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ABSTRACT 

Radical cation vinylcyclopropane rearrangements by TiO2 photocatalysis in lithium 

perchlorate/nitromethane solution are described. The reactions are triggered by oxidative single 

electron transfer, which is followed by immediate ring-opening of the cyclopropanes to generate 

distonic radical cations as unique reactive intermediates. This approach can also be applied to 

vinylcyclobutane, leading to the construction of six-membered rings. A stepwise mechanism via 
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distonic radical cations is proposed based on preliminary mechanistic studies, which is supported 

by DFT calculations. 

 

INTRODUCTION 

Synthetic organic chemistry has developed in tandem with the advancement of catalysis, where 

non- or less-reactive small molecules are activated to undergo chemical transformations. 

Catalytic activation of small molecules can be carried out by enzymes, transition metals, Lewis 

acids/bases, and organocatalysts. Among the simplest approaches is the use of a proton and/or 

electron as a catalyst.1 While the addition or removal of a proton is well-documented in 

textbooks as acid/base catalysis, the corresponding mode of small molecule activation using an 

electron, referred to as redox catalysis, is somewhat less widespread. However, explosive growth 

in the use of photochemical2 and electrochemical3 reactions in this field has recently established 

the concept of redox catalysis, where reductive and/or oxidative single electron transfer (SET) is 

involved. SET primarily produces radical ions from neutral closed shell small molecules, 

offering distinctive reactivities that are difficult to achieve by neutral radicals or ions. 

Understanding radical ion reactivities should lead to the design of novel chemical 

transformations. 

Distonic radical ions are transient species with formally separated radical and charge sites. They 

potentially exhibit independent radical and ion reactivities, which may differ from typical radical 

ions. However, distonic radical ions are not commonly used as reactive intermediates in the field 

of synthetic organic chemistry, likely due to the lack of simple generation methods. In this 

context, Yoon recently reported reductive SET-triggered formal [3 + 2] cycloadditions between 
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cyclopropyl phenyl ketone (1) and styrene (2) by photocatalysis (Scheme 1).4 The distonic 

radical ion (1d
•-) is proposed as a reactive intermediate, which is generated from the radical anion 

(1•-) via immediate ring-opening, known as a radical clock reaction. In addition, Zheng reported 

oxidative SET-triggered formal [3 + 2] cycloadditions between N-cyclopropylaniline (3) and 

styrene (2) by photocatalysis, where the distonic radical cation (3d
•+) is likely to be involved as a 

reactive intermediate (Scheme 2).5 SET in combination with cyclopropyl ring-opening would be 

a versatile approach to generate distonic radical ions.6 

We have been developing oxidative SET-triggered cycloadditions by photocatalysis7 and 

electrocatalysis.8 The use of lithium perchlorate (LiClO4)/nitromethane (CH3NO2) solution has 

facilitated the generation of radical cations from electron-rich alkenes and styrenes, providing 

unique reactive intermediates for carbon−carbon bond formations.9 We questioned whether the 

distonic radical cation (4d
•+) could be generated to realize formal [5 + 2] cycloadditions with 

styrene (2) (Scheme 3). Described herein is our serendipitous finding that vinylcyclopropane 

rearrangements can be triggered by oxidative SET, in which distonic radical cations are likely to 

be involved as reactive intermediates. 

 

Scheme 1. Reductive SET-Triggered [3 + 2] Cycloaddition. 
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Scheme 2. Oxidative SET-Triggered [3 + 2] Cycloaddition. 

 

 

Scheme 3. Working Hypothesis. 
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RESULTS AND DISCUSSION 

The present work began with the reaction of the vinylcyclopropane (4) with styrene (2) under 

TiO2 photocatalysis conditions. Unfortunately, the reaction gave the corresponding [2 + 2] 

cycloadduct (6) instead of [5 + 2] cycloadduct (5) (Scheme 4).10 This outcome clearly suggests 

that while the radical cation (4•+) was indeed generated by the oxidative SET, it was not followed 

by immediate ring-opening. This hypothesis was further confirmed by the fact that the reaction 

with 2,3-dimethyl-1,3-butadiene (7) gave [4 + 2] cycloadduct (8) (Scheme 5).11 

 

Scheme 4. [2 + 2] Cycloaddition of the Vinylcyclopropane (4). 
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Scheme 5. [4 + 2] Cycloaddition of the Vinylcyclopropane (4). 

 

 

In order to facilitate the ring-opening, vinylcyclopropanes (9−11) with additional substituents 

were synthesized and used for the reaction with styrene (2) (Table 1). The radical cations of the 

vinylcyclopropanes (9−11) were expected to generate secondary, tertiary, or benzyl radicals via 

ring-opening, respectively, which are more stable than primary radicals. Unfortunately, the 

reactions of the vinylcyclopropanes (9, 10) gave the corresponding [2 + 2] cycloadducts (12, 13), 

suggesting that ring-opening did not take place, despite the generation of radical cations (9•+, 

10•+) by oxidative SET. The reaction of vinylcyclopropane (11) also failed to give the [5 + 2] 

cycloadduct, however, cyclopentene (14) was obtained in 72% yield. 

 

Table 1. Reactions of Vinylcyclopropanes (9−11). 
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These observations were supported by DFT calculations (Figure 1). In the optimized structures 

of the radical cations (4•+, 9•+, 10•+, 11•+), the bond length between C1 and C2 in the cyclopropyl 

framework was found to vary from 1.55 Å to 1.69 Å in response to the substituents. This trend 

indicates that the ring-opening was most favored in the radical cation (11•+), which was in good 

accordance with the experimental results. 
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Figure 1. Optimized Structures and Spin Density Distributions of the Radical Cations (4•+, 9•+, 

10•+, 11•+). 

 

 

When the reaction of the vinylcyclopropane (11) was carried out in the absence of styrene (2), 

the yield of the cyclopentene (14) was significantly improved to 94% (Table 2, Entry 1). Control 

studies showed that both TiO2 and light were necessary for efficient conversion to the 

cyclopentene (14) (Entries 2−4) and the use of LiClO4/CH3NO2 solution was essential for the 

reaction (Entries 5−7). The vinylcyclopropane rearrangement remained high-yielding even on a 1 

mmol scale (Entry 8). 
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Table 2. Optimization of the Conditions for the Vinylcyclopropane Rearrangement. 

 

 

To gain further mechanistic insights, the vinylcyclopropanes (15−17) were synthesized and used 

for the reaction (Scheme 6). The reaction of the vinylcyclopropane (15), which has a 

nonsubstituted phenyl ring, did not give the cyclopentene (18) under TiO2 photocatalysis 

conditions. On the other hand, the vinylcyclopropanes (16, 17) were efficiently converted into 

the cyclopentenes (19, 20), suggesting that either or both aryl rings must be electron-rich. On the 

basis of these results, a stepwise mechanism via distonic radical cations can be proposed 

(Scheme 7). The reaction is triggered by oxidative SET, which is followed by immediate ring-

opening to generate a distonic radical cation (D•+). Intramolecular radical addition then gives a 

transient cyclopentenyl radical cation (C•+). When either or both aryl rings are electron-rich, the 

cyclopentenyl radical cation (C•+) is efficiently converted into the aryl radical cation (A•+), which 

affords the corresponding cyclopentenes by reductive SET. 
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Scheme 6. Preliminary Mechanistic Studies. 

 

 

Scheme 7. Plausible Reaction Mechanism. 
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DFT calculations supported a formal expression of the reaction mechanism (Figure 2). In the 

optimized structures of the radical cations (14•+, 19•+, 20•+), spin densities were mainly localized 

in the aryl rings, suggesting that the aryl radical cations were more stable than the cyclopentenyl 

radical cations in these cases. On the other hand, the spin density in the optimized structure of 

the radical cation (18•+) was distributed over the entire molecule, including the cyclopentenyl 

moiety. Furthermore, the bond length between C1 and C2 in the cyclopentenyl framework was 

found to be 1.67 Å, which was in good accordance with the formal mechanistic understanding. 

 

Figure 2. Optimized Structures and Spin Density Distributions of the Radical Cations (14•+, 18•+, 

19•+, 20•+). 
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The scope of the aryl rings in the reaction was investigated using variously substituted 

vinylcyclopropanes (Scheme 8). The positioning effect of the methoxy group in either aryl ring 

was found to be similar, namely, ortho-substitutions (21, 23) were less effective than para-

variants (14, 19) and meta-substitutions (22, 24) were not productive. Installation of additional 

methoxy groups (25, 26) had a negligible impact on the reaction, while the yields were finely 

Page 12 of 57

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 13 

tuned by using weak electron-donating methyl groups (27−32). When both aryl rings were 

electron-rich, the corresponding cyclopentenes (20, 33−37) were obtained in high yields. Several 

heteroarenes, except pyridine (41), and aryl halides were also found to be compatible with the 

reaction to give the corresponding cyclopentenes (38−40, 42−45) in moderate to excellent yields. 

Strong electron-withdrawing cyano and trifluoromethyl groups had a negative effect on the 

reaction (46, 47), likely because the nucleophilicity of the benzyl radical was decreased, 

inhibiting the intramolecular radical additions (from D•+ to C•+ in Scheme 7). Indeed, when the 

positions of the methoxy and trifluoromethyl groups were switched, the corresponding 

cyclopentene (48) was obtained in high yield. It should be noted that the rearrangement of donor-

acceptor cyclopropanes (49, 50) did not take place, suggesting that the method described herein 

would be complementary to previously reported Lewis acid-triggered versions.12 Furthermore, 

vinylcyclobutane (51) was found to be productive under TiO2 photocatalysis conditions, offering 

a unique approach to access six-membered rings. 

 

Scheme 8. Scope of the Vinylcyclopropane Rearrangements. 

Page 13 of 57

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 14 

 

Page 14 of 57

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 15 

 

CONCLUSION 

In conclusion, we have demonstrated that radical cation vinylcyclopropane rearrangements are 

enabled by TiO2 photocatalysis in LiClO4/CH3NO2 solution. The reactions are triggered by 

oxidative single electron transfer, followed by immediate ring-opening to generate distonic 

radical cations. SET in combination with cyclopropyl ring-opening would be a versatile 

approach to generate distonic radical ions, which can be used as unique reactive intermediates in 

the field of synthetic organic chemistry. Furthermore, we found that this method can be applied 

to vinylcyclobutane for accessing six-membered rings. A stepwise mechanism via distonic 

radical cations can be proposed based on preliminary mechanistic studies, which are supported 

by DFT calculations. Further experimental and theoretical studies of reactions involving SET in 

combination with cycloalkyl ring-opening are under investigation in our laboratory. 

 

EXPERIMENTAL SECTION 

General Remarks. All reagents and solvents were purchased from commercial sources and used 

without further purification. Reactions were monitored using thin-layer chromatography (TLC) 

with silica gel plates, and detection by UV absorption (254 nm) and by heating the plates after 

dipping them in a solution of 12 M molybdo(VI) phosphoric acid n-hydrate in 95% ethanol. 

Silica gel (particle size 40−50 μm) was used for column chromatography. 1H nuclear magnetic 

resonance (NMR) spectra were collected on a 500 MHz NMR spectrometer using the deuterated 

solvent as an internal deuterium reference. Chemical shift data are given in 𝛿 units calibrated 
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with residual protic solvent. The multiplicity of a signal is indicated as follows: s, singlet; d, 

doublet; t, triplet; q, quartet; quint, quintet; m, multiplet. 13C{1H} NMR spectra were collected at 

125 MHz with proton decoupling using the deuterated solvent as an internal carbon reference. 

High-resolution mass spectra (HRMS) were collected using electrospray ionization (ESI) or 

direct analysis in real-time (DART) time-of-flight (TOF) spectrometers. 

1-(2-Cyclopropylvinyl)-4-methoxybenzene (4, cis : trans = 1 : 4). White solid. To a solution of 

(4-methoxyphenylmethyl)triphenylphosphonium chloride (S1, 8.38 g, 20.0 mmol) in 

tetrahydrofuran (60 mL) stirred at 0 °C was added potassium tert-butoxide (2.24 g, 20.0 mmol). 

After the color turned red, the cyclopropanecarboxaldehyde (S2, 753 μL ,10.0 mmol) was added, 

stirred at 0 °C until the starting material was consumed (checked by thin layer chromatography), 

diluted with water, and extracted with ethyl acetate. The combined organic layers were dried 

over sodium sulfate, filtered, and concentrated in vacuo. Silica gel column chromatography 

(hexane/ethyl acetate = 50/1) gave the titled compound (4, 1.31 g, 7.60 mmol) in 76% yield. 1H 

NMR (CDCl3, 500 MHz) δ 7.23 (2H, d, J = 8.6 Hz), 6.81 (2H, d, J = 8.6 Hz), 6.41 (1H, d, J = 

16.0 Hz), 5.59 (1H, dd, J = 16.0, 9.2 Hz), 3.78 (3H, s), 1.57-1.49 (1H, m), 0.84-0.77 (2H, m), 

0.49-0.44 (2H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 158.4, 132.5, 130.6, 126.8, 126.6, 113.9, 

55.1, 14.5, 7.1; HRMS m/z: [M + H]+ calcd for C12H15O 175.1123; found 175.1110. 

2-Cyclopropyl-4'-methoxy-4,5-dimethyl-1,2,3,6-tetrahydro-1,1'-biphenyl (8, cis : trans = 1 : 

12). Colorless oil (purified by silica gel column chromatography using hexane/ethyl acetate = 

50/1). Product yield; 51% (determined by NMR), isolated in 46% (51 mg, 0.18 mmol). 1H NMR 

(CDCl3, 500 MHz) δ 7.09 (2H, d, J = 8.6 Hz), 6.82 (2H, d, J = 8.6 Hz), 3.80 (3H, s), 2.65-2.59 

(1H, m), 2.29-2.13 (2H, m), 2.07-1.99 (1H, m), 1.93-1.85 (1H, m), 1.64 (3H, s), 1.63 (3H, s), 

1.10-1.01 (1H, m),  0.45-0.37 (1H, m), 0.24-0.18 (1H, m), 0.07-0.01 (1H, m), -0.03- -0.09 (1H, 
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m), -0.27- -0.32 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 157.7, 138.2, 128.8, 125.2, 125.2, 

113.4, 55.3, 46.6, 44.4, 40.2, 37.9, 19.0, 18.8, 15.8, 5.0, 1.8 ; HRMS m/z: [M + H]+ calcd for 

C18H29O2 277.2168; found 277.2177. 

1-Methoxy-4-(2-(2-methylcyclopropyl)vinyl)benzene (9, cis : trans = 1 : 30 ). White solid. To 

a solution of crotonic acid (S3, 2.58 g, 30 mmol) and N,O-dimethylhydroxylamine hydrochloride 

(4.39 g, 45.0 mmol) in dichloromethane (80 mL) stirred at room temperature were added N,N’-

diisopropylcarbodiimide (6.97 mL, 45.0 mmol), 4-dimethylaminopyridine (36.7 mg, 0.30 mmol), 

and N,N-diisopropylethylamine (10.3 mL, 60.0 mmol). The resulting reaction mixture was stirred 

at room temperature overnight, diluted with water, and extracted with dichloromethane. The 

combined organic layers were dried over sodium sulfate, filtered, and concentrated in vacuo. 

Silica gel column chromatography (hexane/ethyl acetate = 1/1) gave the Weinreb amide (S4) in 

60% yield (2.32 g, 18.0 mmol). To a solution of trimethylsulfoxonium iodide (7.92 g, 36.0 

mmol) in dimethyl sulfoxide (80 mL) stirred with a water bath was added NaH (1.44 g, 36.0 

mmol). The resulting reaction mixture was stirred with a water bath for 30 min, the Weinreb 

amides (S4, 2.32 g, 18.0 mmol) was added. The resulting reaction mixture was stirred with a 

water bath for 4 h, diluted with water, and extracted with ethyl acetate. The combined organic 

layers were dried over sodium sulfate, filtered, and concentrated in vacuo. Silica gel column 

chromatography (hexane/ethyl acetate = 1/1) gave the cyclopropane (S5) in 78% yield (2.01 g, 

14.0 mmol). To a solution of the cyclopropane (S5, 1.72 g, 12.0 mmol) in tetrahydrofuran (50 

mL) stirred at 0 °C was added lithium aluminum hydride (683 mg, 18.0 mmol). The resulting 

reaction mixture was stirred at 0 °C until the starting material was consumed (checked by thin 

layer chromatography), diluted with water, and extracted with pentane. The combined organic 

layers were dried over sodium sulfate, filtered, and used without further purification. To a 

Page 17 of 57

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 18 

solution of (4-methoxyphenylmethyl)triphenylphosphonium chloride (S1, 10.0 g, 24.0 mmol) in 

tetrahydrofuran (60 mL) stirred at 0 °C was added potassium tert-butoxide (2.69 g, 24.0 mmol). 

After the color turned red, the aldehyde (S6) was added, stirred at 0 °C until the starting material 

was consumed (checked by thin layer chromatography), diluted with water, and extracted with 

ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered, and 

concentrated in vacuo. Silica gel column chromatography (hexane/ethyl acetate = 50/1) gave the 

titled compounds in 24% yield (542 mg, 2.90 mmol) over 2 steps. 1H NMR (CDCl3, 500 MHz) δ 

7.22 (2H, d, J = 8.6 Hz), 6.81 (2H, d, J = 8.6 Hz), 6.36 (1H, d, J = 16.0 Hz), 5.62 (1H, dd, J = 

15.5, 8.6 Hz), 3.78 (3H, s), 1.25-1.19 (1H, m), 1.10 (3H, d, J = 5.7 Hz), 0.89-0.82 (1H, m), 0.68-

0.63 (1H, m), 0.57-0.52 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 158.4, 132.4, 130.7, 126.6, 

126.3, 113.9, 55.2, 23.4, 18.6, 15.6, 15.6; HRMS m/z: [M + H]+ calcd for C13H17O 189.1279; 

found 189.1258. 

1-Methoxy-4-(2-(2-methylcyclopropyl)vinyl)benzene (10, cis : trans = 1 : 7 ). White solid. To 

a solution of the 2,2-dimethylcyclopropanecarboxylic acid (S7, 5.00 g, 43.8 mmol) and N,O-

dimethylhydroxylamine hydrochloride (5.85 g, 60.0 mmol) in dichloromethane (100 mL) stirred 

at room temperature were added N,N’-diisopropylcarbodiimide (9.29 mL, 60.0 mmol), 4-

dimethylaminopyridine (48.9 mg, 0.40 mmol), and N,N-diisopropylethylamine (13.6 mL, 80 

mmol). The resulting reaction mixture was stirred at room temperature overnight, diluted with 

water, and extracted with dichloromethane. The combined organic layers were dried over sodium 

sulfate, filtered, and concentrated in vacuo. Silica gel column chromatography (hexane/ethyl 

acetate = 1/1) gave the Weinreb amide in 54 % yield (S8, 3.73 g, 23.7 mmol). To a solution of 

the Weinreb amide (S8, 3.14 g, 20.0 mmol) in tetrahydrofuran (50 mL) stirred at 0 °C was added 

lithium aluminum hydride (949 mg, 25.0 mmol). The resulting reaction mixture was stirred at 
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0 °C until the starting material was consumed (checked by thin layer chromatography), diluted 

with water, and extracted with pentane. The combined organic layers were dried over sodium 

sulfate, filtered, and used without further purification. To a solution of (4-

methoxyphenylmethyl)triphenylphosphonium chloride (S1, 12.6 g, 30.0 mmol) in 

tetrahydrofuran (80 mL) stirred at 0 °C was added potassium tert-butoxide (3.36 g, 30.0 mmol). 

After the color turned red, the aldehyde (S9) was added, stirred at 0 °C until the starting material 

was consumed (checked by thin layer chromatography), diluted with water, and extracted with 

ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered, and 

concentrated in vacuo. Silica gel column chromatography (hexane/ethyl acetate = 50/1) gave the 

titled compound (10) in 12% yield (485 mg, 2.40 mmol) over 2 steps. 1H NMR (CDCl3, 500 

MHz) δ 7.25 (2H, d, J = 8.6 Hz), 6.82 (2H, d, J = 8.6 Hz), 6.40 (1H, d, J = 16.0 Hz), 5.84 (1H, 

dd, J = 16.0, 9.2 Hz), 3.79 (3H, s), 1.42-1.36 (1H, m), 1.12 (3H, s), 1.11 (3H, s), 0.74 (1H, dd, J 

= 8.6, 4.6 Hz), 0.46 (1H, t, J = 5.2 Hz); 13C{1H} NMR (125 MHz, CDCl3) δ 158.5, 130.9, 129.4, 

128.6, 126.7, 113.9, 55.3, 28.5, 27.2, 22.1, 20.8, 19.4; HRMS m/z: [M + H]+ calcd for C14H19O 

203.1436; found 203.1428. 

General Procedure for the Synthesis of the Vinylcyclopropanes (11, 15−17, S17−S44). To a 

solution of malonic acid (S10, 6.25 g, 60.0 mmol) and the respective benzaldehyde (S11, 30.0 

mmol) in pyridine (80 mL) stirred at 130 °C was added piperidine (3 mL). The resulting reaction 

mixture was stirred at 130 °C for 5 h, acidified with 1 M HCl aq., diluted with water, and 

extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, 

filtered, concentrated in vacuo, and used without further purification. To a solution of the 

respective substituted cinnamic acids (S12) and N,O-dimethylhydroxylamine hydrochloride 

(4.39 g, 45.0 mmol) in dichloromethane (80 mL) stirred at room temperature were added N,N’-
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diisopropylcarbodiimide (6.97 mL, 45.0 mmol), 4-dimethylaminopyridine (36.7 mg, 0.30 mmol), 

and N,N-diisopropylethylamine (10.3 mL, 60.0 mmol). The resulting reaction mixture was stirred 

at room temperature overnight, diluted with water, and extracted with dichloromethane. The 

combined organic layers were dried over sodium sulfate, filtered, and concentrated in vacuo. 

Silica gel column chromatography (hexane/ethyl acetate = 2/1−1/2) gave the respective Weinreb 

amides (S13) in 38−66% yield over 2 steps. To a solution of trimethylsulfoxonium iodide (4.84 g, 

22.0 mmol) in dimethyl sulfoxide (60 mL) stirred with a water bath was added NaH (880 mg, 

22.0 mmol). The resulting reaction mixture was stirred with a water bath for 30 min, the 

respective Weinreb amides (S13, 11.0 mmol) was added. The resulting reaction mixture was 

stirred with a water bath for 4 h, diluted with water, and extracted with ethyl acetate. The 

combined organic layers were dried over sodium sulfate, filtered, and concentrated in vacuo. 

Silica gel column chromatography (hexane/ethyl acetate = 2/1−1/2) gave the respective 

cyclopropanes (S14) in 76−84% yield. To a solution of the respective cyclopropanes (S14, 8.00 

mmol) in tetrahydrofuran (50 mL) stirred at 0 °C was added lithium aluminum hydride (380 mg, 

10.0 mmol). The resulting reaction mixture was stirred at 0 °C until the starting material was 

consumed (checked by thin layer chromatography), diluted with water, and extracted with ethyl 

acetate. The combined organic layers were dried over sodium sulfate, filtered, and used without 

further purification. To a solution of the respective (arylmethyl)triphenylphosphonium halides 

(S16, 16.0 mmol) in tetrahydrofuran (60 mL) stirred at 0 °C was added potassium tert-butoxide 

(1.80 g, 16.0 mmol). After the color turned red, the respective aldehydes (S15) was added, stirred 

at 0 °C until the starting material was consumed (checked by thin layer chromatography), diluted 

with water, and extracted with ethyl acetate. The combined organic layers were dried over 

sodium sulfate, filtered, and concentrated in vacuo. Silica gel column chromatography 
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(hexane/ethyl acetate = 50/1−10/1) gave the titled compounds (11, 15−17, S17−S44) in 24−65% 

yield over 2 steps. 

1-Methoxy-4-(2-(2-phenylcyclopropyl)vinyl)benzene (11, cis : trans = 1 : 3). White solid 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 1H NMR 

(CDCl3, 500 MHz) δ 7.31-7.23 (4H, m), 7.16 (1H, t, J = 7.5 Hz), 7.09 (2H, d, J = 8.6 Hz), 6.83 

(2H, d, J = 8.6 Hz), 6.43 (1H, d, J = 16.0 Hz), 5.78 (1H, dd, J = 16.0, 8.6 Hz), 3.80 (3H, s), 2.04-

1.99 (1H, m), 1.84-1.78 (1H, m), 1.32-1.26 (1H, m), 1.23-1.18 (1H, m); 13C{1H} NMR (125 

MHz, CDCl3) δ 158.6, 142.3, 130.6, 130.3, 128.4, 127.7, 126.8, 125.6, 125.6, 113.9, 55.2, 27.5, 

25.6, 17.1; HRMS m/z: [M + H]+ calcd for C18H19O 251.1436; found 251.1441. 

2-(2-Phenylcyclopropyl)vinylbenzene (15, cis : trans = 1 : 4). White solid (purified by silica 

gel column chromatography using hexane/ethyl acetate = 50/1). 1H NMR (CDCl3, 500 MHz) δ 

7.38-7.22 (6H, m), 7.21-7.13 (2H, m), 7.12-7.04 (2H, m), 6.47 (1H, d, J = 15.5 Hz), 5.90 (1H, dd, 

J = 15.5, 8.6 Hz), 2.06-2.00 (1H, m), 1.86-1.79 (1H, m), 1.34-1.26 (1H, m), 1.25-1.18 (1H, m); 

13C{1H} NMR (125 MHz, CDCl3) δ 142.1, 137.5, 132.8, 128.5, 128.4, 128.3, 128.3, 126.8, 125.7, 

125.6, 27.5, 25.7, 17.2; HRMS m/z: [M + H]+ calcd for C17H17 221.1330; found 221.1341. 

1-Methoxy-4-(2-styrylcyclopropyl)benzene (16, cis : trans = 1 : 4). White solid (purified by 

silica gel column chromatography using hexane/ethyl acetate = 50/1). 1H NMR (CDCl3, 500 

MHz) δ 7.34-7.25 (4H, m), 7.21-7.16 (1H, m), 7.03 (2H, d, J = 8.6 Hz), 6.83 (2H, d, J = 8.6 Hz), 

6.47 (1H, d, J = 16.0 Hz), 5.90 (1H, dd, J = 15.5, 8.6 Hz), 3.78 (3H, s), 2.03-1.97 (1H, m), 1.79-

1.72 (1H, m), 1.28-1.21 (1H, m), 1.19-1.14 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 157.8, 

137.6, 134.0, 133.1, 128.5, 128.0, 126.8, 126.7, 125.6, 113.8, 55.2, 27.0, 25.0, 16.7; HRMS m/z: 

[M + H]+ calcd for C18H19O 251.1436; found 251.1435. 
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1-Methoxy-4-(2-(2-(4-methoxyphenyl)cyclopropyl)vinyl)benzene (17, cis : trans = 1 : 4). 

White solid (purified by silica gel column chromatography using hexane/ethyl acetate = 20/1). 

1H NMR (CDCl3, 500 MHz) δ 7.25 (2H, d, J = 8.6 Hz), 7.03 (2H, d, J = 8.6 Hz), 6.83 (4H, d, J = 

8.6 Hz), 6.42 (1H, d, J = 15.5 Hz), 5.76 (1H, dd, J = 15.5, 8.6 Hz), 3.80 (3H, s), 3.78 (3H, s), 

2.00-1.95 (1H, m), 1.76-1.69 (1H, m), 1.25-1.19 (1H, m), 1.17-1.12 (1H, m); 13C{1H} NMR (125 

MHz, CDCl3) δ 158.6, 157.8, 134.3, 130.9, 130.5, 129.9, 128.8, 126.8, 114.0, 113.9, 55.4, 55.3, 

27.0, 24.9, 16.6; HRMS m/z: [M + H]+ calcd for C19H21O2 281.1542; found 281.1541. 

1-Methoxy-2-(2-(2-phenylcyclopropyl)vinyl)benzene (S17, cis : trans = 1 : 15). White solid 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 

 

1H NMR (CDCl3, 500 MHz) δ 7.38 (1H, dd, J = 7.5, 1.2 Hz), 7.27 (2H, t, J = 7.5 Hz), 7.20-7.14 

(2H, m), 7.10 (2H, dd, J = 8.6, 1.7 Hz), 6.90 (1H, t, J = 7.5 Hz), 6.85 (1H, d, J = 8.0 Hz), 6.80 

(1H, d, J = 15.5 Hz), 5.91 (1H, dd, J = 16.0, 8.6 Hz), 3.84 (3H, s), 2.06-2.01 (1H, m), 1.90-1.84 

(1H, m), 1.33-1.29 (1H, m), 1.25-1.20 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 156.1, 142.3, 

133.6, 128.4, 127.8, 126.5, 126.2, 125.7, 125.6, 123.0, 120.6, 110.7, 55.4, 28.1, 25.8, 17.4; 

HRMS m/z: [M + H]+ calcd for C18H19O 251.1436; found 251.1432. 

1-Methoxy-3-(2-(2-phenylcyclopropyl)vinyl)benzene (S18, cis : trans = 1 : 10). White solid 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 
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1H NMR (CDCl3, 500 MHz) δ 7.28 (2H, t, J = 7.5 Hz), 7.20 (1H, t, J = 8.0 Hz), 7.17 (1H, t, J = 

7.5 Hz), 7.10 (2H, d, J = 7.5 Hz), 6.92 (1H, d, J = 8.0 Hz), 6.85 (1H, m), 6.75 (1H, dd, J = 8.0, 

2.3 Hz), 6.45 (1H, d, J = 16.0 Hz), 5.90 (1H, dd, J = 16.0, 8.6 Hz), 3.81 (3H, s), 2.05 (1H, m), 

1.83 (1H, m), 1.33 (1H, m), 1.23 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 159.8, 142.0, 

138.9, 133.2, 129.5, 128.3, 128.1, 125.6, 125.6, 118.3, 112.3, 111.0, 55.0, 27.5, 25.7, 17.1; 

HRMS m/z: [M + H]+ calcd for C18H19O 251.1436; found 251.1424. 

1-Methoxy-2-(2-styrylcyclopropyl)benzene (S19, cis : trans = 1 : 10). White solid (purified by 

silica gel column chromatography using hexane/ethyl acetate = 50/1). 

 

1H NMR (CDCl3, 500 MHz) δ 7.33 (2H, d, J = 6.9 Hz), 7.29 (2H, t, J = 7.5 Hz), 7.20-7.13 (2H, 

m), 6.92-6.83 (3H, m), 6.49 (1H, d, J = 16.0 Hz), 5.96 (1H, dd, J = 15.5, 8.6 Hz), 3.85 (3H, s), 

2.39-2.34 (1H, m), 1.83-1.77 (1H, m), 1.31-1.24 (1H, m), 1.21-1.15 (1H, m); 13C{1H} NMR (125 

MHz, CDCl3) δ 158.4, 138.1, 133.9, 130.7, 129.0 128.4, 127.1, 127.0, 126.2, 125.1, 121.0, 110.7, 

55.8, 26.7, 20.2, 16.5; HRMS m/z: [M + H]+ calcd for C18H19O 251.1436; found 251.1450. 

1-Methoxy-3-(2-styrylcyclopropyl)benzene (S20, cis : trans = 1 : 5). White solid (purified by 

silica gel column chromatography using hexane/ethyl acetate = 50/1). 
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1H NMR (CDCl3, 500 MHz) δ 7.37-7.26 (4H, m), 7.22-7.16 (2H, m), 6.74-6.68 (2H, m), 6.65-

6.64 (1H, m), 6.48 (1H, d, J = 16.0 Hz), 5.90 (1H, dd, J = 15.5, 8.6 Hz), 3.80 (3H, s), 2.05-1.99 

(1H, m), 1.97-1.80 (1H, m), 1.35-1.29 (1H, m), 1.24-1.19 (1H, m); 13C{1H} NMR (125 MHz, 

CDCl3) δ 159.6, 143.7, 137.3, 132.5, 129.2, 128.4, 128.2, 126.6, 125.6, 117.8, 111.6, 110.7, 54.7, 

27.4, 25.6, 17.0; HRMS m/z: [M + H]+ calcd for C18H19O 251.1436; found 251.1442. 

2,4-Dimethoxy-1-(2-(2-phenylcyclopropyl)vinyl)benzene (S21, cis : trans = 1 : 3). White solid 

(purified by silica gel column chromatography using hexane/ethyl acetate = 20/1). 

 

1H NMR (CDCl3, 500 MHz) δ 7.30-7.26 (2H, m), 7.26-7.22 (1H, m), 7.15 (1H, t, J = 7.5 Hz), 

7.09 (2H, dd, J = 8.0, 1.2 Hz), 6.70 (1H, d, J = 15.5 Hz), 6.47-6.42 (2H, m), 5.81 (1H, dd, J = 

16.0, 8.6 Hz), 3.82 (3H, s), 3.80 (3H, s), 2.04-1.98 (1H, m), 1.87-1.80 (1H, m), 1.28 (1H, dt, J = 

8.6, 5.2 Hz), 1.21 (1H, dt, J = 8.6, 5.2); 13C{1H} NMR (125 MHz, CDCl3) δ 160.0, 157.4, 142.7, 

131.6, 128.5, 127.0, 125.8, 125.6, 122.9, 119.8, 104.9, 98.6, 55.6, 55.5, 28.2, 25.9, 17.4; HRMS 

m/z: [M + H]+ calcd for C19H20O2 281.1542; found 281.1512. 

1,3,5-Trimethoxy-2-(2-(2-phenylcyclopropyl)vinyl)benzene (S22, cis : trans = 1 : 10). White 

solid (purified by silica gel column chromatography using hexane/ethyl acetate = 10/1). 
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1H NMR (CDCl3, 500 MHz) δ 7.29-7.22 (2H, m), 7.14 (1H, t, J = 7.5 Hz), 7.09 (2H, dd, J = 8.6, 

1.7 Hz), 6.71 (1H, d, J = 16.0 Hz), 6.20 (1H, dd, J = 16.0, 8.6 Hz), 6.13 (2H, s), 3.82 (6H, s), 

3.81 (3H, s), 2.04-1.98 (1H, m), 1.85-1.78 (1H, m), 1.27 (1H, dt, J = 8.0, 5.2 Hz), 1.20 (1H, dt, J 

= 8.6, 5.2 Hz); 13C{1H} NMR (125 MHz, CDCl3) δ 159.2, 158.5, 142.5, 134.0, 128.0, 125.3, 

125.1, 118.4, 107.6, 90.4, 55.3, 54.8, 29.2, 25.5, 17.2; HRMS m/z: [M + H]+ calcd for C20H22O3 

310.1569; found 310.1572. 

1-Methyl-4-(2-(2-phenylcyclopropyl)vinyl)benzene (S23, cis : trans = 1 : 8). White solid 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 

 

1H NMR (CDCl3, 500 MHz) δ 7.28 (2H, t, J = 7.7 Hz), 7.21 (2H, d, J = 8.0 Hz), 7.16 (1H, t, J = 

6.9 Hz), 7.11-7.07 (4H, m), 6.45 (1H, d, J = 16.0 Hz), 5.86 (1H, dd, J = 15.5, 8.6 Hz), 2.32 (3H, 

s), 2.05-2.00 (1H, m),1.85-1.79 (1H, m), 1.33-1.28 (1H, m), 1.23-1.19 (1H, m); 13C{1H} NMR 

(125 MHz, CDCl3) δ 142.2, 136.4, 134.7, 131.7, 129.2, 128.4, 128.2, 125.7, 125.6, 27.6, 25.7, 

21.2, 17.2; HRMS m/z: [M + H]+ calcd for C18H19 235.1487; found 235.1496. 

2,4-Dimethyl-1-(2-(2-phenylcyclopropyl)vinyl)benzene (S24, cis : trans = 1 : 6). White solid 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 
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1H NMR (CDCl3, 500 MHz) δ 7.31-7.26 (3H, m), 7.17 (1H, t, J = 8.6 Hz), 7.10 (2H, dd, J = 8.0, 

1.2 Hz), 6.99-6.92 (2H, m), 6.65 (1H, d, J = 16.0 Hz), 5.72 (1H, dd, J = 15.5, 8.6 Hz), 2.30 (3H, 

s), 2.29 (3H, s), 2.05-1.99 (1H, m), 1.89-1.83 (1H, m), 1.34-1.29 (1H, m), 1.24-1.19 (1H, m); 

13C{1H} NMR (125 MHz, CDCl3) δ 142.2, 136.2, 134.5, 133.6, 133.0, 131.0, 128.3, 126.8, 125.9, 

125.6, 125.5, 124.9, 27.9, 25.7, 21.0, 19.8, 17.3; HRMS m/z: [M + H]+ calcd for C19H21 

249.1643; found 249.1647. 

1,3,5-Trimethyl-2-(2-(2-phenylcyclopropyl)vinyl)benzene (S25, cis : trans = 1 : 9). White 

solid (purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 

 

1H NMR (CDCl3, 500 MHz) δ 7.29 (2H, t, J = 7.5 Hz), 7.18 (1H, t, J = 7.5 Hz), 7.11 (2H, d, J = 

7.5 Hz), 6.85 (2H, s), 6.40 (1H, d, J = 16.0 Hz), 5.36 (1H, dd, J = 16.6, 8.6 Hz), 2.27 (6H, s), 

2.26 (3H, s), 2.01-1.95 (1H, m), 1.91-1.84 (1H, m), 1.27 (1H, dt, J = 8.6, 5.2 Hz), 1.18 (1H, dt, J 

= 9.2, 5.2 Hz); 13C{1H} NMR (125 MHz, CDCl3) δ 142.5, 137.2, 135.8, 135.8, 135.6, 134.1, 

128.6, 128.4, 125.6, 125.6, 27.5, 25.3, 21.1, 21.0, 17.1; HRMS m/z: [M + H]+ calcd for C20H23 

263.1800; found 263.1784. 

1-Methyl-4-(2-styrylcyclopropyl)benzene (S26, cis : trans = 1 : 4). White solid (purified by 

silica gel column chromatography using hexane/ethyl acetate = 50/1). 
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1H NMR (CDCl3, 500 MHz) δ 7.37-7.26 (4H, m), 7.18 (1H, t, J = 6.8 Hz), 7.09 (2H, d, J = 8.0 

Hz), 7.00 (2H, d, J = 8.0 Hz), 6.47 (1H, d, J = 16.0 Hz), 5.90 (1H, dd, J = 16.0, 8.6 Hz), 2.32 (3H, 

s), 2.04-1.98 (1H, m), 1.82-1.76 (1H, m), 1.29 (1H, dt, J = 8.6, 5.2 Hz), 1.19 (1H, dt, J = 8.6, 5.2 

Hz); 13C{1H} NMR (125 MHz, CDCl3) δ 139.1, 137.6, 135.3, 133.1, 129.1, 128.6, 128.1, 126.8, 

125.7, 125.7, 27.3, 25.5, 21.0, 17.0; HRMS m/z: [M + H]+ calcd for C18H19 235.1487; found 

235.1506. 

2,4-Dimethyl-1-(2-styrylcyclopropyl)benzene (S27, cis : trans = 1 : 8). White solid (purified 

by silica gel column chromatography using hexane/ethyl acetate = 50/1). 

 

1H NMR (CDCl3, 500 MHz) δ 7.36 (2H, m), 7.29 (2H, t, J = 7.5 Hz), 7.18 (1H, t, J = 7.5 Hz), 

6.99-6.98 (1H, m), 6.96-6.90 (1H, d, J = 15.5 Hz), 5.98 (1H, dd, J = 15.5, 8.6 Hz), 2.36 (3H, s), 

2.29 (3H, s), 2.04-1.98 (1H, m), 1.69-1.61 (1H, m), 1.34-1.29 (1H, m), 1.14 (1H, dt, J = 8.6, 5.2 

Hz); 13C{1H} NMR (125 MHz, CDCl3) δ 137.8, 137.6, 136.8, 135.5, 133.6, 130.6, 128.6, 128.0, 

126.7, 126.4, 125.8, 125.7, 25.3, 23.7, 21.0, 19.8, 14.9; HRMS m/z: [M + H]+ calcd for C19H21 

249.1643; found 249.1664. 

1,3,5-Trimethyl-2-(2-styrylcyclopropyl)benzene (S28, cis : trans = 1 : 6). White solid 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 
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1H NMR (CDCl3, 500 MHz) δ 7.41 (2H, m), 7.30 (2H, t, J = 7.5 Hz), 7.19 (1H, t, J = 7.5 Hz), 

6.84 (2H, s), 6.56 (1H, d, J = 16.0 Hz), 5.98 (1H, dd, J = 16.0, 9.2 Hz), 2.37 (6H, s), 2.26 (3H, s), 

1.87-1.81 (1H, m), 1.69-1.61 (1H, m), 1.27-1.22 (1H, m), 1.12-1.06 (1H, m); 13C{1H} NMR (125 

MHz, CDCl3) δ 138.8, 137.7, 135.9, 135.0, 133.8, 128.8, 128.6, 128.3, 126.8, 125.8, 25.4, 22.4, 

20.9, 20.9, 17.5; HRMS m/z: [M + H]+ calcd for C20H23 263.1800; found 263.1790. 

2,4-Dimethoxy-1-(2-(4-methoxystyryl)cyclopropyl)benzene (S29, cis : trans = 1 : 3). White 

solid (purified by silica gel column chromatography using hexane/ethyl acetate = 10/1). 

 

1H NMR (CDCl3, 500 MHz) δ 7.26 (2H, d, J = 8.6 Hz), 6.83 (2H, d, J = 8.6 Hz), 6.81-6.77 (1H, 

m), 6.47-6.42 (2H, m), 6.42 (1H, d, J = 16.0 Hz), 5.82 (1H, dd, J = 15.5, 8.6 Hz), 3.81 (3H, s), 

3.79 (3H, s), 3.78 (3H, s), 2.23-2.15 (1H, m), 1.73-1.66 (1H, m), 1.19 (1H, dt, J = 8.6, 5.2 Hz), 

1.09 (1H, dt, J = 8.6, 5.2 Hz); 13C{1H} NMR (125 MHz, CDCl3) δ 159.0, 158.8, 158.5, 131.5, 

129.9, 127.2, 126.7, 125.5, 122.9, 113.9, 104.0, 98.5, 55.5, 55.3, 55.2, 25.5, 19.4, 15.5; HRMS 

m/z: [M + H]+ calcd for C20H23O3 311.1647; found 311.1667. 

1,3,5-Trimethoxy-2-(2-(4-methoxystyryl)cyclopropyl)benzene (S30, cis : trans = 1 : 6). White 

solid (purified by silica gel column chromatography using hexane/ethyl acetate = 10/1). 
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1H NMR (CDCl3, 500 MHz) δ 7.27 (2H, d, J = 8.6 Hz), 6.83 (2H, d, J = 8.6 Hz), 6.45 (1H, d, J = 

16.0 Hz), 6.12 (2H, s), 5.84 (1H, dd, J = 15.5, 8.6 Hz), 3.80 (12H, s), 2.02-1.95 (1H, m), 1.90-

1.84 (1H, m), 1.43-1.38 (1H, m), 1.05-1.00 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 160.0, 

159.2, 158.4, 132.8, 131.0, 129.8, 126.7, 113.9, 109.9, 91.0, 55.8, 55.3, 55.3, 23.4, 16.6, 15.2; 

HRMS m/z: [M + H]+ calcd for C21H25O4 341.1753; found 341.1743. 

1-Methoxy-4-(2-(2-(p-tolyl)cyclopropyl)vinyl)benzene (S31, cis : trans = 1 : 5). White solid 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 

 

1H NMR (CDCl3, 500 MHz) δ 7.24 (2H, d, J = 8.6 Hz), 7.08 (2H, d, J = 8.0 Hz), 6.98 (2H, d, J = 

8.0 Hz), 6.82 (2H, d, J = 8.6 Hz), 6.41 (1H, d, J = 16.0 Hz), 5.76 (1H, dd, J = 15.5, 8.6 Hz), 3.78 

(3H, s), 2.01-1.95 (1H, m), 1.79-1.72 (1H, m), 1.28-1.22 (1H, m), 1.18-1.13 (1H, m); 13C{1H} 

NMR (125 MHz, CDCl3) δ 158.6, 139.2, 135.0, 130.7, 130.4, 129.0, 127.5, 126.8, 125.6, 113.9, 

55.1, 27.3, 25.3, 21.0, 16.8; HRMS m/z: [M + H]+ calcd for C19H21O 265.1592; found 265.1591. 

1-(2-(4-Methoxystyryl)cyclopropyl)-2,4-dimethylbenzene (S32, cis : trans = 1 : 4). White 

solid (purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 
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1H NMR (CDCl3, 500 MHz) δ 7.27 (2H, d, J = 8.6 Hz), 7.00-6.86 (3H, m), 6.84 (2H, d, J = 8.6 

Hz), 6.45 (1H, d, J = 16.0 Hz), 5.84 (1H, dd, J = 15.5, 8.6 Hz), 3.81 (3H, s), 2.35 (3H, s), 2.29 

(3H, s), 2.03-1.94 (1H, m), 1.66-1.59 (1H, m), 1.33-1.24 (1H, m), 1.11 (1H, dt, J = 8.6, 5.2 Hz); 

13C{1H} NMR (125 MHz, CDCl3) δ 159.5, 137.6, 136.8, 135.3, 131.1, 130.5, 130.4, 127.4, 126.7, 

126.4, 125.6, 113.9, 55.0, 25.2, 23.5, 20.9, 19.8, 14.8; HRMS m/z: [M + H]+ calcd for C20H23O 

279.1749; found 279.1731. 

2-(2-(4-Methoxystyryl)cyclopropyl)-1,3,5-trimethylbenzene (S33, cis : trans = 1 : 3). White 

solid (purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 

 

1H NMR (CDCl3, 500 MHz) δ 7.30 (2H, d, J = 8.6 Hz), 6.85 (2H, d, J = 8.6 Hz), 6.84 (2H, m), 

6.50 (1H, d, J = 16.0 Hz), 5.84 (1H, dd, J = 15.5, 9.2 Hz), 3.81 (3H, s), 2.37 (6H, s), 2.25 (3H, s), 

1.83-1.78 (1H, m), 1.66-1.59 (1H, m), 1.24-1.15 (1H, m), 1.09-1.04 (1H, m); 13C{1H} NMR (125 

MHz, CDCl3) δ 158.6, 138.8, 135.8, 135.1, 131.5, 128.8, 127.7, 126.8, 114.0, 55.4, 25.3, 22.3, 

21.9, 20.6, 17.3; HRMS m/z: [M + H]+ calcd for C21H25O 293.1905; found 293.1932. 

2-(2-(4-Methoxystyryl)cyclopropyl)furan (S34, cis : trans = 1 : 10). Pale yellow solid 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 
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1H NMR (CDCl3, 500 MHz) δ 7.26-7.25(1H, m), 7.25 (2H, d, J = 8.6 Hz), 6.83 (2H, d, J = 8.6 

Hz), 6.44 (1H, d, J = 16.0 Hz), 6.29-6.27 (1H, m), 5.99 (1H, d, J = 2.9 Hz), 5.72 (1H, dd, J = 

15.5, 8.6 Hz), 3.80 (3H, s), 2.06-1.99 (1H, m), 1.95-1.89 (1H, m), 1.37-1.31 (1H, m), 1.14-1.09 

(1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 158.6, 155.6, 140.4, 130.2, 129.5, 128.2, 126.8, 

113.9, 110.4, 103.7, 55.0, 24.6, 18.7, 14.6; HRMS m/z: [M + H]+ calcd for C16H17O2 241.1229; 

found 241.1203. 

2-(2-(4-Methoxystyryl)cyclopropyl)-1-methyl-1H-pyrrole (S35, cis : trans = 1 : 5). White 

solid (purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 

 

1H NMR (CDCl3, 500 MHz) δ 7.26 (2H, d, J = 8.6 Hz), 6.84 (2H, d, J = 8.6 Hz), 6.56-6.55 (1H, 

m), 6.45 (1H, d, J = 16.0 Hz), 6.03-6.00 (1H, m), 5.82-5.80 (1H, m), 5.78 (1H, dd, J = 15.5, 8.6 

Hz), 3.80 (3H, s), 3.62 (3H, s), 1.83-1.78 (1H, m), 1.70-1.63 (1H, m), 1.26-1.20 (1H, m), 1.11-

1.07 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 158.6, 133.9, 132.9, 130.4, 129.8, 126.7, 

121.3, 114.0, 106.4, 104.7, 55.2, 33.8, 24.5, 17.0, 14.3; HRMS m/z: [M + H]+ calcd for 

C17H20ON 254.1545; found 254.1535. 

2-(2-(4-Methoxystyryl)cyclopropyl)thiophene (S36, cis : trans = 1 : 15). White solid (purified 

by silica gel column chromatography using hexane/ethyl acetate = 50/1). 
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1H NMR (CDCl3, 500 MHz) δ 7.25 (2H, d, J = 8.6 Hz), 7.06 (1H, dd, J = 5.2, 1.2 Hz), 6.90 (1H, 

dd, J = 4.6, 3.4 Hz), 6.83 (2H, d, J = 8.6 Hz), 6.79 (1H, d, J = 3.4 Hz), 6.45 (1H, d, J = 16.0 Hz), 

5.75 (1H, dd, J = 16.0, 8.6 Hz), 3.80 (3H, s), 2.24-2.19 (1H, m), 1.88-1.82 (1H, m); 13C{1H} 

NMR (125 MHz, CDCl3) δ 158.7, 146.7, 130.2, 129.6, 128.1, 126.8, 126.8, 122.6, 122.0, 113.9, 

55.1, 28.0, 21.0, 18.0; HRMS m/z: [M + H]+ calcd for C16H17OS 257.1000; found 257.0971. 

2-(2-(4-Methoxystyryl)cyclopropyl)pyridine (S37, cis : trans = 2 : 3). White solid (purified by 

silica gel column chromatography using hexane/ethyl acetate = 10/1). 

 

1H NMR (CDCl3, 500 MHz) δ 8.47-8.45 (1H, m), 7.55-7.52 (1H, m), 7.25 (2H, d, J = 8.6 Hz), 

7.17 (1H, d, J = 8.6 Hz), 7.06-7.02 (1H, m), 6.83 (2H, d, J = 8.6 Hz), 6.46 (1H, d, J = 15.5 Hz), 

5.80 (1H, dd, J = 15.5, 8.6 Hz), 3.80 (3H, s), 2.19-2.09 (2H, m), 1.67-1.59 (1H, m), 1.25-1.20 

(1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 160.9, 158.6, 149.2, 135.7, 130.1, 129.8, 128.1, 

126.7, 121.8, 120.4, 113.9, 55.1, 27.6, 27.0, 17.6; HRMS m/z: [M + H]+ calcd for C17H18ON 

252.1388; found 252.1369. 

1-Fluoro-4-(2-(4-methoxystyryl)cyclopropyl)benzene (S38, cis : trans = 1 : 4). White solid 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 
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1H NMR (CDCl3, 500 MHz) δ 7.26 (2H, d, J = 8.6 Hz), 7.07-7.03 (2H, m), 6.98-6.93 (2H, m), 

6.83 (2H, d, J = 8.6 Hz), 6.43 (1H, d, J = 16.0 Hz), 5.76 (1H, dd, J = 16.0, 8.6 Hz), 3.80 (3H, s), 

2.02-1.97 (1H, m), 1.78-1.71 (1H, m), 1.24 (1H, dt, J = 8.6, 5.2 Hz), 1.19 (1H, dt, J = 8.6, 5.2 

Hz); 13C{1H} NMR (125 MHz, CDCl3) δ 161.2 (d, J = 243.5 Hz), 158.7, 137.9 (d, J = 2.4 Hz), 

130.5, 130.3, 127.8, 127.2 (d, J = 7.2 Hz), 126.8, 115.2 (d, J = 21.6 Hz), 114.0, 55.3, 27.3, 24.9, 

16.9; HRMS m/z: [M + H]+ calcd for C18H18OF 269.1342; found 269.1312. 

1-Chloro-4-(2-(4-methoxystyryl)cyclopropyl)benzene (S39, cis : trans = 4 : 1). White solid 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 

 

1H NMR (CDCl3, 500 MHz) δ 7.26 (2H, d, J = 8.6 Hz), 7.23 (2H, d, J = 8.6 Hz), 7.00 (2H, d, J = 

8.6 Hz), 6.81 (2H, d, J = 8.6 Hz), 6.37 (1H, d, J = 11.5 Hz), 5.17 (1H, dd, J = 11.5, 9.2 Hz), 3.79 

(3H, s), 2.09-2.03 (1H, m), 2.00-1.95 (1H, m), 1.25 (1H, dt, J = 8.0, 5.2 Hz), 1.15 (1H, dt, J = 9.2, 

5.2 Hz); 13C{1H} NMR (125 MHz, CDCl3) δ 158.3, 140.6, 132.6, 130.1, 130.0, 129.8, 128.5, 

127.0, 127.0, 113.7, 55.2, 25.6, 24.2, 18.4; HRMS m/z: [M + H]+ calcd for C18H18OCl 285.1046; 

found 285.1033. 

1-Bromo-4-(2-(4-methoxystyryl)cyclopropyl)benzene (S40, cis : trans = 2 : 3). White solid 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 
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1H NMR (CDCl3, 500 MHz) δ 7.38 (2H, d, J = 8.0 Hz), 7.25 (2H, d, J = 9.2 Hz), 6.96 (2H, d, J = 

8.0 Hz), 6.83 (2H, d, J = 9.2 Hz), 6.43 (2H, d, J = 16.0 Hz), 5.75 (1H, dd, J = 15.5, 8.6 Hz), 3.80 

(3H, s), 1.99-1.94 (1H, m), 1.80-1.74 (1H, m), 1.28-1.19 (2H, m); 13C{1H} NMR (125 MHz, 

CDCl3) δ 158.7, 141.4, 132.5, 131.3, 130.2, 129.8, 128.0, 127.4, 119.1, 114.0, 55.2, 27.6, 25.1, 

17.2; HRMS m/z: [M + H]+ calcd for C18H18OBr 329.0541; found 329.0544. 

1-Iodo-4-(2-(4-methoxystyryl)cyclopropyl)benzene (S41, cis : trans = 1 : 6). White solid 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 

 

1H NMR (CDCl3, 500 MHz) δ 7.57 (2H, d, J = 8.6 Hz), 7.25 (2H, d, J = 8.6 Hz), 6.84 (2H, d, J = 

8.6 Hz), 6.83 (2H, d, J = 8.6 Hz), 6.42 (1H, d, J = 16.0 Hz), 5.75 (1H, dd, J = 16.0, 8.6 Hz), 3.80 

(3H, s), 1.98-1.92 (1H, m), 1.80-1.73 (1H, m), 1.25 (1H, dt, J = 8.6, 5.2 Hz), 1.20 (1H, dt, J = 8.6, 

5.2 Hz); 13C{1H} NMR (125 MHz, CDCl3) δ 158.7, 142.2, 137.3, 130.3, 130.1, 128.1, 127.8, 

126.8, 114.0, 90.2, 55.3, 27.7, 25.3, 17.2; HRMS m/z: [M + H]+ calcd for C18H18OI 377.0402; 

found 377.0404. 

4-(2-(4-Methoxystyryl)cyclopropyl)benzonitrile (S42, cis : trans = 1 : 3). Pale yellow solid 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 
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1H NMR (CDCl3, 500 MHz) δ 7.55 (2H, d, J = 8.6 Hz), 7.26 (2H, d, J = 8.6 Hz), 7.15 (2H, d, J = 

8.6 Hz), 6.85 (2H, d, J = 8.6 Hz), 6.45 (1H, d, J = 15.5 Hz), 5.75 (1H, dd, J = 16.0, 8.6 Hz), 3.80 

(3H, s), 2.07-2.01 (1H, m), 1.89-1.83 (1H, m), 1.38-1.30 (2H, m); 13C{1H} NMR (125 MHz, 

CDCl3) δ 158.6, 148.2, 131.9, 131.9, 129.7, 129.6, 126.7, 125.9, 119.4, 113.8, 108.7, 55.0, 28.7, 

25.6, 17.9; HRMS m/z: [M + H]+ calcd for C19H18ON 276.1388; found 276.1402. 

1-Methoxy-4-(2-(2-(4-(trifluoromethyl)phenyl)cyclopropyl)vinyl)benzene (S43, cis : trans = 

1: 4). White solid (purified by silica gel column chromatography using hexane/ethyl acetate = 

50/1). 

 

1H NMR (CDCl3, 500 MHz) δ 7.51 (2H, d, J = 8.0 Hz), 7.25 (2H, d, J = 8.6 Hz), 7.16 (2H, d, J = 

8.0 Hz), 6.84 (2H, d, J = 8.6 Hz), 6.44 (1H, d, J = 15.5 Hz), 5.76 (1H, dd, J = 15.5, 8.6 Hz), 3.79 

(3H, s), 2.08-2.02 (1H, m), 1.86-1.80 (1H, m), 1.33 (1H, dt, J = 8.6, 5.7 Hz), 1.27 (1H, dt, J = 8.6, 

5.7 Hz); 13C{1H} NMR (125 MHz, CDCl3) δ 158.8, 146.7, 130.1, 129.7, 128.4, 127.8 (q, J = 

32.4 Hz), 126.9, 125.8, 125.3 (q, J = 3.6 Hz), 124.5 (q, J = 272.3 Hz), 114.0, 55.2, 28.2, 25.5, 

17.6; HRMS m/z: [M + H]+ calcd for C19H18OF3 319.1310; found 319.1323. 

1-Methoxy-4-(2-(4-(trifluoromethyl)styryl)cyclopropyl)benzene (S44, cis : trans = 1 : 7). 

White solid (purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 
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1H NMR (CDCl3, 500 MHz) δ 7.53 (2H, d, J = 8.0 Hz), 7.39 (2H, d, J = 8.0 Hz), 7.04 (2H, d, J = 

8.6 Hz), 6.84 (2H, d, J = 8.6 Hz), 6.49 (1H, d, J = 15.5 Hz), 5.99 (1H, dd, J = 15.5, 8.6 Hz), 3.79 

(3H, s), 2.08-2.02 (1H, m), 1.81-1.74 (1H, m), 1.30 (1H, dt, J = 8.6, 5.2 Hz), 1.20 (1H, dt, J = 9.2, 

5.2 Hz); 13C{1H} NMR (125 MHz, CDCl3) δ 158.0, 141.1, 136.1, 133.7, 128.4 (q, J = 32.4 Hz), 

126.9, 126.7, 125.8, 125.5 (q, J = 3.6 Hz), 124.4 (q, J = 272.3 Hz), 113.9, 55.2, 27.1, 25.3, 16.9; 

HRMS m/z: [M + H]+ calcd for C19H18OF3 319.1310; found 319.1281. 

Ethyl-2-(4-methoxystyryl)cyclopropane-1-carboxylate (S48, trans). Colorless oil. 

 

To a solution of triethyl phosphonoacetate (S46, 4.48 g, 20.0 mmol) in tetrahydrofuran (60 mL) 

stirred at room temperature was added NaH (800 mg, 20.0 mmol). The resulting reaction mixture 

was stirred at room temperature for 15 min and 4-methoxycinnamaldehyde (S45, 1.62 g, 10.0 

mmol) was added. The resulting reaction mixture was stirred at room temperature overnight, 

diluted with water, and extracted with ethyl acetate. The combined organic layers were dried 

over sodium sulfate, filtered, and concentrated in vacuo. Silica gel column chromatography 

(hexane/ethyl acetate = 10/1) gave the ester (S47) in 78% yield (1.81 g, 7.80 mmol). To a 

solution of trimethylsulfoxonium iodide (3.30 g, 15.0 mmol) in dimethyl sulfoxide (60 mL) 

stirred with a water bath was added NaH (600 mg, 15.0 mmol). The resulting reaction mixture 
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was stirred with a water bath for 30 min, the ester (S47, 1.74 g, 7.50 mmol) was added. The 

resulting reaction mixture was stirred with a water bath for 4 h, diluted with water, and extracted 

with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered, and 

concentrated in vacuo. Silica gel column chromatography (hexane/ethyl acetate = 10/1) gave the 

vinylcyclopropane (S48) in 82% yield (1.51 g, 6.15 mmol). 1H NMR (CDCl3, 500 MHz) δ 7.24 

(2H, d, J = 8.6 Hz), 6.83 (2H, d, J = 8.6 Hz), 6.48 (1H, d, J = 15.5 Hz), 5.61 (1H, dd, J = 16.0, 

8.6 Hz), 4.15 (2H, q, J = 7.5 Hz), 3.80 (3H, s), 2.18-2.11 (1H, m), 1.74-1.70 (1H, m), 1.48-1.43 

(1H, m), 1.28 (3H, t, J = 6.9 Hz) ,1.09-1.04 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 173.5, 

158.9, 129.8, 129.7, 127.8, 127.0, 114.0, 60.6, 55.2, 25.6, 22.2, 15.9, 14.3; HRMS m/z: [M + H]+ 

calcd for C15H19O3 247.1334; found 247.1340. 

Diethyl-2-(4-methoxystyryl)cyclopropane-1,1-dicarboxylate (S51, trans). Colorless oil. 

 

To a solution of 4-methoxycinnamaldehyde (S45, 1.63 g, 12.0 mmol) and diethylmalonate (S49, 

1.74 g, 13.2 mmol) in toluene (70 mL) stirred at room temperature were added piperidine (0.23 

mL, 2.40 mmol) and acetic acid (0.14 mL, 2.40 mmol). The resulting reaction mixture was 

refluxed overnight, diluted with water, and extracted with ethyl acetate. The combined organic 

layers were dried over sodium sulfate, filtered, and concentrated in vacuo. Silica gel column 

chromatography (hexane/ethyl acetate = 10/1) gave the ester (S50) in 93% yield (2.79 g, 11.2 

mmol). To a solution of trimethylsulfoxonium iodide (4.40 g, 20.0 mmol) in dimethyl sulfoxide 

(60 mL) stirred with a water bath was added NaH (800 mg, 20.0 mmol). The resulting reaction 
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mixture was stirred with a water bath for 30 min, the ester (S50, 3.04 g, 10.0 mmol) was added. 

The resulting reaction mixture was stirred with a water bath for 4 h, diluted with water, and 

extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, 

filtered, and concentrated in vacuo. Silica gel column chromatography (hexane/ethyl acetate = 

10/1) gave the vinylcyclopropane (S51) in 86% yield (2.74 g, 8.60 mmol). 1H NMR (CDCl3, 500 

MHz) δ 7.23 (2H, d, J = 8.6 Hz), 6.82 (2H, d, J = 8.6 Hz), 6.58 (1H, d, J = 15.5 Hz), 5.68 (1H, 

dd, J = 15.5, 8.6 Hz), 4.28-4.14 (4H, m), 3.80 (3H, s), 2.75-2.69 (1H, m), 1.80 (1H, dd, J = 8.0, 

5.2 Hz), 1.65 (1H, dd, J = 8.0, 5.2 Hz), 1.28 (3H, t, J = 7.5 Hz) ,1.22 (3H, t, J = 7.5 Hz); 13C{1H} 

NMR (125 MHz, CDCl3) δ 169.2, 167.2, 158.9, 132.7, 129.2, 126.9, 122.0, 113.6, 61.2, 61.0, 

54.7, 35.9, 31.0, 20.5, 13.9, 13.8; HRMS m/z: [M + H]+ calcd for C18H23O5 319.1545; found 

319.1530. 

1-Methoxy-4-(2-(2-phenylcyclobutyl)vinyl)benzene (S59, dr = 11 : 5 : 1 : 1). White solid. 

 

To a solution of (3-bromopropyl)triphenylphosphonium bromide (S52, 13.9 g, 30.0 mmol) in 

tetrahydrofuran (80 mL) stirred at room temperature was added potassium tert-butoxide (6.74 g, 

30.0 mmol). The resulting reaction mixture was stirred at 70 °C for 1 h, benzaldehyde (S53, 2.04 

mL, 20.0 mmol) was added, refluxed for 3 h, diluted with water, and extracted with ethyl acetate. 

The combined organic layers were dried over sodium sulfate, filtered, and concentrated in vacuo. 

Silica gel column chromatography (hexane/ethyl acetate = 50/1) gave the cyclopropane (S54, 

2.47 g, 19.0 mmol) in 95% yield. To a solution of the cyclopropane (S54, 2.47 g, 19.0 mmol) in 
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dichloromethane (80 mL) stirred at 0 °C was added m-CPBA (4.37 g, 19.0 mmol). The resulting 

reaction mixture was stirred at 0 °C for 1 h, diluted with Na2SO3 aq., and extracted with 

dichloromethane. The combined organic layers were dried over sodium sulfate, filtered, and 

concentrated in vacuo. Silica gel column chromatography (hexane/ethyl acetate = 50/1) gave the 

cyclobutanone (S55, 2.47 g, 16.9 mmol) in 89% yield. To a solution of 

(methoxymethyl)triphenylphosphonium chloride (S56, 11.0 g, 32.0 mmol) in tetrahydrofuran (80 

mL) stirred at 0 °C was added potassium tert-butoxide (3.59 g, 32.0 mmol). After the color 

turned red, the cyclobutanone (S55, 2.34 g, 16.0 mmol) was added, and the reaction was stirred 

at 50 °C until the starting material was consumed (checked by thin layer chromatography), 

diluted with water, and extracted with ethyl acetate. The combined organic layers were dried 

over sodium sulfate, filtered, and concentrated in vacuo. Silica gel column chromatography 

(hexane/ethyl acetate = 20/1) gave the enol ether (S57, 1.73 g, 9.92 mmol) in 62% yield. To a 

solution of the enol ether (S57, 1.57 g, 9.00 mmol) in acetone (50 mL) stirred at room 

temperature was added a catalytic amount of concentrated sulfuric acid. The resulting reaction 

mixture was stirred at room temperature until the starting material was consumed (checked by 

thin layer chromatography), diluted with water, and extracted with ethyl acetate. The combined 

organic layers were dried over sodium sulfate, filtered, and concentrated in vacuo. Silica gel 

column chromatography (hexane/ethyl acetate = 5/1) gave the aldehyde (S58, 937 mg, 5.85 

mmol) in 65% yield. To a solution of (4-methoxyphenylmethyl)triphenylphosphonium chloride 

(S1, 4.90 g, 11.7 mmol) in tetrahydrofuran (80 mL) stirred at 0 °C was added potassium tert-

butoxide (1.31 g, 11.7 mmol). After the color turned red, the aldehyde (S58, 937 mg, 5.85 mmol) 

was added, stirred at 0 °C until the starting material was consumed (checked by thin layer 

chromatography), diluted with water, and extracted with ethyl acetate. The combined organic 
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layers were dried over sodium sulfate, filtered, and concentrated in vacuo. Silica gel column 

chromatography (hexane/ethyl acetate = 50/1) gave the titled compound (S59, 529 mg, 2.00 

mmol) in 34% yield. 1H NMR (CDCl3, 500 MHz) δ 7.31-7.16 (5H, m), 7.29 (2H, d, J = 8.6 Hz), 

6.83 (2H, d, J = 8.6 Hz), 6.32 (1H, d, J = 16.0 Hz), 6.23 (1H, dd, J = 16.0, 6.9 Hz), 3.79 (3H, s), 

3.42-3.30 (2H, m), 2.30-2.20 (1H, m), 2.20-2.04 (2H, m), 2.02-1.85 (1H, m); 13C{1H} NMR (125 

MHz, CDCl3) δ 158.8, 144.6, 131.4, 129.7, 128.2, 127.2, 126.6, 126.5, 126.0, 113.9, 55.2, 46.9, 

46.9, 25.6, 25.3; HRMS m/z: [M + H]+ calcd for C19H21O 265.1592; found 265.1621. 

General Procedure for the TiO2 Photocatalytic Reactions (14, 19−21, 23, 25−40, 42−48). To 

a solution of LiClO4 (1.0 M) in CH3NO2 (4 mL) stirred at room temperature were added the 

respective vinylcyclopropanes (0.20 mmol). The resulting reaction mixture was stirred at room 

temperature in front (5 cm) of a 15 W UV lamp (365 nm, Analytik Jena AG, XX-15L) until the 

starting material was consumed (checked by TLC), diluted with water, and extracted with EtOAc. 

The combined organic layers were dried over Na2SO4, filtered, and concentrated in vacuo. Yields 

reported in the manuscript were determined by 1H NMR analysis. Silica gel column 

chromatography was carried out on 0.40 mmol scale (2 batches of the reactions) using 

hexane/ethyl acetate = 50/1−10/1. 

1-Methoxy-4-(5-phenylcyclopent-2-en-1-yl)benzene (14, cis : trans = 2 : 3). Colorless oil 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). Product yield 

(0.40 mmol); 94% (determined by NMR), isolated in 90% (90 mg, 0.36 mmol). Product yield 

(1.00 mmol); 81% (determined by NMR), isolated in 78% (194 mg, 0.78 mmol). 1H NMR 

(CDCl3, 500 MHz) δ 7.29-7.24 (2H, m), 7.21-7.16 (3H, m), 7.00 (2H, d, J = 8.6 Hz), 6.79 (2H, d, 

J = 8.6 Hz), 5.97-5.94 (1H, m), 5.80-5.76 (1H, m), 3.91-3.87 (1H, m), 3.76 (3H, s), 3.23-3.18 

(1H, m), 2.96-2.89 (1H, m), 2.63-2.55 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 158.1, 145.9, 
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137.3, 133.8, 129.7, 128.5, 128.3, 127.4, 126.1, 113.8, 59.7, 55.3, 54.8, 41.7; HRMS m/z: [M + 

H]+ calcd for C18H19O2 251.1436; found 251.1410. 

1-Methoxy-4-(2-phenylcyclopent-3-en-1-yl)benzene (19, cis : trans = 1 : 3). Colorless oil 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). Product yield; 

95% (determined by NMR), isolated in 92% (92 mg, 0.37 mmol). 1H NMR (CDCl3, 500 MHz) δ 

7.28-7.24 (2H, m), 7.21-7.17 (1H, t, J = 7.5 Hz), 7.11 (2H, d, J = 8.6 Hz), 7.10-7.07 (2H, m), 

6.82 (2H, d, J = 8.6 Hz), 6.00-5.97 (1H, m), 5.82-5.79 (1H, m), 3.91-3.87 (1H, m), 3.79 (3H, s), 

3.24-3.18 (1H, m), 2.96-2.89 (1H, m), 2.60-2.54 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 

158.0, 145.2, 137.8, 133.5, 130.9, 128.4, 128.3, 127.4, 126.3, 113.8, 60.6, 55.3, 54.0, 41.8; 

HRMS m/z: [M + H]+ calcd for C18H19O 251.1436; found 251.1435. 

4,4'-(Cyclopent-3-ene-1,2-diyl)bis(methoxybenzene) (20, cis : trans = 1 : 3). Colorless oil 

(purified by silica gel column chromatography using hexane/ethyl acetate = 20/1). Product yield; 

87% (determined by NMR), isolated in 80% (90 mg, 0.32 mmol). 1H NMR (CDCl3, 500 MHz) δ 

7.09 (2H, d, J = 8.6 Hz), 6.99 (2H, d, J = 8.6 Hz), 6.81 (2H, d, J = 8.6 Hz), 6.79 (2H, d, J = 8.6 

Hz), 5.96-5.93 (1H, m), 5.79-5.75 (1H, m), 3.86-3.81 (1H, m), 3.77 (3H, s), 3.75 (3H, s), 3.15 

(1H, dt, J = 8.6, 7.5 Hz), 2.93-2.85 (1H, m), 2.58-2.51 (1H, m); 13C{1H} NMR (125 MHz, 

CDCl3) δ 158.2, 158.0, 137.9, 137.4, 133.9, 130.7, 128.4, 113.9, 59.8, 55.4, 54.2, 41.8; HRMS 

m/z: [M + H]+ calcd for C19H21O2 281.1542; found 281.1519. 

1-Methoxy-2-(5-phenylcyclopnt-2-en-1-yl)benzene (21, cis : trans = 1 : 3). Colorless oil 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). Product yield; 

61% (determined by NMR), isolated in 59% (59 mg, 0.24 mmol). 1H NMR (CDCl3, 500 MHz) δ 

7.29-7.23 (3H, m), 7.20-7.15 (2H, m), 7.01-6.89 (2H, m), 6.84-6.79 (2H, m), 6.02-5.99 (1H, m), 
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5.79-5.76 (1H, m), 4.39-4.35 (1H, m), 3.57 (3H, s), 3.28-3.22 (1H, m), 2.96-2.89 (1H, m), 2.58-

2.51 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 157.2, 147.1, 133.4, 130.9, 128.5, 128.2, 

127.5, 127.2, 127.2, 125.8, 120.6, 110.6, 55.2, 52.9, 52.8, 41.4; HRMS m/z: [M + H]+ calcd for 

C18H19O 251.1436; found 251.1420. 

1-Methoxy-2-(2-phenylcyclopent-3-en-1-yl)benzene (23, cis : trans = 1 : 3). Colorless oil 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). Product yield; 

49% (determined by NMR), isolated in 35% (35 mg, 0.14 mmol). 1H NMR (CDCl3, 500 MHz) δ 

7.27-7.20 (2H, m), 7.20-7.11 (3H, m), 7.01-6.95 (1H, m), 6.90 (1H, t, J = 7.5 Hz), 6.84 (1H, d, J 

= 8.0 Hz), 6.80 (1H, dt, J = 8.0, 1.7 Hz), 6.00-5.96 (1H, m), 5.84-5.80 (1H, m), 4.08-4.03 (1H, 

m), 3.69 (3H, s), 3.63-3.58 (1H, m), 2.88 (1H, ddq, J = 16.6, 7.5, 2.3 Hz), 2.60-2.53 (1H, m); 

13C{1H} NMR (125 MHz, CDCl3) δ 157.4, 145.6, 133.7, 133.6, 131.2, 128.3, 128.0, 127.5, 127.1, 

126.1, 120.6, 110.8, 58.2, 55.4, 48.2, 40.0; HRMS m/z: [M + H]+ calcd for C18H19O 251.1436; 

found 251.1409. 

2,4-Dimethoxy-1-(5-phenylcyclopent-2-en-1-yl)benzene (25, cis : trans = 1 : 3). Colorless oil 

(purified by silica gel column chromatography using hexane/ethyl acetate = 20/1). Product yield; 

91% (determined by NMR), isolated in 89% (100 mg, 0.36 mmol). 1H NMR (CDCl3, 500 MHz) 

δ 7.28-7.22 (3H, m), 7.07 (1H, d, J = 8.0 Hz), 7.00-6.92 (1H, m), 6.83 (1H, t, J 8.6 Hz), 6.44 (1H, 

dd, J = 8.6, 2.3 Hz), 6.40 (1H, d, J = 2.3 Hz), 6.00-5.96 (1H, m), 5.77-5.74 (1H, m), 4.29-4.25 

(1H, m), 3.79 (3H, s), 3.55 (3H, s), 3.21 (1H, dt, J = 8.6, 6.3 Hz), 2.95-2.87 (1H, m), 2.56-2.50 

(1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 159.2, 158.1, 147.1, 133.6, 130.6, 128.1, 127.8, 

127.2, 126.9, 125.8, 104.0, 98.6, 55.4, 55.1, 53.0, 52.5, 41.2; HRMS m/z: [M + H]+ calcd for 

C19H20O2 281.1542; found 281.1558. 
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1,3,5-Trimethoxy-2-(5-phenylcyclopent-2-en-1-yl)benzene (26, cis : trans = 1 : 6). Colorless 

oil (purified by silica gel column chromatography using hexane/ethyl acetate = 10/1). Product 

yield; 85% (determined by NMR), isolated in 60% (74 mg, 0.24 mmol). 1H NMR (CDCl3, 500 

MHz) δ 7.25-7.17 (4H, m), 7.14-7.08 (1H, m), 6.08 (2H, s), 5.77-5.73 (1H, m), 5.68-5.65 (1H, 

m), 4.56-4.51 (1H, m), 3.76 (3H, s), 3.60 (6H, s), 3.02-2.94 (1H, m), 2.58-2.51 (1H, m); 13C{1H} 

NMR (125 MHz, CDCl3) δ 159.6, 159.4, 147.3, 134.5, 128.0, 127.3, 126.9, 125.5, 112.7, 91.5, 

56.0, 55.2, 50.2, 49.1, 42.0; HRMS m/z: [M + H]+ calcd for C20H22O3 310.1569; found 310.1571. 

1-Methyl-4-(5-phenylcyclopent-2-en-1-yl)benzene (27, cis : trans = 1 : 4). Colorless oil 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). Product yield; 

13% (determined by NMR), isolated in 11% (10 mg, 0.04 mmol). 1H NMR (CDCl3, 500 MHz) δ 

7.29-7.24 (2H, m), 7.21-7.16 (3H, m), 7.07 (2H, d, J = 8.0 Hz), 6.99 (2H, d, J = 8.0 Hz), 5.99-

5.95 (1H, m), 5.81-5.77 (1H, m), 3.93-3.89 (1H, m), 3.24 (1H, dt, J = 8.6, 7.5 Hz), 2.99-2.91 (1H, 

m), 2.63-2.56 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 146.1, 142.2, 135.9, 133.9, 130.8, 

129.3, 128.6, 127.5, 127.4, 126.2, 60.2, 54.6, 41.9, 21.2; HRMS m/z: [M + H]+ calcd for C18H19 

235.1487; found 235.1511. 

2,4-Dimethyl-1-(5-phenylcyclopent-2-en-1-yl)benzene (28, cis : trans = 1 : 3). Colorless oil 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). Product yield; 

44% (determined by NMR), isolated in 36% (36 mg, 0.14 mmol). 1H NMR (CDCl3, 500 MHz) δ 

7.29-7.15 (4H, m), 7.02-6.94 (2H, m), 6.90-6.87 (1H, m), 6.85-6.78 (1H, m), 6.02-5.98 (1H, m), 

5.77-5.72 (1H, m), 4.19-4.13 (1H, m), 3.23-3.16 (1H, m), 3.00-2.91 (1H, m), 2.62-2.54 (1H, m), 

2.28 (3H, s), 1.88 (3H, s); 13C{1H} NMR (125 MHz, CDCl3) δ 146.7, 140.4, 135.9, 135.5, 134.0, 

131.0, 130.8, 128.5, 127.1, 126.9, 126.7, 126.1, 56.3, 54.3, 41.7, 21.0, 19.7; HRMS m/z: [M + 

H]+ calcd for C19H21 249.1643; found 249.1647. 
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1,3,5-Trimethyl-2-(5-phenylcyclopent-2-en-1-yl)benzene (29, cis : trans = 1 : 4). Colorless oil 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). Product yield; 

71% (determined by NMR), isolated in 60% (63 mg, 0.24 mmol). 1H NMR (CDCl3, 500 MHz) δ 

7.25-7.20 (2H, m), 7.19-7.13 (2H, m), 7.02-6.94 (1H, m), 6.80-6.66 (2H, br), 5.85-5.81 (1H, m), 

5.80-5.76 (1H, m), 4.42-4.36 (1H, m), 3.51 (1H, dt, J = 9.2, 8.6 Hz), 3.07-2.99 (1H, m), 2.81-

2.73 (1H, m), 2.800-2.30 (3H, br), 2.28 (3H, s), 2.10-1.63 (3H, br); 13C{1H} NMR (125 MHz, 

CDCl3) δ 146.3, 137.4, 136.2, 135.4, 134.7, 134.7, 128.4,128.4, 127.5, 126.1, 57.0, 51.2, 41.7, 

21.0, 20.8; HRMS m/z: [M + H]+ calcd for C20H23 263.1800; found 263.1784. 

1-Methyl-4-(2-phenylcyclopent-3-en-1-yl)benzene (30, cis : trans = 1 : 9). Colorless oil 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). Product yield; 

26% (determined by NMR), isolated in 21% (20 mg, 0.08 mmol). 1H NMR (CDCl3, 500 MHz) δ 

7.25 (2H, t, J = 7.5 Hz), 7.18 (1H, t, J = 7.5 Hz), 7.11-7.07 (6H, m), 5.99-5.96 (1H, m), 5.82-

5.78 (1H, m), 3.94-3.90 (1H, m), 3.25-3.19 (1H, m), 2.96-2.89 (1H, m), 2.61-2.54 (1H, m), 2.32 

(3H, s); 13C{1H} NMR (125 MHz, CDCl3) δ 145.3, 142.8, 135.6, 133.6, 130.9, 129.2, 128.4, 

127.4, 127.3, 126.3, 60.5, 54.2, 41.9, 21.1; HRMS m/z: [M + H]+ calcd for C18H19 235.1487; 

found 235.1482. 

2,4-Dimethyl-1-(2-phenylcyclopent-3-en-1-yl)benzene (31, cis : trans = 1 : 8). Colorless oil 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). Product yield; 

65% (determined by NMR), isolated in 56% (56 mg, 0.22 mmol). 1H NMR (CDCl3, 500 MHz) δ 

7.27 (1H, d, J = 8.0 Hz), 7.23 (2H, t, J = 7.5 Hz), 7.17 (1H, t, J = 7.5 Hz), 7.09 (2H, d, J = 6.9 

Hz), 7.01 (1H, d, J = 11.5 Hz), 6.90 (1H, s), 6.00-5.97 (1H, m), 5.84-5.80 (1H, m), 3.97-3.92 (1H, 

m), 3.52-3.46 (1H, m), 2.99-2.90 (1H, m), 2.54-2.46 (1H, m), 2.28 (3H, s), 1.97 (3H, s); 13C{1H} 
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NMR (125 MHz, CDCl3) δ 145.5, 141.2, 135.7, 135.2, 133.6, 131.0, 128.4, 127.2, 126.9, 126.2, 

60.4, 49.5, 41.5, 21.0, 19.8; HRMS m/z: [M + H]+ calcd for C19H21 249.1643; found 249.1641. 

1,3,5-Trimethyl-2-(2-phenylcyclopent-3-en-1-yl)benzene (32, cis : trans = 1 : 14). Colorless 

oil (purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). Product 

yield; 85% (determined by NMR), isolated in 77% (81 mg, 0.31 mmol). 1H NMR (CDCl3, 500 

MHz) δ 7.23 (2H, t, J = 7.5 Hz), 7.16 (1H, t, J = 6.9 Hz), 7.08-7.04 (2H, m), 6.95-6.64 (2H, br), 

6.03-5.99 (1H, m), 5.87-5.82 (1H, m), 4.11-4.05 (1H, m), 3.72-3.65 (1H, m), 2.91-2.83 (1H, m), 

2.70-2.62 (1H, m), 2.50-2.25 (3H, br), 2.24 (3H, s), 1.90-1.66 (3H, br); 13C{1H} NMR (125 MHz, 

CDCl3) δ 146.5, 138.0, 136.8, 135.1, 133.4, 131.6, 131.1-130.5 (br), 129.0-128.5 (br), 128.4, 

127.2, 126.2, 58.7, 48.3, 39.8, 21.5-21.0 (br), 20.8, 20.3-19.9 (br); HRMS m/z: [M + H]+ calcd 

for C20H23 263.1800; found 263.1775. 

2,4-Dimethoxy-1-(2-(4-methoxyphenyl)cyclopent-3-en-1-yl)benzene (33, cis : trans = 1 : 3). 

Colorless oil (purified by silica gel column chromatography using hexane/ethyl acetate = 10/1). 

Product yield; 89% (determined by NMR), isolated in 71% (88 mg, 0.28 mmol). 1H NMR 

(CDCl3, 500 MHz) δ 7.09 (1H, d, J = 8.0 Hz), 7.04 (2H, d, J = 8.6 Hz), 6.78 (2H, d, J = 8.6 Hz), 

6.43 (1H, d, J = 2.3 Hz), 6.41 (1H, dd, J = 8.0, 2.3 Hz), 5.97-5.93 (1H, m), 5.80-5.77 (1H, m), 

3.99-3.95 (1H, m), 3.78 (3H, s), 3.75 (3H, s), 3.69 (3H, s), 3.49-3.43 (1H, m), 2.86-2.79 (1H, m), 

2.56-2.48 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 159.0, 158.4, 157.9, 137.8, 133.9, 130.9, 

129.3, 128.3, 126.0, 113.6, 103.9, 98.8, 57.2, 55.4, 55.3, 55.3, 48.2, 39.9; HRMS m/z: [M + H]+ 

calcd for C20H23O3 311.1647; found 311.1622. 

1,3,5-Trimethoxy-2-(2-(4-methoxyphenyl)cyclopent-3-en-1-yl)benzene (34, cis : trans = 1 : 

2). Colorless oil (purified by silica gel column chromatography using hexane/ethyl acetate = 
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10/1). Product yield; 92% (determined by NMR), isolated in 85% (116 mg, 0.34 mmol). 1H 

NMR (CDCl3, 500 MHz) δ 6.99 (2H, d, J = 8.6 Hz), 6.75 (2H, d, J = 8.6 Hz), 6.12 (2H, s), 5.94-

5.91 (1H, m), 5.80-5.77 (1H, m), 4.20-4.15 (1H, m), 3.79 (3H, s), 3.79-3.72 (1H, m), 3.76 (3H, s), 

3.63 (6H, s), 2.82-2.74 (1H, m), 2.60-2.53 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 159.5, 

159.2, 157.7, 138.8, 134.2, 131.3, 128.2, 113.3, 112.1, 91.6, 56.0, 55.2, 55.2, 55.2, 43.4, 38.3; 

HRMS m/z: [M + H]+ calcd for C21H25O4 341.1753; found 341.1740. 

1-Methoxy-4-(5-(p-tolyl)cyclopent-2-en-1-yl)benzene (35, cis : trans = 1 : 2). Colorless oil 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). Product yield; 

68% (determined by NMR), isolated in 66% (70 mg, 0.26 mmol). 1H NMR (CDCl3, 500 MHz) δ 

7.08 (4H, s), 7.00 (2H, d, J = 8.6 Hz), 6.79 (2H, d, J = 8.6 Hz), 5.97-5.93 (1H, m), 5.79-5.75 (1H, 

m), 3.89-3.85 (1H, m), 3.76 (3H, s), 3.20-3.14 (1H, m), 2.95-2.87 (1H, m), 2.59-2.52 (1H, m); 

13C{1H} NMR (125 MHz, CDCl3) δ 158.1, 142.8, 137.3, 135.5, 133.8, 129.7, 129.1, 128.2, 127.3, 

113.8, 59.7, 55.3, 54.4, 41.7, 21.1; HRMS m/z: [M + H]+ calcd for C19H21O 265.1592; found 

265.1593. 

1-(2-(4-Methoxyphenyl)cyclopent-3-en-1-yl)-2,4-dimethylbenzene (36, cis : trans = 1 : 2). 

Colorless oil (purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 

Product yield; 78% (determined by NMR), isolated in 75% (83 mg, 0.30 mmol). 1H NMR 

(CDCl3, 500 MHz) δ 7.25 (1H, d, J = 8.0 Hz), 7.01 (2H, d, J = 8.6 Hz), 7.00-6.98 (1H, m), 6.90 

(1H, m), 6.78 (2H, d, J = 8.6 Hz), 5.98-5.93 (1H, m), 5.82-5.77 (1H, m), 3.92-3.87 (1H, m), 3.76 

(3H, s), 3.48-3.41 (1H, m), 2.97-2.89 (1H, m), 2.52-2.45 (1H, m), 2.28 (3H, s), 1.98 (3H, s); 

13C{1H} NMR (125 MHz, CDCl3) δ 158.1, 141.2, 137.6, 135.8, 133.9, 133.7, 130.9, 130.7, 128.1, 

126.9, 126.2, 113.8, 59.6, 55.3, 49.6, 41.4, 21.0, 19.8 ; HRMS m/z: [M + H]+ calcd for C20H23O 

279.1749; found 279.1738. 
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2-(2-(4-Methoxyphenyl)cyclopent-3-en-1-yl)-1,3,5-trimethylbenzene (37, cis : trans = 1 : 7). 

Colorless oil (purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 

Product yield; 79% (determined by NMR), isolated in 76% (89 mg, 0.30 mmol). 1H NMR 

(CDCl3, 500 MHz) δ 6.97 (2H, d, J = 8.6 Hz), 6.93-6.67 (2H, br), 6.77 (2H, d, J = 8.6 Hz), 4.05-

4.00 (1H, m), 3.75 (3H, s), 3.68-3.62 (1H, m), 2.89-2.80 (1H, m), 2.68-2.60 (1H, m), 2.50-2.22 

(3H, br), 2.24 (3H, s), 1.95-1.72 (3H, br); 13C{1H} NMR (125 MHz, CDCl3) δ 158.0, 138.7, 

138.1, 136.8, 135.0, 133.7, 131.3, 128.0, 113.7, 57.9, 55.3, 48.4, 39.7, 20.8; HRMS m/z: [M + 

H]+ calcd for C21H25O 293.1905; found 293.1921. 

2-(2-(4-Methoxyphenyl)cyclopent-3-en-1-yl)furan (38, cis : trans = 1 : 2). Colorless oil 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). Product yield; 

46% (determined by NMR), isolated in 40% (38 mg, 0.16 mmol). 1H NMR (CDCl3, 500 MHz) δ 

7.34-7.33 (1H, m), 7.09 (2H, d, J = 8.6 Hz), 6.83 (2H, d, J = 8.6 Hz), 6.29-6.27 (1H, m), 6.09-

6.05 (1H, m), 5.99 (1H, d, J = 2.9 Hz), 5.77-5.74 (1H, m), 4.02-3.97 (2H, m), 3.78 (3H, s), 3.31-

3.25 (1H, m), 2.88-2.81 (1H, m), 2.70-2.62 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 158.3, 

158.0, 141.2, 133.9, 133.6, 130.4, 128.4, 113.9, 110.1, 104.6, 56.2, 55.3, 47.8, 38.5; HRMS m/z: 

[M + H]+ calcd for C16H17O2 241.1229; found 241.1213. 

2-(2-(4-Methoxyphenyl)cyclopent-3-en-1-yl)-1-methyl-1H-pyrrole (39, cis : trans = 1 : 3). 

Colorless oil (purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 

Product yield; 65% (determined by NMR), isolated in 56% (57 mg, 0.22 mmol). 1H NMR 

(CDCl3, 500 MHz) δ 7.09 (2H, d, J = 8.6 Hz), 6.81 (2H, d, J = 8.6 Hz), 6.49-6.47 (1H, m), 6.09-

6.05 (2H, m), 5.94-5.90 (1H, m), 5.77-5.73 (1H, m), 3.93-3.88 (1H, m), 3.78 (3H, s), 3.27-3.21 

(1H, m), 3.21 (3H, s), 2.94-2.87 (1H, m), 2.58-2.50 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 
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158.3, 137.2, 136.6, 130.2, 128.4, 121.6, 113.9, 106.5, 104.3, 58.3, 55.3, 46.3, 40.4, 33.9; HRMS 

m/z: [M + H]+ calcd for C17H20ON 254.1545; found 254.1531. 

2-(2-(4-Methoxyphenyl)cyclopent-3-en-1-yl)thiophene (40, cis : trans = 1 : 2). Colorless oil 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). Product yield; 

96% (determined by NMR), isolated in 85% (87 mg, 0.34 mmol). 1H NMR (CDCl3, 500 MHz) 

δ7.12 (1H, dd, J = 5.2, 1.2 Hz), 7.08 (2H, d, J = 8.6 Hz), 6.91 (1H, t, J = 5.2 Hz), 6.83 (2H, d, J = 

8.6 Hz), 6.75-6.73 (1H, m), 5.97-5.93 (1H, m), 5.79-5.76 (1H, m), 3.93-3.88 (1H, m), 3.79 (3H, 

s), 3.53-3.47 (1H, m), 3.02-2.94 (1H, m), 2.68-2.61 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 

158.4, 148.8, 134.2, 134.0, 130.3, 128.5, 126.7, 123.6, 122.8, 113.8, 59.9, 55.2, 50.3, 42.1; 

HRMS m/z: [M + H]+ calcd for C16H17OS 257.1000; found 257.0985. 

1-Fluoro-4-(2-(4-methoxyphenyl)cyclopent-3-en-1-yl)benzene (42, cis : trans = 2 : 3). 

Colorless oil (purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 

Product yield; 91% (determined by NMR), isolated in 75% (80 mg, 0.30 mmol). 1H NMR 

(CDCl3, 500 MHz) δ 7.15-7.10 (2H, m), 6.99 (2H, d, J = 8.6 Hz), 6.97-6.92 (2H, m), 6.80 (2H, d, 

J = 8.6 Hz), 6.73-6.69 (2H, m), 5.97-5.93 (1H, m), 5.79-5.76 (1H, m), 3.85-3.80 (1H, m), 3.77 

(3H, s), 3.22-3.16 (1H, m), 2.96-2.88 (1H, m), 2.58-2.50 (1H, m); 13C{1H} NMR (125 MHz, 

CDCl3) δ 161.4 (d, J = 243.5 Hz), 158.2, 141.4 (d, J = 2.4 Hz), 137.0, 133.8, 130.6, 128.7 (d, J = 

7.2 Hz), 128.3, 115.1 (d, J = 20.4 Hz), 113.9, 59.9, 55.3, 54.2, 41.6; HRMS m/z: [M + H]+ calcd 

for C18H18OF 269.1342; found 269.1315. 

1-Chloro-4-(2-(4-methoxyphenyl)cyclopent-3-en-1-yl)benzene (43, cis : trans = 3 : 5). 

Colorless oil (purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 

Product yield; 87% (determined by NMR), isolated in 68% (77 mg, 0.27 mmol). 1H NMR 
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(CDCl3, 500 MHz) δ 7.22 (2H, d, J = 8.6 Hz), 7.10 (2H, d, J = 8.0 Hz), 6.98 (2H, d, J = 8.6 Hz), 

6.80 (2H, d, J = 8.6 Hz), 5.96-5.93 (1H, m), 5.78-5.75 (1H, m), 3.84-3.80 (1H, m), 3.76 (1H, m), 

3.20 (1H, m), 2.95-2.88 (1H, m), 2.57-2.50 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 158.3, 

144.2, 136.8, 133.8, 132.5, 131.7, 130.5, 128.8, 128.5, 128.2, 113.9, 59.8, 55.3, 54.3, 41.5; 

HRMS m/z: [M + H]+ calcd for C18H18OCl 285.1046; found 285.1032. 

1-Bromo-4-(2-(4-methoxyphenyl)cyclopent-3-en-1-yl)benzene (44, cis : trans = 2 : 3). 

Colorless oil (purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). 

Product yield; 81% (determined by NMR), isolated in 74% (97 mg, 0.30 mmol). 1H NMR 

(CDCl3, 500 MHz) δ 7.38 (2H, d, J = 8.6 Hz), 7.05 (2H, d, J = 8.6 Hz), 6.98 (2H, d, J = 8.6 Hz), 

6.80 (2H, d, J = 8.6 Hz), 5.97-5.93 (1H, m), 5.79-5.75 (1H, m), 3.84-3.80 (1H, m), 3.78 (3H, s), 

3.18-3.13 (1H, m), 2.96-2.88 (1H, m), 2.58-2.50 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 

158.2, 144.8, 136.8, 133.8, 131.5, 130.5, 129.2, 128.3, 119.8, 113.9, 59.8, 55.3, 54.3, 41.5; 

HRMS m/z: [M + H]+ calcd for C18H18OBr 329.0541; found 329.0565. 

1-Iodo-4-(2-(4-methoxyphenyl)cyclopent-3-en-1-yl)benzene (45, cis : trans = 2 : 3). Colorless 

oil (purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). Product 

yield; 56% (determined by NMR), isolated in 45% (68 mg, 0.18 mmol). 1H NMR (CDCl3, 500 

MHz) δ 7.58 (2H, d, J = 8.6 Hz), 6.98 (2H, d, J = 8.6 Hz), 6.92 (2H, d, J = 8.6 Hz), 6.80 (2H, d, 

J = 8.6 Hz), 5.97-5.93 (1H, m), 5.79-5.75 (1H, m), 3.84-3.80 (1H, m), 3.77 (3H, s), 3.17-3.11 

(1H, m), 2.95-2.88 (1H, m), 2.57-2.50 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 158.2, 145.5, 

137.5, 133.8, 131.7, 130.7, 129.5, 128.2, 113.9, 91.2, 59.7, 55.3, 54.4, 41.5; HRMS m/z: [M + 

H]+ calcd for C18H18OI 377.0402; found 377.0381. 
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4-(2-(4-Methoxyphenyl)cyclopent-3-en-1-yl)benzonitrile (46, cis : trans = 1 : 4). Colorless oil 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). Product yield; 

75% (determined by NMR), isolated in 66% (73 mg, 0.26 mmol). 1H NMR (CDCl3, 500 MHz) δ 

7.56 (2H, d, J = 6.9 Hz), 7.28 (2H, d, J = 6.9 Hz), 6.98 (2H, d, J = 6.9 Hz), 6.81 (2H, d, J = 6.9 

Hz), 5.99-5.96 (1H, m), 5.81-5.76 (1H, m), 3.88-3.83 (1H, m), 3.78 (3H, s), 3.29-3.22 (1H, m), 

3.01-2.92 (1H, m), 2.61-2.53 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 158.4, 151.5, 136.3, 

133.7, 132.4, 130.4, 128.2, 128.1, 119.2, 114.0, 109.9, 59.8, 55.3, 54.8, 41.2; HRMS m/z: [M + 

H]+ calcd for C19H18ON 276.1388; found 276.1394. 

1-Methoxy-4-(5-(4-(trifluoromethyl)phenyl)cyclopent-2-en-1-yl)benzene (47, cis : trans = 1 : 

1). Colorless oil (purified by silica gel column chromatography using hexane/ethyl acetate = 

50/1). Product yield; 46% (determined by NMR), isolated in 40% (51 mg, 0.16 mmol). 1H NMR 

(CDCl3, 500 MHz) δ 7.52 (2H, d, J = 8.0 Hz), 7.29 (2H, d, J = 8.6 Hz), 6.99 (2H, d, J = 8.6 Hz), 

6.82 (2H, d, J = 8.6 Hz), 5.99-5.96 (1H, m), 5.81-5.77 (1H, m), 3.90-3.86 (1H, m), 3.78 (3H, s), 

3.29-3.23 (1H, m), 3.00-2.93 (1H, m), 2.62-2.54 (1H, m); 13C{1H} NMR (125 MHz, CDCl3) δ 

158.3, 150.0, 136.7, 133.8, 130.5, 128.2, 127.9 (q, J = 32.4 Hz), 127.7, 125.4 (q, J = 3.6 Hz), 

124.4 (q, J = 271.1 Hz), 113.9, 59.8, 55.3, 54.6, 41.5; HRMS m/z: [M + H]+ calcd for C19H18OF3 

319.1310; found 319.1293. 

1-Methoxy-4-(2-(4-(trifluoromethyl)phenyl)cyclopent-3-en-1-yl)benzene (48, cis : trans = 1 : 

3). Colorless oil (purified by silica gel column chromatography using hexane/ethyl acetate = 

50/1). Product yield; 86% (determined by NMR), isolated in 80% (102 mg, 0.32 mmol). 1H 

NMR (CDCl3, 500 MHz) δ7.50 (2H, d, J = 8.0 Hz), 7.18 (2H, d, J = 8.0 Hz), 7.09 (2H, d, J = 8.6 

Hz), 6.83 (2H, d, J = 8.6 Hz), 6.05-6..01 (1H, m), 5.80-5.76 (1H, m), 3.97-3.92 (1H, m), 3.80 

(3H, s), 3.20-3.14 (1H, m), 2.97-2.90 (1H, m), 2.64-2.56 (1H, m); 13C{1H} NMR (125 MHz, 
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CDCl3) δ 158.2, 149.3, 136.9, 131.9, 128.6 (q, J = 32.4 Hz), 128.3, 127.7, 125.4 (q, J = 3.6 Hz), 

124.4 (q, J = 272.3 Hz), 113.9, 60.4, 55.3, 54.2, 41.8; HRMS m/z: [M + H]+ calcd for C19H18OF3 

319.1310; found 319.1309. 

4-Methoxy-1’,2’,3’,4’-tetrahydro-1,1’:2’,1”-terphenyl (51, cis : trans = 2 : 3). Colorless oil 

(purified by silica gel column chromatography using hexane/ethyl acetate = 50/1). Product yield; 

94% (determined by NMR), isolated in 89% (94 mg, 0.36 mmol). 1H NMR (CDCl3, 500 MHz) δ 

7.17 (2H, t, J = 6.9 Hz), 7.13-7.08 (1H, m), 6.97 (2H, d, J = 6.9 Hz), 6.83 (2H, d, J = 8.6 Hz), 

6.67 (2H, d, J = 8.6 Hz), 5.95-5.89 (1H, m), 5.75-5.70 (1H, m), 3.71 (3H, s), 3.46-3.40 (1H, m), 

3.21 (3H, s), 2.71-2.64 (1H, m), 2.40-2.15 (2H, m), 2.02-1.89 (2H, m); 13C{1H} NMR (125 MHz, 

CDCl3) δ 157.8, 145.6, 136.9, 131.4, 129.2, 128.1, 127.7, 127.5, 126.0, 113.3, 55.2, 49.5, 45.1, 

30.0, 25.7; HRMS m/z: [M + H]+ calcd for C17H20ON 265.1592; found 265.1598. 

Theoretical Calculations. Structure optimizations of all stationary points and frequency 

analyses were carried out at the B3LYP level of density functional theory (DFT) with the 6-

311G++(2d,2p) basis set in nitromethane (PCM model). No imaginary frequency was observed 

for all compounds. 
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