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A B S T R A C T   

The poly(aryl ether ketone) with spatial cardo structure is prepared from 4,4′-bis(phenoxy)benzophenone and 1- 
(4-bromobutyl)indoline-2,3-dione through a facile polyhydroxyalkylation reaction catalyzed by superacid. The 
number average molecular weight of the resultant polymer is achieved as high as 105.6 kg mmol− 1. Three anion 
exchange membranes were prepared by reacting the polymer with trimethylamine, N-methyl-piperidine, and N, 
N,N′,N′,N′′-pentaethylguanidine, respectively. Among the prepared membranes, N-methyl-piperidine based 
anion exchange membrane exhibited the highest OH− conductivity of 99.8 mS cm− 1 at corresponding IEC of 1.54 
meq g− 1. In addition, the prepared membranes also exhibit excellent mechanical properties, in which the tensile 
strength and elongation at break can reach up to 50 MPa and 35%, respectively. Moreover, the anion exchange 
membranes exhibited good alkaline stability. When they were treated with 1 M KOH at 60 ◦C for 600 h, their 
conductivity decreased by less than 5%.   

1. Introduction 

Anion exchange membrane fuel cell (AEMFC) is an environmentally 
benign electrochemical device, which offers several advantages such as 
non-noble metal based electro-catalysts, insignificant fuel cross-over, 
controlled catalyst corrosion, and fast kinetics of oxygen reduction at 
the cathode [1–3]. In AEMFCs, anion exchange membranes (AEMs) are 
used, which simultaneously act as a separator between opposite elec-
trodes and as a solid-state polymer electrolyte to transport anions from 
cathode to anode [4]. Since the AEMs are recognized as a key compo-
nent, the development of high-performance and stable AEMs is a hot 
area of fuel cell technology. An ideal AEM possesses high alkaline sta-
bility, good dimensional/thermal stability, high mechanical properties, 
and excellent conductivity. All of these characteristics mainly originate 
from polymer backbone architecture and stability of cationic groups 
attached to the polymer electrolyte [5]. 

AEMs derived from aromatic polymers such as poly(ether ketone)s 

(PEKs) [6–8], poly(phenylene oxide) (PPO) [9–11], and poly(ether 
sulfone)s (PESs) [12–16] have been extensively studied due to their high 
mechanical strength, excellent chemical and thermal stability. Com-
mercial PPO and polysulfone are easily functionalized to convert into 
AEMs, in contrast, similar functionalization to an engineering polymer, 
commercial poly(ether ether ketone) (PEEK) is relatively difficult due to 
its poor solubility in common solvents. Although the 
post-functionalization process is possible, it requires a carcinogenic 
chloromethylation reagent, i.e., chloromethyl methyl ether [17–19]. 
Another major disadvantage of post-functionalization is poor control on 
level and sites of functionalization [20–24]. Bromination of benzyl 
groups is another alternate method, which is relatively cleaner but in-
volves a reaction to undesired sites of aromatic rings [21]. Our research 
group already explored and validated a new method of direct poly-
merization of bisphenol monomers containing benzylic tertiary amine 
groups [25,26]. Nevertheless, all these routes lead to the product in 
which cationic functional groups and the main chains is spaced through 
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a single –CH2- group. This spacer introduces poor stability to cationic 
groups, and also enhances the possibility of polymer backbone degra-
dation due to presence of electron-withdrawing groups in the vicinity 
[27,28]. Increasing the length of the interval between the main chain 
and the ionic group is a feasible method to improve the stability of the 
main chain (the number of C in the interval > 3) [29–33]. However, 
most of the quaternary ammonium salts are directly connected to the 
benzyl group, and the benzyl quaternary ammonium salt has poor 
alkaline stability. Therefore, a simple approach to develop 
high-performance AEMs based on poly(aryl ether ketone)s (PAEKs) re-
mains an attractive and challenging. 

In the present study, a simple and effective method is investigated to 
synthesize side-chain-type PAEKs with various cationic groups for AEMs 
development. The proposed method depends on the poly-
hydroxyalkylation reaction between 4,4′-bis(phenoxy)benzophenone 
(BPBP) and 1-(4-bromobutyl)indoline-2,3-dione (BID) using trifluoro-
methane sulfonic acid (TFSA) as a catalyst, which successfully intro-
duced bromoalkyl side chain groups into PAEKs. Typical tertiary amines 
including trimethylamine, N-methyl-piperidine and N,N,N′,N′,N′′-pen-
taethylguanidine were selected for subsequent Menthukin reaction to 
obtain QPAEK, PPAEK and GPAEK ionomers (Scheme 2). Meanwhile, 
cardo structure can increase the space between chains and would be in 
favor of the aggregation of ionic clusters. This generated hydro-
philic–hydrophobic microphase separation morphology, which 
confirmed by atomic force microscopy (AFM). The AEMs containing 
three different cationic functional groups showed some differences in 
the properties of water management, ionic conductivity as well as me-
chanical property, which have been studied in detail to evaluate the 
potential of these membranes for fuel cell application. 

2. Experimental 

2.1. Materials 

Trifluoromethanesulfonic acid (TFSA), phenol, 4,4′-difluor-
obenzophenone, isatin, 1,4-dibromobutane, N-methyl-piperidine, and 
trimethylamine were of reagent grade and purchased from Aladdin 
Reagents. Ethanol, dichloromethane, petroleum ether, diethyl ether, 
ethyl acetate, toluene, chloroform, N,N-Dimethylformamide (DMF), N, 
N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO) and potas-
sium carbonate (K2CO3) used in this study were also of reagent grade 
and provided by Sinopharm Group Chemical Reagent. All chemicals 
were used as received. 

2.2. Synthesis of 4,4′-bis(phenoxy)benzophenone (BPBP) 

The synthetic route of BPBP is shown in Scheme 1a. The reagents 
including K2CO3 (228.00 g, 1.65 mol), 4,4′-difluorobenzophenone 
(200.00 g, 0.91 mol), and phenol (155.00 g, 1.65 mol) were added to a 
three-necked round bottom flask equipped with a condenser, stirrer, a 

water separator, and a nitrogen supply tubing. Dehydration process was 
performed in 500 ml DMSO and 200 ml toluene at 150 ◦C. Then, toluene 
was removed by heating, and the mixture was continuously stirred at 
165 ◦C for 2 h. Finally, the product was extracted with chloroform/water 
system, washed repeatedly with methanol, and dried. The yield obtained 
of 4,4′-bis (phenoxy) benzophenone was 85%. The 1H NMR spectra of 
BPBP is shown in Fig. S3. 

2.3. Synthesis of 1-(4-bromobutyl)indoline-2,3-dione (BID) 

The synthetic route of BID is shown in Scheme 1b. Isatin (30.00 g, 
0.20 mol) and anhydrous DMF (200 ml) were added in a 500 ml three- 
necked flask. Once isatin was dissolved, the K2CO3 (56.39 g, 0.41 mol) 
was added to the solution along with stirring and continued for 30 min at 
room temperature. Then 1, 4-dibromobutane (121 ml) was slowly 
dripped through a constant pressure dropping funnel and the reaction 
was performed at room temperature. The degree of reaction completion 
was monitored by TLC. After filtration to remove K2CO3, excess 1, 4- 
dibromobutane was distilled off under reduced pressure. The red 
needle-like crystal product was further purified by recrystallization 
using ethanol as solvent. The product yield was 80%. The 1H NMR 
spectra of BID is shown in Fig. S2. 

2.4. Synthesis of poly(aryl ether ketone) (BPAEK) 

In a 75 mL pressure bottle, 10 mol BPBP (3.66 g, 10 mmol) and 10 
mol BID (2.82 g, 10 mmol) were dissolved in 15 mL CH2Cl2. The mixture 
was slowly added to 15 mL CF3SO3H in ice water bath. Then the system 
was magnetically stirred at room temperature for 1 h in a sealed envi-
ronment. Finally, the viscous solution was slowly poured into ethanol 
for precipitation. A white solid was obtained which was then washed 
with ethanol repeatedly and dried under vacuum. The product yield was 
97%. 

2.5. Synthesis of QPAEK/PPAEK/GPAEK ionomers 

BPAEK was dissolved in DMAc and then trimethylamine aqueous 
solution (30%) (3 eq), N-methylpiperidine (3 eq) or N,N,N′,N′,N′′-pen-
taethylguanidine (1 eq) were added respectively for functionalization 
reaction. Each reaction mixture was stirred and heated at 80 ◦C for 24 h 
followed by cooling to room temperature. The reaction product was then 
precipitated in ethyl acetate to obtain ionomers, which then washed 
repeatedly with ethyl acetate and dried under vacuum for 12 h to obtain 
ionomers QPAEK/PPAEK/GPAEK. 

2.6. Preparation of AEMs 

QPAEK and PPAEK were dissolved in DMF to prepare casting solu-
tions. The GPAEK is found insoluble in common solvents, thus the so-
lution prepared in the previous step for quaternization reaction was 

Scheme 1. The synthetic route of BPBP (a) and BID (b).  
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directly used as the casting solution. After filtration and degassing, ac-
quired solution was casted onto a smooth flat glass plate and heated at 
70 ◦C for 24 h to constant weight. The membranes were separated from 
the glass plate through immersion of it into DI water. Thoroughly 
washed membranes are subsequently immersed in 1 M KOH aqueous 
solution at 60 ◦C for 24 h to exchange Br− with OH− . Each membrane 
converted in OH− form followed by thorough washing with DI water and 
then stored in DI water till its use for testing. 

2.7. Characterization and measurements 

The 1H NMR spectra were recorded with a Bruker AV500 spec-
trometer. FT-IR transmissions spectroscopy was undertaken using a Bio- 
Rad Digilab Division FTS-80 spectrometer infrared spectrophotometer 
(ATR-IR; Bruker Vertex 70). The spectra were obtained by examining the 
power in the 4000-500 cm− 1 range. The thermostability of the AEMs is 
assessed with a simultaneous TGA/DSC system (METTLER TOLEDO) at a 
N2 atmosphere. All samples were maintained at 100 ◦C for 30 min to 
eliminate residual moisture during the thermostability test. Mechanical 
properties are evaluated by INSTRON-1121 with a stretching rate of 1 
mm min− 1 at room temperature. Molecular weights were measured by 
GPC with POLYMER LABORATORIES-GPC120, where polystyrene was 
used as standard and DMF was used as an eluent. After the 1 wt% 
polymer solution was dripped on the mica flakes and dried, the micro-
structure of the AEMs were observed by a silicon-based n-type cantilever 
in the tapping mode on a Bruker AFM instrument. 

2.8. Ionic conductivities 

The ionic conductivities of the membranes were measured by a four- 
electrode AC impedance analyzer in the range of 10 Hz–100 kHz using a 
BioLogic VSP. The cell was placed in a beaker filled with N2-saturated 
ultrapure water. The conductivity values are validated by performing 
each measurement in replicates. The hydroxide conductivity is calcu-
lated according to the following formula, 

σ =
L

AR
(1)  

where L is the distance between the two electrodes, R is the membrane 
resistance obtained from impedance analysis and A is the cross-sectional 
area of the membrane. 

2.9. IEC values 

IEC values were determined by simple titration. The membranes 
were initially exchanged to Clˉ form and dried at 60 ◦C to a constant 
weight that is recorded as Wdry. Then, the samples were soaked in 0.5 M 
Na2SO4 aqueous solution (100 ml) for 24 h to release Clˉ completely. The 
solution consisting Clˉ ions is titrated against 0.01 M AgNO3 aqueous 
solution with K2CrO4 as indicator. The IEC values were calculated with 
following formula, 

IEC  (mmol/g)  = 
VAgNO3 × CAgNO3

Wdry
(2)  

Where VAgNO3 is the volume of AgNO3 consumed and CAgNO3 is con-
centration of AgNO3 solution used for titration. 

2.10. Water uptake and swelling ratio 

The flat films were dried in a vacuum oven at 60 ◦C for 12 h till the 
constant weight was achieved. These completely dried membranes were 
cut into size of 4 cm × 1 cm and weighed. After that, these samples were 
soaked in deionized water for 12 h to saturate the membranes with DI 
water at different temperatures. Before measurement, the extra water on 
these swollen membranes were gently wiped off using filter paper fol-
lowed by quick measurement of weight and length of these membranes 
that is recorded as Ww and Lw, respectively. The WU and SR of AEMs was 
calculated using formula (3) and (4), 

WU  = 
Ww − Wd

Wd
× 100% (3)  

SR  = 
LW − Ld

Ld
× 100% (4)  

2.11. Alkaline stability 

The long-term alkaline stability of the membranes is investigated by 
treating the membranes with 1 M KOH solution for different time in-
tervals at 60 ◦C. Alkaline stability is estimated by analyzing the mem-
branes through 1H NMR spectra for any change in chemical composition 
upon exposure to alkaline solution. Moreover, the change in conduc-
tivities of the AEMs upon exposure to alkaline environment is taken 
another parameter to observe alkaline stability. 

Scheme 2. The synthetic route of the polymer BPAEK and subsequent QPAEK/PPAEK/GPAEK AEMs.  
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2.12. Membrane electrode assembly (MEA) and single cell performance 

The PPAEK membrane (75 ± 3 μm thick) was used to fabricate the 
catalyst coated membrane (CCM). The anode and cathode were pre-
pared by spray coating the catalyst ink evenly onto both sides of the 
membrane. The catalyst ink was prepared by mixing Pt/C (40 wt% Pt on 
high-surface area C) catalysts in an ionomer solution consist of 5 wt% 
solution of QPAEK in THF/water (50 wt%/50 wt%) as solvent. The 
catalyst loading at anode and cathode with reference to Pt metal was 
maintain as 0.4 mg cm− 2. Finally, the MEA was prepared by sand-
wiching the CCM between two pieces of carbon paper. The single fuel 
cell tests were carried out using fully humidified H2 and O2 with the flow 
rate of 200 mL min− 1 at 60 ◦C. 

3. Results and discussion 

3.1. Synthesis of the polymer and the ionomers 

The concept of super-electrophilic activation was proposed for the 
first time by Olah in the 1970’s [34], who explained the high reactivity 
of electrophilic reactions and their application in the synthesis of dia-
rylated compounds. Zolotukhin [35–40] and co-workers developed a 
superacid catalyzed polyhydroxyalkylation as novel polymerization 
route, which can be classified as an unusual A2 + B2 step-growth poly-
merization, resulting ultrahigh molecular weight polymers. The dra-
matic acceleration in polymerization rate was observed with a small 
excess of the carbonyl compound, known as the “nonstoichiometric ef-
fect.” [38]. 

The molecular weight and polydispersity coefficient of the polymer 
developed in this study “BPAEK” are 105.6 kg mmol− 1 and 1.53, 
respectively, which is measured through a gel permeation chromato-
graph using DMF as eluent (Fig. S4). The high molecular weight of 
synthesized polymer indicates that the two monomers used have good 
reactivity under provided conditions. The other advantages of this 
process are simple operation, low cost, a mild reaction condition, and 
environmentally friendly. 

The structure of BPAEK was determined by 1H NMR (Fig. 1a). Tri-
methylamine, 1-methylpiperidine, N,N,N′,N′,N′′-pentaethylguanidine 
(Scheme S1) were used for polymer quaternization. These reagents were 
selected because trimethylamine is one of the most commonly used 
quaternization agents, while it is established through literature that 
AEMs with cycloaliphatic QAs or ethyl substituted guanidinium exhibits 
good alkaline stabilities [41,42,47]. QPAEK, PPAEK, and GPAEK ion-
omers were synthesized by simple Menshutkin reaction. The chemical 
structures for QPAEK and PPAEK were analyzed by 1H NMR (Fig. 1b and 
c). The two peaks appeared at 2.98 ppm and 3.34 ppm are corresponding 
to the protons of –CH2- and –CH3 connected to the N atom of QAs, 
confirmed the successful quaternization reaction. The formation of 
guanidinium salt was determined by FT-IR (Fig. 2). The new band at 
1538 cm− 1 is attributed to the –C––N of the guanidinium salt. The 
prepared GPAEK membrane was subjected to elemental analysis after 
immersing in KOH aqueous solution, and it was found that there was no 
bromine element. This result shows that the quaternization reaction is 
complete, and all Br− have been exchanged for OH− . 

3.2. Mechanical property and thermal stability 

The ability to convert into thin and robust membranes is critical for 
any polymer to be considered for its commercial application as AEMs. In 
the membrane electrode assembly (MEA), a fragile membrane may 
cause fuel leakage, which results in significantly efficiency loss and is 
also dangerous. Therefore, good mechanical properties are necessary. 
All three membranes showed excellent mechanical properties, with the 
tensile strength of 50 MPa. The elongation at break of QPAEK and 
GPAEK were 13% and 8.5%, respectively. However, the elongation at 
break for PPAEK is relatively higher as 35% at room condition (Fig. 3a). 

The difference may be due to the higher water uptake of PPAEK in air, 
and a small amount of water acts as a plasticizer to make its elongation 
at break greater. The mechanical properties of these membranes are 
sufficient for the application of AEMFCs. 

Thermal gravimetric analysis (TGA) was performed to evaluate the 
thermal stability of the developed membranes. Fig. 3b shows the TGA 
curves of different polymers in the range of 50–800 ◦C. Initially, the 
decomposition pattern of three AEMs is found similar as the first weigh 
loss is occurred at 200 ◦C that is attributed to the decomposition of the 
QA groups. The second weight loss occurred at 300–400 ◦C and is 
assigned to the thermal degradation of the alkyl groups, which 
happened in all AEMs and BPAEK polymer. The last weight loss stage 
above 500 ◦C is attributed to the disintegration of the polymer back-
bone. It is thus verified by TGA results that the developed PAEK based 
AEMs have an excellent thermal stability. 

Fig. 1. 1 H NMR spectra of the polymer BPAEK (a), QPAEK (b) and PPAEK (c).  
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3.3. Microstructure of the AEMs 

The microstructures of the QPAEK and PPAEK membranes make a 
contribution to the high ion conductivity but moderate WU. AFM phase 
images show the microstructure of the QPAEK, PPAEK and GPAEK 
membranes (Fig. 4a, b and c). It can be seen that QPAEK and PPAEK 
have clear microphase separation structures and the size of the aggre-
gated ion clusters is about 5 nm. The introduction of cardo structure and 
long alkyl side chain in the membranes increases the divergence of hy-
drophobic and hydrophilic segments, which derives the formation of ion 
aggregation and a microphase separation structure. AFM surface topo-
graphic images of AEMs made of QPAEK and PPAEK (Fig. 4d and e) 
explain that the microphase separation morphology appeared in AFM 
phase diagrams is due to spatial chemical structure rather than the 
roughness of the membranes surface. Comparing images Fig. 4c and f, it 
can be found that the difference in brightness in Fig. 4c is basically 
caused by the difference in surface height reflected in Fig. 4f. Therefore, 
there is no microphase separation structure in the GPAEK membrane 
surface, which may be because extremely low hydrophilicity of GPAEK 
membrane is not conducive to the aggregation of hydrophilic groups. 

3.4. Water uptake (WU) and swelling ratio (SR) 

According to the Grotthuss mechanism, water is essential for ion 
transmission in AEMs [43]. Too low WU may reduce the ion transport 
efficiency and hence cause low conductivity. On the contrary, redundant 
WU in membranes may weaken the intermolecular interaction, leading 
to an excessive swelling and then severe loss of strength of the mem-
brane [43]. Therefore, solving the trade-off between the WU and ionic 
conductivity of the membrane is an important aspect of obtaining an 
advanced AEM. As shown in Fig. 5a and b, the expected increase in WU 
and SR of QPAEK and PPAEK is observed with increasing temperature 
from 30 to 80 ◦C, while almost no change in WU and SR with increasing 
temperature is noticed for the GPAEK membranes. It is justified due to 
the fact that guanidium salt functionalized polymers generally experi-
ence very low WU and SR even at high temperatures that may be 
attributed to its lower hydrophilicity than other anions [41,44]. As a 
result, GPAEK membrane displayed a lower WU (less than 10%) and a 
lower SR (less than 5%). In comparison, WU (79% at 80 ◦C) and SR (25% 
at 80 ◦C) of PPAEK are much higher than QPAEK, probably because 
N-methyl-piperidine has a larger free volume. The titration IEC values of 
the three membranes are shown in Table 1. All three membranes have 
SR of less than 30%, which is recommended for application of any 
membrane in fuel cells. 

3.5. Anion conductivity and morphology of AEMs 

The hydroxyl conductivities of all AEMs were measured in temper-
ature range 30–80 ◦C (Fig. 5c). The conductivities followed the normal 
trend such as it increases with increasing temperature, which simply 
attributed to fast kinetics at higher temperature. The QPAEK and PPAEK 
membranes showed excellent OH− conductivities that is as high as 94.8 
mS cm− 1 and 99.8 mS cm− 1, respectively, which may be related to the 
involvement of spatial cardo structure of PAEKs-based AEMs. The 
presence of three-dimensional structure of cardo offers formation of 
nano voids and thus greater free volume within polymer chains, which 
facilitates the transport of ions between chains, resulting enhanced 
conductivity [45]. Thus the spatial structure of membranes afforded the 
control over the trade-off between the conductivity and SR. However, 
GPAEK membrane exhibited OH− conductivity value as low as 11.8 mS 
cm− 1 at 80 ◦C that is less than one eighth of QPAEK membrane, and is 
attributed to much lower WU of the GPAEK membrane. Therefore, the 
absence of water as an ion carrier in the GPAEK based membranes re-
duces their efficiency of ion transport. Compared to the reported poly 
(aryl ether ketone)s and poly(aryl ether sulfone)s based AEMs, QPAEK 

Fig. 2. FT-IR spectra of BPAEK and GPAEK.  

Fig. 3. (a) Stress-strain curve of the dry membranes and (b) TGA curves of prepared polymers.  
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Fig. 4. Microphase separation structure of the QPAEK, PPAEK and GPAEK AEMs in Br− form. AFM phase images of the (a) QPAEK, (b) PPAEK and (c) GPAEK AEMs. 
(d) The corresponding AFM surface topographic images of (a). (e) The corresponding AFM surface topographic images of (b). (f) The corresponding AFM surface 
topographic images of (c). 

Fig. 5. (a) Swelling ratio, (b) water uptake, (c) ionic conductivity of the prepared AEMs in the OH− form as a function of temperature, and (d) Arrhenius plot: ionic 
conductivity vs. 1000/T. 
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and PPAEK are the advanced AEMs exhibiting excellent conductivity but 
a relatively low IEC and WU (Table 1). 

Moreover, the Arrhenius plot in Fig. 5d represents that the hydroxide 
ion conductivities of all AEMs are extremely temperature-dependent. 
The activation energies (Ea) for hydroxide conductivity through 
QPAEK, PPAEK and GPAEK membranes are obtained from the slope of 
the Arrhenius curves and found 12.8, 13.8 and 11.8 kJ/mol, respec-
tively. The Ea value of PPAEK is slightly higher, indicating that the 
transportation of hydroxide ion is slightly more sensitive to temperature 
in PPAEK membranes. 

3.6. Alkaline stability 

In addition to thermal stability, the PAEK based AEMs also displayed 
good alkaline stability. In general, alkaline environment causes degra-
dation of ionomeric functional groups so as polymer backbone through 
different mechanisms [27,46,48]. In the present study, all three mem-
branes remained robust and flexible after immersing in N2-saturated 1 M 
KOH at 60 ◦C. After 600h, the observed decrease in OH− conductivity is 
less than 5% (Fig. 6), proving that the introduction of a long side chain 
can ameliorate the alkaline stability of the PAEKs-based membranes. 
The structural stability of QPAEK and PPAEK was analyzed through 1H 

NMR spectra (Fig. 7b and c) after certain interval of alkaline stability test 
such as after 360 h and 600 h. The alkaline stability of GPAEK cannot be 
characterized by 1H NMR due to its poor solubility. For QPAEK, two new 
peaks at 5.90 ppm and 4.92 ppm revealed that CH2––CH- was formed at 
the head group that was attributed to degradation by Hofmann elimi-
nation (Fig. 7b). The same peaks were also observed in Fig. 7c, revealing 
that PPAEK also underwent Hofmann elimination. The new peak at 2.07 
ppm of Fig. 7b and the new peaks at 2.10–2.45 ppm of Fig. 7c indicate 
that nucleophilic substitution degradation occurred. The possible 
degradation routes of the QPAEK and PPAEK membranes are shown in 
Fig. 7a. Moreover, no change in the peak of the aromatic region repre-
sents that the polymer backbone is still intact when treated in 1 M KOH 
solution at 60 ◦C. 

3.7. Single cell performance 

Considering the conductivity, mechanical properties, stability, etc., 
QPAEK and PPAEK membranes were selected for AEMFC testing in H2/ 
O2 fuel cell system. Since the ionomer has similar composition and 
structure with the membrane thus offered good compatibility. As shown 
in Fig. 8, the open circuit voltage of 1.03 and 1.05 V which represents 
that the membrane electrode assembly (MEA) prepared through the 
developed membranes are of good quality and free from gas leakage. 
QPAEK membrane exhibits a peak power density of 69 mW cm− 2 at a 
current of 120 mA cm− 2. For PPAEK membrane, a high peak power 
density of 92 mW cm− 2 was achieved at a current density of 154 mA 
cm− 2. The comparison of the single cell performance of the AEMs ob-
tained in this work with the other reported AEMs is shown in Table 2. 
The PPAEK membrane is at a medium level. In addition to the perfor-
mance of the AEMs, several factors can influence the single cell per-
formance such as compatibility of ionomers and membranes, Pt loading, 
gas flow rate and MEA fabrication procedures, etc. 

4. Conclusions 

Spatial architecture poly(aryl ether ketone)s (PAEKs) are success-
fully prepared by the superacid-catalyzed polycondensations of the 
bromobutyl substituted isatin with the aryl ether ketone monomer. The 
polymerization process reported herein is a simple and an efficient 
method to prepare novel designed AEMs. The performance of AEMs can 
be tuned by varying the fixed cation functional groups. The AEMs 
comprising of cyclic quaternary ammonium salts have shown improved 
WU, SR, conductivity, and elongation at break compared to AEMs 
having simple quaternary ammonium salts, while AEMs with guanidi-
nium salts experienced lowest values of WU, SR, so as conductivity. 

Table 1 
Property comparison of the AEM obtained in this work with the other AEMs.  

Sample IECtheo
a (meq g− 1) IECtitr

b (meq g− 1) WUc (%) SRc (%) σ (OH− )c 

(mS cm− 1) 
σ (OH− )d 

(mS cm− 1) 
Ref. 

QPAEK 1.59 1.55 31.0 15.3 44.5 94.8 This work 
PPAEK 1.54 1.52 58.6 18.5 45.8 99.8 This work 
GPAEK 1.30 1.23 8.7 3.1 6.1 11.8 This work 
FAA-3-50 2.00 – 108.2 117.8g 16.5 – [50] 
QAPES-BTP-20% 2.15 1.96 53.5e 20.4e 21.7e 50.2 [32] 
8C-SfPAES-ImOH 1.76 – ~118e ~35e ~36e – [33] 
PAES-Q-12 1.84 1.65 10.6e 3.6e 23e 54 [19] 
QBz-PEEK-91.6% 1.95 – 96f 20f – 59f [30] 
QPERK-TMA 2.0 1.6 26.6 ± 1.3 6.7 ± 0.2 22.3 ± 1.6 – [31] 
PES-PPH-Pi(OH)-100 1.48 1.45 16.7 5.2 27 56 [49]  

a Theoretical IEC. 
b IEC by titration. 
c Measured at 30 ◦C. 
d Measured at 80 ◦C. 
e Measured at 20 ◦C. 
f Measured at 60 ◦C. 
g Volumetric swelling ratio measured at 25 ◦C. 

Fig. 6. The retention of membranes’ conductivity measured at 30 ◦C after 
immersing in N2-saturated 1 M KOH at 60 ◦C. 
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However, the properties such as thermal and alkaline stability were not 
much effected by changing the cation group, thus assumed to be 
dependent on the polymer backbone. Among different AEMs, PPAEK 
exhibited the highest WU of 79% and the highest conductivity of 99.8 
mS cm− 1 at 80 ◦C. The peak power density of PPAEK membranes ach-
ieved is 92 mW cm− 2 at a current density value of 154 mA cm− 2, 
rendered these membranes as potential AEM candidate for fuel cell 
application. 
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Table 2 
The single cell performance of the AEMs obtained in this work with the other 
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AEM T 
(oC) 

Pt loading 
(mg cm− 2) 

Ionomer H2/O2 

(mL/ 
mL) 

Pmax 
(mW 
cm− 2) 

Ref. 
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200 

92 This 
work 
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69 This 
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