloroacrylamido-7,8-dihydromorphinones 7 and 8 and the corresponding 6 β -7,8-dihydromorphinans 19 and 20 were prepared and the binding affinities to μ , δ and κ receptors in bovine striatal membranes were determined. Only 20 produced wash-resistant inhibition of m binding despite the fact that it formed adducts with N-acetylcysteine at pH 10 and not at pH 8. Copyright © 1996 Elsevier Science Ltd

 β -FNA 1 was the first non-equilibrium ligand to be designed, synthesized and studied pharmacologically.¹ Since that time there have been other types of opioid ligands described. 14 β -Cinnamoyl derivatives,^{2,3} thiols and disulfides,^{4,5} and bromoacetamides⁶ have been shown to bind irreversibly to μ opioid receptors, presumably by binding to the thiol group present on the receptor.^{7,8} Portoghese⁹ and his group and, independently, Archer et al.¹⁰ reported the preparation of 2. Although both groups agreed that 2 was a non-equilibrium ligand the compound was not well-characterized pharmacologically. Here we report the synthesis and opioid binding properties of a series of chloroacrylamido compounds related to 2.

(I) CH₂=C(CI)COCI, Et₃N, CH₂Cl₂, 0° C, 30 min, 80%, (ii) BBr₃, CHCl₃, -5°C, 10 min, 83%

The synthesis of 14B-(2-chloroacrylamido)-7.8-dihydromorphinone 7 and the corre-

sponding N-cyclopropylmethyl-7,8-dihydronormorphinone 8 is shown in Scheme 1. The 14 β amino-7,8-dihydrocodeinones 3 and 4 were prepared from thebaine and N-CPM-northebaine, respectively, by the procedure described previously.¹¹ The yields quoted in the footnote in Scheme 1 are for the synthesis of 7. Coupling of 3 with 2-choroacryloyl chloride gave 5 which on demethylation with BBr3 furnished the target ligand 7. The N-CPM derivative 8 was prepared in an analogous manner. The synthesis of the 6 β compounds is shown in Scheme 2. 3-Obenzylmorphine 9¹² was converted to the corresponding N-CPM derivative 10 by demethylation

(i) Phthalimide, Ph₃P, EtO₂CN=NCO₂Et, benzene, 25° C, 24 hr, 72%;(ii) a) N₂H₄, EtOH, 45 min b) 2M AcOH, 25° C 2 hr, 92%: (iii) Pd/C, H₂, 40 psi, 12 hr, 93%: (iv) CH₂=C(Cl)-COCl; CH₂Cl₂, Et₃N, 5° C 30 min, 85%; (v) aq Na₂CO₃, MeOH, 5° C, 1 hr, 89%. (The yields cited are for preparation of 19.)

followed by treatment with cyclopropylcarbonyl chloride and subsequent reduction of the amide with lithium aluminum hydride. ¹³ The preparation of the 6β -amino compounds **15** and **16** was carried out by a slight modification of the procedure of Simon, Hosztafi and Makleit.¹⁴ Compounds **9** and **10**, were treated with phthalimide, triphenylphosphine, diethyl azodicarboxylate to furnish the 6β -phthalimido compounds **11** and **12**, which were hydrolyzed in dilute hydrazine

to afford 13 and 14. The reduction to 15 and 16 was carried out in the presence of palladium on charcoal. Treatment with 2-chloroacryloyl chloride gave the mixed ester-amides 17, 18 which were hydrolyzed with dilute sodium carbonate to the target compounds, 19 and 20.

The binding to μ , δ and κ receptors in bovine striatal membranes was carried out as described previously.⁵ The results are summarized in Table 1.

TABLE 1. IC₅₀ Values for the Inhibition of μ , δ and k Binding to Bovine Striatal Membranes by the Affinity Ligands.

Compound	$1C_{50}$ (IIIVI)		
	0.25 nM [³ H] DAMGO µ	1nM [³ H] U69593 δ	0.2 nM [³ H] pCl- DPDPE κ
8 19	23.5	177	501
20	0.21	0.53	1.53

The 6β-substituted compounds, 19 and 20 were more potent affinity ligands than the 14β-

substituted compounds 7 and 8. Only 20 showed wash-resistant inhibition of μ binding. A qualitative test for binding of the affinity ligands to N-acetylcysteine was carried out as follows. The ligands and N- acetylcysteine were dissolved in an aqueous buffers at pH 8 and 10 with the aid of a minimum amount of methanol and TLCs were carried out until the reactions appeared to be over. The solvent system (CH₂Cl₂/CH₃OH [19:1]) was such that the ligand migrated with the solvent and the N-acetylcysteine and the adducts did not. At pH 10, all the ligands appeared to form adducts with the N-acetylcysteine but only 7 and 8 did at pH 8. The phenomenon for which we have no adequate explanation is why only 20 which formed adducts at pH 10 and not at pH 8 did not wash out of the bovine striatal membrane preparations. The adduct from N-acetylcysteine and 20 was isolated and shown by NMR spectroscopy to have structure 21.

Acknowledgements: This work was supported by DA01674, DA06786 and DA03742, grants from the National Institute on Drug Abuse.

References:

 Portoghese, P.S.; Larson, D. L.; Sayre, L. M.; Fries, D. S.; Takemori, A.E. J. Med. Chem. 1980, 23, 233.

- Aceto, M. D.; Bowman, E. R.; May, E. L.; Harris, L. S.; Woods, J. H.; Smith, C. B.; Medzihradsky, F.; Jacobson, A. E. Arzneim. Forsch. 1989, 39, 570.
- 3. Jiang, Q.; Sebastian, A.; Archer, S.; Bidlack, J. M. J. Pharmacol. Exp. Ther., 1994, 268, 1107.
- 4. Bowen, W. D.; Hellewell, S. B.; Kelemen, M.; Huey, R.; Stewart, D. J. Biol. Chem., 1987, 262, 13434.
- 5. Archer, S.; Seyed-Mozaffari, A.; Jiang, Q.; Bidlack, J.M. J. Med. Chem. 1994 37, 1578.
- 6. Bidlack, J. M.; Kaplan, R. A.; Subbramanian, R. A.; Seyed-Mozaffari, A.; Archer, S. Biochemistry, 1993, 32, 6703.
- 7. Pasternak, G. W.; Wilson, G. A.; Mol. Pharmacol., 1975, 340.
- 8. Simon, E. J.; Hiller, J. M.; Edelman, I. Proc. Natl. Acad. Sci, USA, 1973, 70, 1947. Ofri, D.; Simon, E. J.; Receptors, 1992, 2, 109.
- Sayre, L. M.; Larson, D. L.; Takemori, A. E.; Portoghese, P. S. J. Med. Chem., 1984, 27, 1325
- Archer, S.; Michael, J.; Michael, M.; Simon, E. J.; Abdelhamid, E. M. E.; Nelson, W. L.; Koople, G. A. Neuropeptides, 1985, 395, 398.
- 11. Bidlack, J. M.; Kaplan, R. A.; Sebastian, A.; Seyed-Mozaffari, A.; Hutchinson, I.; Archer, S. Bioorg. Med Chem. Letters, 1995, 5, 1695.
- 12. von Mering, J. F. U.S. Patent, 584,388, 1897.
- 13. Jiang, Q.; Seyed-Mozaffari, A.; Archer, S.; Bidlack, J.M. J. Pharmacol. Exp. Ther., 1993, 264, 1021.
- 14. Simon, C.; Hosztafi, S.; Makleit, S. Synth. Comm., 1992, 22, 913.

(Received in USA 29 April 1996; accepted 7 June 1996)