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Dedication to Professor Peter Kündig on the occasion of his 75th birthday. 

Direct cross dehydrogenative coupling of different inert C-H bonds is the most straightforward and environmentally benign method to construct C-C bonds. 

In this paper, we developed an iron-catalyzed intramolecular Cross-Dehydrogenative-Arylation (CDA) between benzylic C(sp3)H bond and aromatic C(sp2)H 

bond. From the readily available linear substrates, 1-aryl naphthalenes and 4-aryl coumarins can be quickly constructed with moderate to good yield (18 

examples, up to 73% yield) in one step. Both symmetrical and unsymmetrical substrates with different functional groups could tolerate this system well to 

form the anticipated products. A radical initiated dehydrogenative cyclization-dehydrogenation tandem process was proposed  

Keywords: Cross-dehydrogenative-arylation, Fe-catalysed, radical, 1- aryl naphthalenes, 4- aryl coumarins. 

 

Introduction 

Naphthalenes[1,2] and coumarins[3-6] are ubiquitous structural units in many 

natural products, pharmaceutical synthetic intermediates, as well as 

functional materials.[7,8] For example, Patentiflorin A[9] is a potent inhibitor 

of drug-resistant HIV-1 strains identified from the medicinal plant Justicia 

gendarussa. Justicidin B[10] exhibits a wide array of biological properties 

ranges from piscicidal to antifungal, antiviral and antibacterial activities. 

Mammea- A/AA[11] is the active compound of Mammea Africana stem bark 

extract, exhibiting anticancer, antimicrobial, and antioxidant properties. 

and MK-0633,[12] is a promising 5-lipoxygenase inhibitor (Scheme 1a). Over 

the past decades, many efforts have been made to construct such motifs[13-

18,5,6,19-21]. However, the development of general and efficient 

methodologies remains challenging and is still highly desired. Transition-

metal-catalyzed C-H bond functionalization could provide a green and 

economical solution to synthesize valuable products from simple molecules, 

has been employed as a powerful warhead in the pharmaceutical and 

chemical industry.[22–34] C−H/C−H coupling reactions, which were well-

featured as cross-dehydrogenative-coupling reactions (CDC), offered a 

complementary strategy to construct C−C bonds from two simple C−H 

bonds directly.[35–52] Among all of the reported transition metals, Fe was 

brought into focus because of its low toxicity, popular price, and 

environmentally benign features.[53–60] Many excellent works of iron-

catalyzed CDC reactions involve C(sp3)H bond activation have been 

reported.[36,61–71] In 2009, we developed a Fe catalyzed cross 

dehydrogenation coupling reaction of electron-rich aromatic hydrocarbons 

and diphenylmethane.[36] (Scheme 1b). Based on our continuous research 

on the field of transition-metal-catalyzed oxidative coupling of unactivated 

C-H bonds,[36,72,73] we here developed an inexpensive, readily available 

FeCl3/DDQ system to efficiently catalyze the tandem cross-

dehydrogenative arylation/oxidation reaction of 1, 4-diphenylbutane and 

(3-phenoxypropyl) benzene towards the synthesis of 1-aryl naphthalenes 

and 4-aryl coumarins (Scheme 1c). 

 

Scheme 1. a) Naphthalenes and coumarins in pharmaceuticals. b) Fe/DDQ catalyzed 

cross dehydrogenative arylation. c) This work.  

Results and Discussion 

To initiate our study, 1, 4-diphenylbutane 1a was synthesized follow the 

reported peocedure[74] as the model substrate (Table 1). At the beginning of 

the reaction condition optimization, we found that DDQ (3.0 equiv) could 

promote the oxidative coupling in the absence of metal catalyst in DCE at 
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100 oC, to form 2a with 26 % yield (Table 1, entry 1). Different metal salts 

were then screened, and FeCl3 gave a relatively high result (Table 1, entries 

2-10. Table s1 and s2). The catalyst loading was then identified to 2.5 mol% 

(Table 1, entry 12). Other solvents like CH3CN, 1,4-Dioxane, and MeNO2 still 

works in this system but not as effective as DCE (Table 1, entries 14-16). 

DDQ is essential to this oxidative coupling. No desired product was 

monitored in the absence of DDQ, even large amount excess of FeCl3 was 

used (Table 1, entry 17). Subsequently, we increased DDQ to 5 equivalents 

to give 2a in 77 % yield (Table 1, entry 19). 

 

Table 1. Screening conditions.  

 

Entry Catalyst (mol%) Oxidant 

(equiv) 

Solvent Yield of 

2a[b] 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

/ 

PdCl2 (5.0) 

CuBr (5.0) 

CoBr2∙xH2O 

RhCl3 (5.0) 

FeBr2 (5.0) 

FeCl2 (5.0) 

FeCl3 (5.0) 

FeBr3 (5.0) 

Fe(OAc)2 (5.0) 

FeCl3 (1.25) 

FeCl3 (2.5) 

FeCl3 (10.0) 

FeCl3 (2.5) 

FeCl3 (2.5) 

FeCl3 (2.5) 

FeCl3 (300.0)  

FeCl3 (2.5) 

FeCl3 (2.5) 

FeCl3 (2.5)  

DDQ (3) 

DDQ (3) 

DDQ (3) 

DDQ (3) 

DDQ (3) 

DDQ (3) 

DDQ (3) 

DDQ (3) 

DDQ (3) 

DDQ (3) 

DDQ (3) 

DDQ (3) 

DDQ (3) 

DDQ (3) 

DDQ (3) 

DDQ (3) 

/ 

DDQ (4) 

DDQ (5) 

DDQ (6) 

DCE 

DCE 

DCE 

DCE 

DCE 

DCE 

DCE 

DCE 

DCE 

DCE 

DCE 

DCE 

DCE 

CH3CN 

1,4-Dioxane 

MeNO2 

DCE 

DCE 

DCE 

DCE 

26 

27 

28 

28 

29 

57 

60 

61 

32 

55 

56 

63 

26 

50 

41 

49 

0 c 

70 

77/73d 

73 

 

With the optimized reaction condition in hand, we then begin to explore the 

substrate scope. Firstly, several symmetric 1,4-diphenylbutanes[74,75] were 

investigated in this reaction system. While 1,4-di-p-tolylbutane 1b was used 

as the starting material, we have to reduce the DDQ loading to 4 equiv. to 

inhibit the over-oxidative by-product. To our delight, we still could get 2b in 

good yield (66 %). Then different functional groups like -F (2c), -Cl (2d), -

CO2Me (2e), and -phenyl (2f) were introduced to 1,4-diphenylbutanes and 

all could tolerate well to give corresponding 1-phenyl naphthalenes in 

medium to good yield. For the electron-withdrawing-group-containing 

substances like 1c-1e, a higher temperature (120 oC) was needed. As to 1c 

and 1d, 4.5 equiv. of DDQ could give better results, form 2c and 2d with 

68 % and 59% yield. The yield of 1,4-di-o-tolylbutane 1g was slightly lower 

(45% isolated yield) than its para analog 1b, while they all met the same 

over-oxidize issue. Then two asymmetric 1,4-diphenylbutane substrates 1h 

and 1i were synthesized[76,77] and introduced to this system. For the reaction 

of 1-(tert-butyl)-4-(2-methyl-4-phenylbutyl)benzene 1h, fascinating, good 

regio selectively was conducted. This may derive from the highly steric 

hindrance of the t-Bu group, which makes the ortho position hardly be 

approached, to inhibiting the formation of another product. As to 1-methyl-

2-(4-phenylbutyl)benzene 1i, a 1:3 regio-selectivity was obtained to get 2i 

and 2i‘. The results of the above two asymmetric substances 1h and 1i, 

revealed that the cross-coupling between the benzylic C-H bond of the 

alkyl-substituted benzene and the C(sp2)H bond of the unsubstituted 

benzene was favored. 

FeCl3 (2.5 mol%), DDQ (5.0 eq.)

DCE, 100 °C, 36 h

1

2a, 73% 2b, 66%[a]

Me

Me

2g, 45%[a]

Me

Me

2c, 68%[c]

F

F

Cl

Cl

2d, 59%[c]

Ph

Ph

2f, 64%

2j, 54% 2k, 38%

Me

2i, 9%[a]

Me

2i', 32%[a]

2h, 54%[a]

MeOOC

COOMe

2e, 66%[b]

tBu

Me

R1

R2 2
R1

R2

H

R3

H

+

R3

Figure 1. Substrate scope for construction of 1-aryl naphthalenes. Reaction 

conditions: 1 (0.2 mmol, 1.0 equiv), FeCl3 (2.5 mol%), DDQ (5.0 equiv), DCE (2.0 mL), 

100 °C for 36 hours, under N2 atmosphere. [a] with 4.0 equiv DDQ. [b] 120 °C. [c] 1 (0.5 

mmol, 1.0 equiv), 120 °C, DDQ (4.5 equiv). [d] Yield of 2i and 2i’ was calculated by 1H-

NMR. 

The cross oxidative coupling of 1,4-di(naphthalene-1-yl)butane 1j and 1,4-

di(naphthalene-2-yl)butane 1k ran well to form the corresponding fused 

ring compound 2j, 2k. These two products could easily undergo a further 

dehydrogenative coupling,[79–81] to form benzo[b]perylene and 

dibenzo[de,qr]tetracene, which exhibited intriguingly photoelectric 

performance in the functional materials.[82]  

We further extended this reaction system to the (3-phenoxypropyl) 

benzene derivatives 3. To our delight, 4-aryl coumarins 4 could be obtained 

with moderate yield under the standard reaction condition (Figure 2), 

[a] Conditions: 1a (0.2 mmol, 1.0 equiv), catalyst, oxidant, solvent (2.0 mL), 

100 °C for 36 hours, under N2 atmosphere. [b] Yield of 2a was determined by 

1H-NMR using 1,3,5-trimethoxylbenzene as the internal standard.  [c] No 2a 

was produced even 3.0 eq. of FeCl3 was used.  [d] Isolated yield.  [e] More details 

about the condition optimization could be found in the SI.  
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accompany with a 3-phenylpropanal by-product, which was produeced 

from the phenolic C-O bond cleavage and alcohol oxidation. Halogens like 

F (4b, 35%), Cl (4c, 44%), Br (4d, 40%), and phenyl (4e, 51%), tert-butyl (4f, 

44%) groups could tolerate the oxidative condition to form corresponding 

4-aryl coumarins in one step. The first cross-dehydrogenative-couping step 

of 1,2,3-trifluoro-5-(3-phenylpropoxy)benzene 3g ran smoothly, but the 

following tandem oxidative process didn’t work well, even under higher 

temperature (120 oC). Only 15% yield of 4g was formed, with 55% of 4g’. 

  

Figure 2. 4-aryl coumarins obtained by the iron-catalyzed intramolecular cross-

dehydrogenative coupling of 3. Reaction conditions: 1 (0.2 mmol, 1.0 equiv), FeCl3 (2.5 

mol%), DDQ (5.0 equiv), DCE (2.0 mL), 100 °C for 36 hours, under N2 atmosphere.  [a] 

120 °C. 

To get more insight of the mechanism, a model reaction was performed 

with 5.0 equiv of TEMPO, and the formation of 2a and 4a were completely 

inhibited, which implies that a radical species may be involved in this 

reaction (Scheme 2). 

 

Scheme 2. Radical quenching experiment. 

Based on the above experimental results and the literature reports,[36,61,83,84] 

we proposed a plausible mechanism for the intramolecular CDA reaction 

(Fig. 3).  Firstly, the benzylic C(sp3)-H bond of 1 or 3 is activated to generate 

benzylic radical species A and the complex B; 2) an intramolecular radical 

addition occurred to form the radical intermediate C; 3) C is quickly 

captured by B to form intermediate D and released DDQH2 and FeCl3. 4) 

Finally, D is further oxidized by DDQ to obtain the target product 2 (X = CH2) 

or 4 (X = O)[85-88]. 

  

Figure 3. Proposed mechanism for the intramolecular CDC reaction. 

Conclusions 

In summary, an iron-catalyzed tandem intramolecular CDA/oxidation 

process for the synthesis of biologically and synthetically important 1-aryl 

naphthalenes and 4-aryl coumarins was explored. In this system, DDQ was 

essential for this tandem protocol. Polycyclic aromatic hydrocarbons, 

which exhibits significant photoelectric performance, could also be 

synthesized from this protocol. Further mechanistic exploration and 

application investigation was underway in our lab. 

 

Experimental Section 

General information  

All chemicals were purchased from commercial suppliers and were used 

without further purification Melting points were determined with an X-4 

apparatus. 1H NMR and 13C NMR spectra were recorded on a Bruker 400 

spectrometer operating at 400 MHz for 1H NMR, 101 MHz for 13C NMR with 

CDCl3 as the solvent. Chemical shifts are reported relative to CDCl3 as an 

internal standard. The 1H NMR data are reported as the chemical shift in 

parts per million, multiplicity (s, singlet; d, doublet; dd, doublet of doublet; dq, 

doublet of quartet; dt, doublet of quartet; t, triplet; m, multiplet; brs, broad 

singlet.), coupling constant in Hertz (Hz), and number of protons. HRMS (EI, 

FI, DART) were performed by the State-authorized Analytical Center in 

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.  All 

reported yields are isolated yields, unless otherwise noted.  

General Procedures 

To a 25 mL oven-dried Schlenk tube with magnetic stir bar, FeCl3 (2.5 mol%), 

DDQ (5.0 equiv) was added, then the substrate (0.2 mmol, 1.0 equiv) and 

2.0 mL DCE were added to the reaction mixture successively. Subsequently 

the tube was pumped 3 times on the vacuum line with nitrogen. The tube 

was sealed and stirred at 100 °C for 36 hours. The reaction mixture was 
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cooled to room temperature, diluted with 10 mL DCM, filtered, and rinse 

with an appropriate amount of DCM. The filtrate was concentrated and 

purified by flash column chromatography on silica gel.  

See supporting information for specific experimental operations and 

structural characterization. 
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Fe Catalyzed Intramolecular Cross-Dehydrogenative-Arylation (CDA), Efficient Synthesis of 1-Aryl Naphthalenes and 4-Aryl 

Coumarins 

 

Twitter 

From the easily available linear substrates, we developed an iron-catalyzed intramolecular Cross-Dehydrogenative-Arylation (CDA) 

between benzylic C(sp3)H and aromatic C(sp2)H, which could easily construct 1-aryl naphthalenes and 4-aryl coumarins in one pot. 
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