

Article

Subscriber access provided by University of Rochester | River Campus & amp; Miner Libraries

Hydrogen spillover to oxygen vacancy of TiO2-xHy/Fe: Breaking the scaling relationship of ammonia synthesis

Chengliang Mao, Jiaxian Wang, Yunjie Zou, Guodong Qi, Joel Yi Yang Loh, Tianhua Zhang, Meikun Xia, Jun Xu, Feng Deng, Mireille Ghoussoub, Nazir P. Kherani, Lu Wang, Huan Shang, Meiqi Li, Jie Li, Xiao Liu, Zhihui Ai, Geoffrey A. Ozin, Jincai Zhao, and Lizhi Zhang *J. Am. Chem. Soc.*, Just Accepted Manuscript • DOI: 10.1021/jacs.0c06118 • Publication Date (Web): 18 Sep 2020 Downloaded from pubs.acs.org on September 19, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Hydrogen spillover to oxygen vacancy of $TiO_{2-x}H_y/Fe$: Breaking the scaling relationship of ammonia synthesis

Authors: Chengliang Mao,^{1,2} Jiaxian Wang,¹ Yunjie Zou,¹ Guodong Qi,³ Joel Yi Yang Loh,⁴ Tianhua Zhang,⁵ Meikun Xia,² Jun Xu,³ Feng Deng,³ Mireille Ghoussoub,² Nazir P. Kherani,⁴ Lu Wang,² Huan Shang,¹ Meiqi Li,¹ Jie Li,¹ Xiao Liu,¹ Zhihui Ai,¹ Geoffrey Ozin,²* Jincai Zhao,¹ Lizhi Zhang¹*

¹Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China

² Materials Chemistry and Nanochemistry Research Group, Solar Fuels Cluster, Departments of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada

³ State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China

⁴ Department of Materials Science and Engineering, University of Toronto, 184 College Street, Suite 140, Toronto, ON M5S 3E4, Canada

⁵ National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), School of Chemical Engineering, Fuzhou University, Fuzhou 350002, Fujian, P. R. China

*Correspondence and requests for materials should be addressed to Geoffrey Ozin (g.ozin@UTORONTO.CA) or Lizhi Zhang (zhanglz@mail.ccnu.edu.cn)

ABSTRACT. Optimizing kinetic barriers of ammonia synthesis to reduce the energy intensity has recently attracted significant research interest. The motivation for the research is to discover means by which activation barriers of N₂ dissociation and NH_z (z = 1-2, surface intermediates) destabilization can be reduced simultaneously, i.e., breaking the "scaling relationship". However, by far only a single success has been reported in 2016 based on the discovery of a strong-weak N-bonding pair—transition metals (nitrides)-LiH. Described herein is a second example which is counter-intuitively founded upon a strong-strong N-bonding pair unveiled in a bifunctional nanoscale catalyst TiO_{2-x}H_y/Fe (where 0.02 $\leq x \leq 0.03$ and 0 < y < 0.03), in which hydrogen spillover (H) from Fe to cascade oxygen vacancies (O_V-O_V) results in the trapped form of O_V-H on the TiO_{2-x}H_y component. The Fe component thus enables facile activation of N₂, while the O_V-H in TiO_{2-x}H_y hydrogenates the N or NH_z to NH₃ easily.

INTRODUCTION

The kinetic dilemma for the low-temperature Haber-Bosch ammonia synthesis originates from the "scaling relationship" of antagonistic activation energies between N₂ dissociation ($E_{a(N-N)}$) and NH_z intermediates (z = 0 to 2) destabilization;¹⁻⁶ catalysts that strongly activate N₂ also unfavorably hinder the transformation of NH_z intermediates, and vice-versa.

Scheme 1. Breaking the "scaling-relation" in ammonia synthesis. (a) Schematic free-energy diagram for ammonia synthesis on strong (pink) and weak (blue) N-bonding catalysts. (b) The "scaling-relationship (S-R)" depicting $E_{a(N-N)}$ and $E_{a(NHz)}$ on the two sides of a seesaw: when one goes down, the other goes up. (c) Energy barrier engineering of dual active centers to break the "scaling-relationship" by using a strong N-bonding center for N₂ activation and a weak N-bonding center to destabilize NH_z binding in previous design, while two strong N-bonding centers, Fe and O_V-H of TiO_{2-x}H_v, are employed in this study.

Breaking this scaling relationship is key to improving the kinetics of ammonia synthesis and reaching the goal of less energy-intensive operating conditions.⁷⁻¹⁰ Many theoretical investigations have attempted to understand how this scaling relationship could be broken,¹¹⁻¹³ and one study has claimed experimental success.¹⁴ This experimental study exploited LiH in conjunction with strong N₂ reduction-capability Cr, Mn, Fe, Co, or Ni. In this reaction scheme, dissociated N atoms diffuse from the transition metals to LiH, forming LiNH_z. The LiNH_z

then reacts with H_2 to regenerate LiH while producing NH_3 . Easy N_2 activation is achieved on strong N-bonding transition metals while NH_z destabilized easily on weak N-bonding LiH.

In contrast to this commonly accepted weak-strong N-bonding pair, we describe herein a counter-intuitive approach of both strong N-bonding elements breaking the scaling relationship based on our recently discovered highly-reactive photocatalyst $TiO_{2-x}H_y/Fe$.¹⁵ In this hybrid catalyst, a Fe nanocrystal necklace (Fe-NL; bonding N strongly) is integrated with hydrogen-laden titanium oxide ($TiO_{2-x}H_y$; also bonding N strongly) nanoparticles featuring in cascade oxygen vacancies (O_V-O_V). During the catalytic process, easy N₂ dissociation and easy NH₃ assembly are triggered by Fe and hydrogen-laden oxygen vacancies (denoted O_V-H ; in $TiO_{2-x}H_y$), respectively, while the O_V-H is recycled by a low-energy barrier hydrogen spillover from Fe via the cascade O_V-O_V pathway, thereby circumventing the kinetic dilemma, as illustrated in Scheme 1.

RESULTS AND DISCUSSION

TiO_{2-x}H_y-promoted Ammonia Synthesis on Fe. The thermocatalytic activity of ammonia synthesis was tested between 300 and 500 °C in a designed quartz plate reactor (Figure 1a, 1b). It should be noted that, to ensure a strict ambient pressure in the flow system, part of the syn gas (N₂ : H₂ = 1 : 3) was allowed to flow over the catalyst without reaction, which was a sacrifice to the measured rates in our reactor compared to the conventional micro-tube reactor (Figure S1). Therefore, to avoid misunderstanding on the reactivity of our catalysts, a benchmark commercial Fe catalyst¹⁶⁻¹⁸ was used for reference. The pure Fe-NL prepared via solution-phase reduction (Figure S2) generated NH₃ concentrations between 14 and 82 ppm in the outlet gas, which increased with temperature. The industrial low-temperature benchmark of wüstite-based Fe catalysts demonstrated slightly higher NH₃ generation rates (18-92 ppm) than those of pure Fe-NL at lower temperatures while decreased to 69 ppm at 500 °C. Interestingly, by anchoring inactive TiO_{2-x}H_y nanoparticles to the Fe-NL (Figure S3 and S4), the measured NH₃ production rates increased to 110-560 ppm, approaching one order of magnitude higher than those of Fe-NL and the commercial low-temperature Fe catalyst. Different from the increased activity with temperature of Fe-NL, the TiO_{2-x}H_y/Fe-NL demonstrated a sharp activity decrease from 357 °C to 380 °C. Concurrently, its

apparent activation energy increased from 45 kJ/mol to 67 kJ/mol right after the activity decrease, and then back to 45 kJ/mol at higher temperatures. Given the apparent activation energy of Fe-NL was 61 kJ/mol, this result indicated a new active center in the $TiO_{2-x}H_y$ /Fe-NL catalyst besides the commonly accepted Fe(0), possibly involving $TiO_{2-x}H_y$ (Figure S5).

High-resolution X-ray photoelectron spectroscopy (XPS) analysis of the quenched TiO_{2-x}H_y/Fe-NL catalyst confirmed the Fe(0) active phase by demonstrating a mixed-valence surface of Fe(0)-to-Fe(III) and Ti(III)-Ti(IV) (Figure S6). N1s XPS spectra further strengthened the possibility of TiO_{2-x}H_y as the active center since the Ti-N³⁻ species (398.4 eV) accompanies Fe-N³⁻ (395.0 and 397.0 eV).^{15,19,20} As the TiO_{2-x}H_y was incapable of N₂ activation according to the DFT calculation,¹⁵ it may act as a center specific for the hydrogenation of atomic nitrogen. In this context, the reaction between N₂ and the deuterium-labelled TiO_{2-x}D_y/Fe-NL was examined and the ND₃ product was detected (Figure 1c), as monitored by ²H-NMR of characteristic ND₃ triplet in the range of 6.6 to 7.2 ppm, while no ND₃ was produced when using control samples of TiO_{2-x}D_y or Fe-NL alone. This result agreed well with our previous in-situ diffuse reflectance spectroscopy result that TiO_{2-x}H_y/Fe-NL could react with N₂ producing NH₃ in a H₂-free atmosphere,¹⁵ suggesting that a working-in-tandem H-laden active center in TiO_{2-x}H_y could trigger N-hydrogenation to transcend that on pure Fe.

Figure 1. The strong N-bonding $TiO_{2-x}H_y$ counter-intuitively promotes another strong N-bonding element Fe in ammonia synthesis. (a) Schematic of N₂ and H₂ activation on Fe and transfer to $TiO_{2-x}H_y$ for NH₃ generation over $TiO_{2-x}H_y$ /Fe catalyst. (b) Activity comparison of ammonia synthesis over $TiO_{2-x}H_y$ /Fe-NL, pure Fe-NL and the commercial benchmark of wüstite-based Fe catalyst at 300 to 500 °C and 1 atm. (c) ²H-NMR probe of ND₃ product after different samples reacting with N₂. (d) Reported activation energy barrier of N₂ dissociation (E_{a(N-N)}), as well as a volcano plot of turnover frequency (TOF) vs. E_N in transition-metal-catalyzed ammonia synthesis. Blue and black data points from *Ref. 23*, adapted with permission from © 2015, Oxford University Press, and red data points from this work. How could an even stronger N-bonding $TiO_{2-x}H_y$ (E_N = -1.95 eV) promote the strong N-bonding Fe (E_N =

1.59 eV) in ammonia synthesis? It is well-known that enhanced activity by far is only expected for a strong-weak N-bonding pair according to the scaling relationship, whereby a strong N-bonding element readily dissociates N₂ into atomic N via prominent π back-donation and then a weak N-bonding element enables easy NH_z hydrogenation.²¹⁻²⁴ While the strong-strong N-bonding pair is projected to suffer from severe active sites blocking by strong N chemisorption which should not have broken the scaling relationship in theory.

Oxygen Vacancies Trap Hydrogen, O_V-H. The first task in understanding ammonia synthesis on $TiO_{2-x}H_y/Fe-$ NL was to identify the H-laden active sites in $TiO_{2-x}H_y$. This requires understanding the relationships between synthesis, structure and properties of $TiO_{2-x}H_y$. Consider the main solid-state chemical processes occurring in the synthesis of $TiO_{2-x}H_y$.²⁵

$$(2x)\text{NaBH}_4 + \text{TiO}_2 \rightarrow \text{TiO}_{2-x}\text{H}_y + (x)\text{Na}_2\text{O} + (2x)\text{BH}_3 + (x - 0.5y)\text{H}_2$$
(Equation 1)

In this reaction, NaBH₄ serves to reduce Ti(IV) to Ti(III) with the concomitant formation of O_V . The challenge lies in understanding the structure and dynamics of the charge-balancing electrons and hydrogen atoms in TiO₂. _xH_y; this could involve either localization upon or delocalization of electrons between titanium and oxygen vacancy sites (Figure 2a). Fortunately, EPR spectroscopy of TiO_{2-x}H_y as a function of stoichiometry (O_V concentration, x) and temperature (T), in conjunction with deuterium isotope labelling TiO_{2-x}D_y, can help to resolve this dilemma.

Figure 2. O_V -H in TiO_{2-x}H_y. (a) Schematic of O_V -H formation in TiO_{2-x}H_y. (b-d) Oxygen vacancy concentrationdependent (b) and temperature-dependent EPR spectra for a low (c) and high (d) x value of TiO_{2-x}H_y. (e) Temperature-dependent EPR spectra of TiO_{2-x}D_y with low x value and inset is the enlarged spectra around g = 2.003. (f) High-resolution, spherical aberration-corrected TEM image of highly disordered TiO_{2-x}H_y, and possible element labelling for the selected area (yellow box). (g) The intensity ratio of EPR peaks, O_V- and Ti(III)-related ones, measured at 106 K and 140 K for TiO_{2-x}H_y and TiO_{2-x}D_y samples, respectively. (h) Room-temperature EPR spectra of TiO_{2-x}H_y preheated at different temperatures in vacuum, and corresponding simulated EPR spectra of O_V-*n*H with varied O_V/H ratio.

The EPR spectra of TiO_{2-x}H_y sample with lowest O_V concentration ($x \le 0.001$) displayed typical axial line shapes for d¹ Ti(III) sites with slightly differing axial g-tensors ($g_x = g_y \approx 1.975$, $g_z \approx 1.940$), where the distortion from octahedral symmetry in TiO₂ likely originates from a combination of O_V formation and/or Jahn–Teller effects, and an isotropic line shape with $g \approx 2.003$ for a trapped electron on O_V at 106 K.²⁶⁻³³ Stoichiometrydependent EPR studies of TiO_{2-x}H_y samples, of which the preparation and quantification method of different x and y values will be discussed in detail later, further demonstrated the O_V concentration-dependent nature of the two signals ($1.92 \le g \le 1.99$ and $g \approx 2.003$), as their peak intensities increased by ~40 times and ~17 times with the increased x values from ≤ 0.001 to $0.02 \le x \le 0.03$, respectively. More interesting is the line shape of the triplet

at g \approx 2.003 gradually evolved to a 9-line isotropic multiplet with increased line width, which was not present in TiO₂, NaBH₄, a grinded mixture of TiO₂-NaBH₄ or TiO_{2-x}-NaBH₄, or any known doped-titanium oxides as far as we are concerned (Figure 2a and S7),³¹⁻⁴⁰ indicating an O_V-related hyperfine splitting.

Temperature-dependent EPR studies of TiO_{2-x}H_v throw further light on the interpretation of these spectra. Increasing the temperature from 106 K to RT significantly decreased the Ti(III) line intensity relative to that of O_V -related multiplet for all Ti $O_{2-x}H_v$ samples (Figure 2b-2d and S8), which indicated the dynamic exchange process involving electrons transfer from Ti(III) to O_V-related sites and finally being localized. With capabilities of balancing the highly localized charge and easy access to O_V, the hydrogen atom was thus suspected as the origin of the EPR multiplet via O_V-H coupling. To testify this idea, a quantitative EPR analysis of the temperature dependence was conducted for $TiO_{2-x}H_v$ and $TiO_{2-x}D_v$ samples. In theory, if the electron transfer involving H/D on the O_V sites, Ti(III) \rightarrow Ov-H/D, a kinetic isotope effect would be expected. Consistently, when the H nucleus was replaced by D nucleus (x \leq 0.01), the Ti(III) peak intensities of TiO_{2-x}D_y decreased sharply with temperature (4.35 for 106 K/140 K) compared to that of $TiO_{2-x}H_v$ (1.95 and 2.45 of highest and lowest x values for 106 K/140 K), while the Ov-related peak intensity (g = 2.003) remained at 106, 140 and 195 K for $TiO_{2-x}D_{y}$ but kept decreasing with temperature for TiO_{2-x}H_v (Figure 2g and S8). Furthermore, the triplet of TiO_{2-x}D_y and TiO_{2-x}H_y (x \leq 0.001) around g \approx 2.003 at 140 K was similar but differed significantly at higher temperature such as 220 K and RT, the former collapsed to isotropic O_V while the latter maintained the triplet (Figure 2c and 2e). These kinetic isotope effect conspired the Ov-H coupling in TiO_{2-x}H_v and thus the EPR multiplet could be assigned as OV-*n*H following the "2nl + 1" rule (*l* represents the nuclear spin of H or D while *n* represents their numbers).^{33,41} The premise for such an O_V -*n*H coupling was the close proximity of a distribution of O_V and H in Ti $O_{2-x}H_V$, which was supported by the highly defective nature of $TiO_{2-x}H_{y}$ as shown in the high-resolution double spherical aberration corrected transmission electron microscopy (TEM) image (Figure 2f) where the formation of vicinal O_V was possible both on the surface and in the bulk.

Typically, the O_V or H ion (or polyhydride) is highly reactive,⁴²⁻⁶⁶ thus providing an ideal opportunity to

60

3¹

double check the assignment of O_V -H via the H-O_V decoupling. In theory, the 9-line multiplet would degrade back to conventional O_V without localized hydrogens. Therefore, the EPR spectra of TiO_{2-x}H_v (0.02 \leq x \leq 0.03, 0 < v < 0.03) sample with gradually released hydrogen were recorded, which was realized by dividing a single sample into eight portions and subjecting to vacuum at 200 °C, 300 °C, 350 °C, 375 °C, 400 °C, 425 °C, 450 °C and 500 °C, respectively (Figure 2h). To summarize, from room temperature (RT) to 300 °C, there was no obvious 16 16 changes to the isotropic multiplet in $TiO_{2-x}H_{y}$. In the range 330-375 °C, the intensity of the isotropic multiplet 18 started to increase, especially the inner most two peaks. Then a significant transformation of the isotropic multiplet into an anisotropic signal was observed in the range 400 to 450 °C with the concurrent appearance of additional 2g Ti(III) signal. At 500 °C only the pure O_V EPR signal remained, with an increased intensity and a narrower line 25 width. These results confirmed the H and O_V dependence of the EPR multiplet, which was further supported by the EPR simulations of OV-*n*H coupling with a constant $a_{\rm H} = 7.7$ Gauss. Further detailed discussions were also **₽**₽ made to exclude other possibilities in the multiplet assignment (Supporting Information). On the other hand, the ₽1 13 32 result indicated that the O_V-H sites in TiO_{2-x}H_v began to dissociate to O_V and atomic H or H₂ above 300 °C to 14 54 possibly participate in the ammonia synthesis, which continues to completion by 500 °C. An intermediate step appears to involve $Ti^{4+}-O_V-\bullet H \rightarrow Ti^{3+}-O_V + H/H_2$. **B**5 **Coupled Fe and Ov-H Hydrogen Cycle.** As suggested by EPR measurements that both Fe and Ov-H are active

in ammonia synthesis in the initial TiO_{2-x}H_v/Fe-NL catalyst, the following steps are proposed for the ammonia synthesis process where * indicates an adsorbed state:

$Fe + 0.5N_2 \rightarrow Fe - 0.5*N_2 \rightarrow Fe - *N$	(Equation 2)
$Fe + 0.5H_2 \rightarrow Fe - 0.5*H_2 \rightarrow Fe - *H$	(Equation 3)
$Fe-*N + 3(Fe-*H) \rightarrow 4Fe + NH_3$	(Equation 4)
O_V -H + *N (from Fe to O_V) $\rightarrow O_V$ -*NH	(Equation 5)
O_V -NH + 2*H (from Fe to O_V) $\rightarrow O_V$ -*NH ₃ $\rightarrow O_V$ + NH ₃	(Equation 6)

ACS Paragon Plus Environment

$$O_V + *H \text{ (from Fe or } O_V) \rightarrow O_V -H$$
 (Equation 7)

Among these processes, Equations 2 through 4 are known to generate ammonia on Fe surfaces via the Langmuir-Hinshelwood mechanism.⁵ The nitrogen-hydrogenation enabled by O_V -H, Equations 5 and 6, are unique to Ti O_2 -_xH_y/Fe, being made a complete catalytic cycle by insertion of hydrogen into O_V sites in Equations 7, which is also the key step to confirm O_V -H as the catalytic center in Ti O_{2-x} H_v.

Figure 3. Hydrogen spillover from Fe to O_V -H. (a) Schematic reduction process of $TiO_{2-x}H_y/Fe-NL$, as well as hydrogen transfer during H₂-TPR measurement. (b) H₂-TPR-TCD spectra of Fe-NL, titanium oxides of $TiO_{2-x}H_y$ and TiO_2 , hybrid catalysts of $TiO_{2-x}H_y/Fe-NL$ and TiO_2 /Fe-NL, and the commercial Fe catalyst. (c) H₂-TPR-MS spectra of $TiO_{2-x}H_y/Fe-NL$ with H₂ and H₂O products being monitored. (d) Comparison of H₂-TPR-TCD spectra for $TiO_{2-x}H_y/Fe-NL$ before and after partial hydrogen release, which is realized via pre-heating at 400 °C *in situ*. (e) H transfer from Fe to O_V -D to produce HD over $TiO_{2-x}D_y/Fe-NL$.

To experimentally examine whether the hydrogen transfer via Equations 7 in $TiO_{2-x}H_y/Fe-NL$, temperature-programmed reduction (TPR) measurements were performed in a H₂ atmosphere (Figure 3a). TiO₂, Fe-NL, TiO₂/Fe-NL and commercial Fe control samples were found to consume H₂ during temperature ramping. By contrast, the H₂-TPR-TCD measurements of TiO_{2-x}H_y/Fe-NL demonstrated unusual negative peaks suggesting net gas release (Figure 3b),^{67,68} which was further confirmed as H₂ by MS (Figure 3c). 1 2 3¹

4 52

6 73

8 9₄ 10

11

11

Upon partially dissociating the O_V-H through heating the TiO_{2-x}H_y/Fe-NL sample to higher temperatures (from 330 °C to 400 °C; 2O_V-H \rightarrow 2O_V + H₂) before TPR measurements, the hydrogen release decreased at higher temperatures (above 320 °C), as expected, but surprisingly increased at lower temperatures (100 to 320 °C). Together with the result that the H₂ release peak of TiO_{2-x}H_y/Fe-NL centered at a lower temperature than that of pure TiO_{2-x}H_y, this increased H₂ gas release at low temperature suggested an additional O_V-H destabilization pathway possibly involving hydrogen spillover (O_V-H + *H_{spillover} \rightarrow O_V + H₂) besides the hydrogen coupling of two O_V-H in TiO_{2-x}H_y/Fe-NL (Figure 3b and 3d). This result could correlate well with the interesting temperaturedependent ammonia synthesis rates of TiO_{2-x}H_y/Fe-NL, i.e., hydrogen spillover could either promote NH₃ generation via O_V-H cycling at < 357 °C and > 380 °C, or impede N_{spillover} + O_V-H = O_V-NH if its speed is too high to reduce the O_V-H concentration (H_{spillover} + O_V-H = H₂ + O_V) from 357 °C to 380 °C (Figure 2b and S9). The D labelled TPP MS results for TiO₂. D (Fe NL further demonstrated that HD was the major product

The D-labelled TPR-MS results for TiO_{2-x}D_y/Fe-NL further demonstrated that HD was the major product during ramping, which confirmed that the 2O_V-D = 2O_V + D₂ reaction was overwhelmed by O_V-D + *H_{spillover} = O_V + HD (Figure 3e). Based on the above results, it was concluded that the Fe-H bond dissociation and H spillover to O_V-H proceeded at much lower temperature than the O_V-H coupling reaction, which is consistent with the fact that H₂ quickly desorbs from Fe-H above 200 °C (the measured Fe-H bond energy is only 60-65 kcal/mol).⁶⁹ Note that the coupling of *D to *H or *D is random on pure metal surfaces;⁴⁸ hence, a highly selective generation of HD rather than a HD-D₂ mixture could not proceed on an unmodified Fe surface, thus excluding the possibility of reverse H-spillover from O_V-D to Fe. This result is very interesting when compared to the advanced oxyhydride BaTiO_{3-x}H_x supported transition metal catalysts,^{47,53,70,71} where electron and hydrogen exchanges are observed in both catalysts while the direction for the hydrogen transfer is opposite (Figure S6d and S6e), demonstrating the high flexibility and potential in tuning ammonia synthesis activity via different H-laden oxides.

ACS Paragon Plus Environment

Figure 4. Hydrogen spillover for H replenishment. (a) H₂-TPR-TCD spectra of $TiO_{2-x}H_y/Fe-NL$ and $TiO_{2-x}H_y$ in five "heating and cooling" runs. (b) Standard stability test of $TiO_{2-x}H_y/Fe-NL$ for ammonia synthesis at 405 °C, 10 atm, and GHSV: 36,000 h⁻¹. Inset: picture of extruded catalyst, 40-mesh. (c) Calibration plot for O_V quantification using TEMPO (2, 2, 6, 6-tetramethylpiperidine-1-oxyl radical) and Mn(II) as standard and reference, respectively, obtained by double integration of the signals, and (d) corresponding EPR spectra of 20 mg TiO_{2-x}H_y after heating to 500 °C in a H₂ atmosphere.

Five consecutive H₂-TPR measurements in a row was used to probe the reversibility of the $O_V \leftrightarrow O_V$ -H process in TiO_{2-x}H_y/Fe. These results indicated that TiO_{2-x}H_y/Fe-NL could continuously release H₂ via an O_V-H + *H_{spillover} $\rightarrow O_V$ + H₂ process. Most of the H₂ was evolved in the first run, owing to a high initial hydrogen population at the O_V sites of as-prepared TiO_{2-x}H_y. A lesser amount of H₂ was evolved in the second run, and yields stabilized in the third through fifth runs (Figure 4a). This suggested that the O_V-H destabilization and Fe hydrogen spillover-induced O_V-H regeneration could reach a dynamic equilibrium state in the presence of H₂. This hypothesis is supported by the enduring on-stream stability of TiO_{2-x}H_y/Fe-NL during ammonia synthesis within 20 h (Figure 4b).

A TiO_{2-x}H_y control sample demonstrated continuous H₂ release over five H₂-TPR runs, suggesting hydrogen activation could also proceed on pure O_V or O_V-H. The quantity of H₂ released per Ti atom in TiO₂. $_xH_y$ /Fe-NL was ~3.7 times that of pure TiO_{2-x}H_y, suggesting hydrogen spillover from Fe, rather than O_V H₂ activation, is the major pathway for hydrogen replenishment at O_V-H sites. The concentration of unpaired electrons at O_V sites of TiO_{2-x}H_y (after heated at 500 °C in H₂) was ~2.6 x 10²¹ per mole of TiO_{2-x}H_y and the

values were $0.02 \le x \le 0.03$ and y < 0.03 for TiO_{2-x}H_y/Fe-NL during reaction at 500 °C (Figure 4c, 4d, S10 and S11). This estimate was obtained using the equilibrium concentration of O_V-H via H₂-TPR and the x and y values of TiO_{2-x}H_y/Fe-NL were 0.03 and < 0.03 for "Ti-•O_V-H-Ti" or 0.02 and < 0.02 for "Ti-•O_V•-H-Ti", where • denotes a localized electron (Supporting Information). Based on this result, the TOF vs. O_V was estimated to be as high as 1.0×10^{-2} s⁻¹ at 405 °C under 10 atm.

Figure 5. Hydrogen spillover to O_V breaks the "scaling relation" in ammonia synthesis. (a) The DFT model of TiO_{2-x}H_y/Fe and schematic ammonia synthesis cycle, and (b) corresponding free energy diagram and (c) overall energy barriers. **Theoretic interpretation of Fe-O_V-H breaking the "scaling relationship".** Spin-polarized DFT calculation was then utilized for N₂/H₂ reactions over O_V-H and Fe two active centers in TiO_{2-x}H_y/Fe. A Fe(111) facet was chosen due to its surface C₇ sites which are believed to be the catalytic center for nitrogen dissociation over iron.⁷²⁻⁷⁵ The TiO_{2-x}H_y model was then placed on this Fe(111) surface after abstracting one *z*-axial oxygen atom of a TiO₆ octahedral unit, in accordance with previous studies.^{76,77} An O_V-H site was crafted by abstracting two vicinal oxygen atoms (forming two vicinal O_V), followed by refilling one O_V site with a hydrogen atom lying in the *xy*-plane (Figure 5a, S12 and S13). This vicinal O_V-O_V-H site in TiO_{2-x}H_y makes spillover favorable in ammonia

58 59

60

synthesis, as will be amplified in the following section.

The N binding energy and activation energy of N₂ dissociation were computed over the C₇ site of the Fe(111) surface and on the O_V-H site of TiO_{2-x}H_v. It was found that the Fe(111) C₇ site both strongly bound and readily dissociated N₂ ($E_N = -1.51$ eV and $E_{a(N-N)} = 1.03$ eV, Steps III to IV in Figure 5b). While the O_V-H site bound N even more strongly ($E_N = -2.09 \text{ eV}$; Figure S14), it suffered from a difficult N₂ dissociation step ($E_{a(N-N)}$) = 2.73 eV) consistent with the inactivity of $TiO_{2-x}H_v$ in ammonia synthesis. Upon N₂ dissociation on Fe, *N migrated to O_V -H of Ti $O_{2-x}H_v$ with an associated $E_a = 1.23$ eV. Next, NH spontaneously formed upon reaction with O_V -H, with a small $E_a = 0.26 \text{ eV}$ (Steps IV' to VII in Figure 5b, also see Figure S15 and Supplementary Videos S1 and S2). Subsequent NH₃ assembly via O_V -NH + *H_{spillover} $\rightarrow O_V$ -NH₂ and O_V -NH₂ + H_{spillover} = O_V -NH₃ bore E_a values of 1.42 eV and 1.28 eV, respectively (Steps VI to XI in Figure 5b). The partial density of states analyses indicated that these accessible E_as for H₂ and NH_x were associated with activation capability of O_V and Ti(III) (Figure S16). After NH₃ was generated, it readily desorbed from the TiO_{2-x}H_y surface at temperatures above 100 °C,⁶⁹ as also revealed by the NH₃-TPD spectra (Figure S17). With a calculated desorption energy of 1.56 eV, this easy NH₃ desorption may be a result of energy compensation from the exothermic hydrogen adsorption and activation.⁷⁸ Then dissociated hydrogen atoms, mainly from hydrogen spillover and partly from O_V-H₂ dissociation, refilled the O_V forming O_V-H to close catalytic cycle (step XII to XIV; Figure 5b and S18). Based on the results of this calculation, the unique behavior of O_V -H is revealed: it bonds N stronger than Fe but cannot dissociate N₂, only able to accept spillover N/H, while free from the difficult NH_x hydrogenation at the same time, a novel observation for active centers in ammonia synthesis.

Theoretically possible competing mechanisms were also examined to further support this "spillover to O_V " one. NH₃ generation on TiO_{2-x}H_y via the hydrogen spillover pathway (E_a = 1.42 eV) was confirmed to be more favorable than reverse hydrogen spillover triggered NH₃ assembly on Fe (E_a = 2.53 eV; Figure 5c, S20). Side reactions such as nitrogen filling O_V to form O_V-N did not influence the catalytic cycle, as it was easily hydrogenated to O_V-NH with an E_a of 0.96 eV via hydrogen spillover (Step XII to XV' of Figure 5b). These

3¹

9₄

9

20

results specifically define hydrogen spillover from Fe to O_V as a key step in ammonia synthesis on TiO_{2-x}H_y.

The reaction orders of N₂ were 0.29 for TiO_{2-x}H_y/Fe-NL and 0.51 for Fe-NL (Figure S21), suggesting that the surfaces of both catalysts are almost saturated with N₂ or atomic N, leading to very weak dependences of the reaction rates on gas-phase N₂. DFT results demonstrated the N₂ activation barrier on Fe was increased by TiO₂. _xH_y loading (0.05 eV vs. 1.03 eV), the lower reaction order of TiO_{2-x}H_y/Fe-NL might originate from the increased N/N₂ adsorption on the surface TiO_{2-x}H_y and more accessible surface Fe(0) sites due to the favorable spillover of atomic N to TiO_{2-x}H_y. The reaction order of NH₃ for TiO_{2-x}H_y/Fe-NL (-0.87) was more negative than that of Fe-NL (-0.45), which is very common in ammonia synthesis when a transition metal is promoted by other components. Meanwhile, the reaction orders of H₂ were 1.36 and 0.79 for TiO_{2-x}H_y/Fe-NL and Fe-NL, respectively, indicating the additional hydrogen demand of TiO_{2-x}H_y/Fe-NL possibly for N_{spillover} + O_V-H = O_V-NH, which involves a hydrogen spillover related O_V-H recycle.

The easy hydrogen spillover to O_V sites should originate from the unique O_V -(H) structure of TiO_{2-x}H_y. DFT calculations indicated that the surface cascade "O_V-O_V" structures enabled a low E_a from 0.42 eV to 0.84 eV for hydrogen transfer. In contrast, hydrogen transfer via surface lattice oxygen ("O_V-O-O_V") exhibited a much higher E_a = 2.58 eV (Figure 6a and 6b). Furthermore, another possible cascade "surface O_V-bulk O_V" was also proved feasible for hydrogen transfer, with activation energy barriers of 0.48 eV and 0.95 eV for H storage while 1.20 eV and 0.39 eV for H release (Figure S22). This result could explain the reversible hydrogen storage behavior of TiO_{2-x}H_y, which also agreed with recent observation that hydrogen could transfer in certain depth inside a metal oxide.⁷⁹ The cascade "O_V-O_V" assembled from O_V-(H) monomers, which could maximize the distance of hydrogen transfer on the TiO_{2-x}H_y surface (Figure 6c), was experimentally supported by the TEM image of TiO_{2-x}H_y with highly O-deficient sites and the hyperfine splitting of OV-*n*H (Figure 2g and 2h).

Figure 6. Low-energy-barrier hydrogen spillover pathway engendered by " O_V-O_V " cascade. (a) Schematic activation energy diagram and, (b) structure of hydrogen transfer through cascade " O_V-O_V " (left) and O-obstructed O_V-O_V (right) pathways. The structures and activation energy barriers were obtained using DFT. (c) Schematic of cascade " O_V-O_V " pathway via the O_V -(H) monomers on the surface of TiO_{2-x}H_y, facilitating hydrogen transfer.

CONCLUSION

Facile N₂ and H₂ dissociation on a nano Fe and subsequent hydrogenation of N by spillover H in oxygen vacancies (O_V-H) on TiO_{2-x}H_y in a bifunctional TiO_{2-x}H_y/Fe catalyst together enable the "scaling relation" in ammonia synthesis to be broken. As both Fe and TiO_{2-x}H_y are strong N-bonding components, the ability of TiO_{2-x}H_y/Fe to overcome the "scaling relationship" represents a paradigm shift in ammonia synthesis.

ASSOCIATED CONTENT

Supporting Information

Methods, Figure S1-S22, Supplementary Videos 1 and 2, and additional references

Corresponding Authors

*g.ozin@UTORONTO.CA

*zhanglz@mail.ccnu.edu.cn

Notes

The authors declare no competing interests.

ACKNOWLEDGMENTS

Support for work in China came from National Natural Science Funds for Distinguished Young Scholars (21425728), National Key Research and Development Program of China (2016YFA0203002), National Science Foundation of China (51472100, 21872061), China Scholarship Council (CSC), and Excellent Doctoral Dissertation Cultivation Grant from Central China Normal University (2019YBZZ026). We also thank the National Supercomputer Center in Shenzhen for providing high-performance computation. Support for the work in Canada came from the Natural Sciences and Engineering Council of Canada (NSERC). Assistance in editing this manuscript was provided by Paul N. Duchesne, who acknowledges financial support from the NSERC Postdoctoral Fellowships program.

REFERENCES

(1) Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Nat. Chem. 2009, 1, 37-46.

(2) Fernández, E. M.; Moses, P. G.; Toftelund, A.; Hansen, H. A.; Martínez, J. I.; Abild-Pedersen, F.; Kleis, J.;
Hinnemann, B.; Rossmeisl, J.; Bligaard, T. *Angew. Chem. Int. Ed.* 2008, *47*, 4683-4686.

(3) Logadottir, A.; Rod, T. H.; Nørskov, J. K.; Hammer, B.; Dahl, S.; Jacobsen, C. J. Catal. 2001, 197, 229-231.

(4) Jacobsen, C. J.; Dahl, S.; Clausen, B. S.; Bahn, S.; Logadottir, A.; Nørskov, J. K. J. Am. Chem. Soc. 2001, 123, 8404-8405.

- (5) Ertl, G. Angew. Chem. Int. Ed. 2008, 47, 3524-3535.
- (6) Tang, C.; Qiao, S.-Z. Chem. Soc. Rev. 2019, 48, 3166-3180.

- (7) Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.;
- Hoffman, B.; Janik, M. J.; Jones, A. K.; Kanatzidis, M. G.; King, P.; Lancaster, K. M.; Lymar, S. V.; Pfromm,
- P.; Schneider, W. F.; Schrock, R. R. Science 2018, 360, eaar6611.
- (8) Zheng, J.; Liao, F.; Wu, S.; Jones, G.; Chen, T. Y.; Fellowes, J.; Sudmeier, T.; McPherson, I. J.; Wilkinson,
- I.; Tsang, S. C. E. Angew. Chem. Int. Ed. 2019, 58, 17335-17341.
- (9) Shi, R.; Zhang, X.; Waterhouse, G. I.; Zhao, Y.; Zhang, T. Adv. Energy Mater. 2020, 2000659.
- (10) Ye, L.; Nayak-Luke, R.; Bañares-Alcántara, R.; Tsang, E. Chem 2017, 3, 712-714.
- (11) Singh, A. R.; Montoya, J. H.; Rohr, B. A.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. ACS Catal. 2018, 8, 4017-4024.
- (12) Mehta, P.; Barboun, P.; Herrera, F. A.; Kim, J.; Rumbach, P.; Go, D. B.; Hicks, J. C.; Schneider, W. F. *Nat. Catal.* **2018**, *1*, 269-275.
- (13) Liu, J.-C.; Ma, X.-L.; Li, Y.; Wang, Y.-G.; Xiao, H.; Li, J. Nat. Commun. 2018, 9, 1-9.
- (14) Wang, P.; Chang, F.; Gao, W.; Guo, J.; Wu, G.; He, T.; Chen, P. Nat. Chem. 2017, 9, 64-70.
- (15) Mao, C.; Li, H.; Gu, H.; Wang, J.; Zou, Y.; Qi, G.; Xu, J.; Deng, F.; Shen, W.; Li, J. *Chem* **2019**, *5*, 2702-2717.
- (16) Guan, S.; Liu, H. Z. Ind. Eng. Chem. Res. 2000, 39, 1347-1349.
- (17) Kitano, M.; Inoue, Y.; Sasase, M.; Kishida, K.; Kobayashi, Y.; Nishiyama, K.; Tada, T.; Kawamura, S.;
- Yokoyama, T.; Hara, M. Angew. Chem. Int. Ed. 2018, 57, 2648-2652.
- (18) Pernicone, N.; Ferrero, F.; Rossetti, I.; Forni, L.; Canton, P.; Riello, P.; Fagherazzi, G.; Signoretto, M.;Pinna, F. *Appl. Catal. A-Gen.* 2003, 251, 121-129.
- (19) Saha, N. C.; Tompkins, H. G. J. Appl. Phys. 1992, 72, 3072-3079.
- (20) Grunze, M.; Golze, M.; Hirschwald, W.; Freund, H.-J.; Pulm, H.; Seip, U.; Tsai, M.; Ertl, G.; Küppers, J. *Phys. Rev. Lett.* **1984**, *53*, 850.

1 2 3¹

4

6

8

11

15 13 16

15 1<u>6</u> 17

18

19 20

25 11 26

27

<u>1</u>8 29

39 17 40

41 1482

43

50

55 24 56

57 58 59

60

- (21) Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Bahn, S.; Hansen, L. B.; Bollinger, M.; Bengaard, H.;
- 52 Hammer, B.; Sljivancanin, Z.; Mavrikakis, M. J. Catal. 2002, 209, 275-278.
- 73 (22) Vojvodic, A.; Medford, A. J.; Studt, F.; Abild-Pedersen, F.; Khan, T. S.; Bligaard, T.; Nørskov, J. Chem. 9₄ 10 *Phys. Lett.* **2014**, *598*, 108-112.
 - (23) Vojvodic, A.; Nørskov, J. K. Natl. Sci. Rev. 2015, 2, 140-143.
 - (24) Mao, C.; Wang, J.; Zou, Y.; Li, H.; Zhan, G.; Li, J.; Zhao, J.; Zhang, L. Green Chem. 2019, 21, 2852-2867.
 - (25) Martelli, P.; Caputo, R.; Remhof, A.; Mauron, P.; Borgschulte, A.; Zuttel, A. J. Phys. Chem. C 2010, 114, 7173-7177.
 - (26) Priebe, J. B.; Karnahl, M.; Junge, H.; Beller, M.; Hollmann, D.; Brückner, A. Angew. Chem. Int. Ed. 2013, 52, 11420-11424.
 - (27) Wang, Z.; Wen, B.; Hao, Q.; Liu, L.-M.; Zhou, C.; Mao, X.; Lang, X.; Yin, W.-J.; Dai, D.; Selloni, A. J. Am. Chem. Soc. 2015, 137, 9146-9152.
- <u>79</u> (28) Wang, S.; Hai, X.; Ding, X.; Chang, K.; Xiang, Y.; Meng, X.; Yang, Z.; Chen, H.; Ye, J. Adv. Mater. 2017, 29, 1701774.
- 34 (29) Zhao, Y.; Zhao, Y.; Waterhouse, G. I. N.; Zheng, L.; Cao, X.; Teng, F.; Wu, L.; Tung, C.; Ohare, D.; <u>3</u>5 36
- **B**Ø Zhang, T. Adv. Mater. 2017, 29, 1703828. 38
 - (30) Huang, H.; Wang, X.-S.; Philo, D.; Ichihara, F.; Song, H.; Li, Y.; Li, D.; Qiu, T.; Wang, S.; Ye, J. Appl. Catal. B-Environ. 2020, 267, 118686.
- (31) Zhao, Y.; Zhao, Y.; Shi, R.; Wang, B.; Waterhouse, G. I.; Wu, L. Z.; Tung, C. H.; Zhang, T. Adv. Mater. <u>119</u> 45 **£**6 **2019**, *31*, 1806482. 47
- 48 21 49 (32) Yang, Y.; Liu, G.; Irvine, J. T.; Cheng, H. M. Adv. Mater. 2016, 28, 5850-5856.
- (33) Yang, Y.; Yin, L. C.; Gong, Y.; Niu, P.; Wang, J. Q.; Gu, L.; Chen, X.; Liu, G.; Wang, L.; Cheng, H. M. 22 52 23 Adv. Mater. 2018, 30, 1704479. 54
 - (34) Fittipaldi, M.; Gatteschi, D.; Fornasiero, P. Catal. Today 2013, 206, 2-11.

- (35) Kumar, C. P.; Gopal, N. O.; Wang, T. C.; Wong, M.-S.; Ke, S. C. J. Phys. Chem. B 2006, 110, 5223-5229.
- (36) Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; Murray, C. B. J. Am.
 Chem. Soc. 2012, *134*, 6751-6761.
 - (37) Kang, Q.; Cao, J.; Zhang, Y.; Liu, L.; Xu, H.; Ye, J. J. Mater. Chem. A 2013, 1, 5766-5774.
 - (38) Yan, Y.; Shi, W.; Yuan, Z.; He, S.; Li, D.; Meng, Q.; Ji, H.; Chen, C.; Ma, W.; Zhao, J. J. Am. Chem. Soc. **2017**, *139*, 2083-2089.
 - (39) Mao, C.; Yu, L.; Li, J.; Zhao, J.; Zhang, L. Appl. Catal. B-Environ. 2018, 224, 612-620.
 - (40) Yang, J.; Guo, Y.; Jiang, R.; Qin, F.; Zhang, H.; Lu, W.; Wang, J.; Yu, J. C. *J. Am. Chem. Soc.* **2018**, *140*, 8497-8508.
 - (41) Shengelaya, A.; Zhao, G.-m.; Keller, H.; Müller, K. Phys. Rev. Lett. 1996, 77, 5296.
 - (42) Zhang, S.; Zhao, Y.; Shi, R.; Zhou, C.; Waterhouse, G. I.; Wu, L. Z.; Tung, C. H.; Zhang, T. Adv. Energy Mater. 2020, 10, 1901973.
 - (43) Schrauben, J. N.; Hayoun, R.; Valdez, C. N.; Braten, M.; Fridley, L.; Mayer, J. M. Science **2012**, *336*, 1298-1301.
- (44) Kitano, M.; Inoue, Y.; Yamazaki, Y.; Hayashi, F.; Kanbara, S.; Matsuishi, S.; Yokoyama, T.; Kim, S.-W.;
 Hara, M.; Hosono, H. *Nat. Chem.* 2012, *4*, 934-940.
- (45) Shima, T.; Hu, S.; Luo, G.; Kang, X.; Luo, Y.; Hou, Z. Science 2013, 340, 1549-1552.
- (46) Jia, H.-P.; Quadrelli, E. A. Chem. Soc. Rev. 2014, 43, 547-564.
- (47) Masuda, N.; Kobayashi, Y.; Hernandez, O.; Bataille, T.; Paofai, S.; Suzuki, H.; Ritter, C.; Ichijo, N.; Noda,
- Y.; Takegoshi, K.; Tassel, C.; Yamamoto, T.; Kageyama, H. J. Am. Chem. Soc. 2015, 137, 15315-15321.
- (48) Kitano, M.; Inoue, Y.; Ishikawa, H.; Yamagata, K.; Nakao, T.; Tada, T.; Matsuishi, S.; Yokoyama, T.;
- Hara, M.; Hosono, H. Chem. Sci. 2016, 7, 4036-4043.
- (49) Wu, Z.; Cheng, Y.; Tao, F.; Daemen, L.; Foo, G. S.; Nguyen, L.; Zhang, X.; Beste, A.; Ramirez-Cuesta, A.
 J. J. Am. Chem. Soc. 2017, 139, 9721-9727.

4

6

13

20

25 11 26

27

29

34

35 36 BØ

38

<u>119</u> 45

48 21 49

50

60

- 2 3¹ (50) Kobayashi, Y.; Tang, Y.; Kageyama, T.; Yamashita, H.; Masuda, N.; Hosokawa, S.; Kageyama, H. J. Am. 52 Chem. Soc. 2017, 139, 18240-18246.
- 73 (51) Gao, W.; Wang, P.; Guo, J.; Chang, F.; He, T.; Wang, Q.; Wu, G.; Chen, P. ACS Catal. 2017, 7, 3654-8 9₄ 10 3661.
- 11 (52) Hu, G.; Wu, Z.; Jiang, D.-e. J. Phys. Chem. C 2018, 122, 20323-20328. 15
- (53) Tang, Y.; Kobayashi, Y.; Masuda, N.; Uchida, Y.; Okamoto, H.; Kageyama, T.; Hosokawa, S.; Loyer, F.; 10 15
- 1<u>6</u> 17 Mitsuhara, K.; Yamanaka, K.; Tamenori, Y.; Tassel, C.; Yamamoto, T.; Tanaka, T.; Kageyama, H. Adv. Energy 18 1**9** Mater. 2018, 8, 1801772.
- 29 (54) Chang, F.; Guan, Y.; Chang, X.; Guo, J.; Wang, P.; Gao, W.; Wu, G.; Zheng, J.; Li, X.; Chen, P. J. Am. 22
- 10 24 Chem. Soc. 2018, 140, 14799-14806.
 - (55) Guo, C.; Ran, J.; Vasileff, A.; Qiao, S.-Z. Energy Environ. Sci. 2018, 11, 45-56.
- (56) Zhang, N.; Gao, C.; Xiong, Y. J. Energy Chem. 2019, 37, 43-57. 12
- <u>7</u>9 (57) Zhang, N.; Jalil, A.; Wu, D.; Chen, S.; Liu, Y.; Gao, C.; Ye, W.; Qi, Z.; Ju, H.; Wang, C. J. Am. Chem. Soc. 31 32 14 33 **2018**, 140, 9434-9443.
 - (58) Wu, J.; Li, X.; Shi, W.; Ling, P.; Sun, Y.; Jiao, X.; Gao, S.; Liang, L.; Xu, J.; Yan, W. Angew. Chem. 2018, 130, 8855-8859.
- 39 17 40 (59) Li, Z.; Werner, K.; Qian, K.; You, R.; Płucienik, A.; Jia, A.; Wu, L.; Zhang, L.; Pan, H.; Kuhlenbeck, H. 41 1482 Angew. Chem. 2019, 131, 14828-14835. 43
 - (60) Wang, X.; Peng, X.; Zhang, Y.; Ni, J.; Au, C.-t.; Jiang, L. Inorg. Chem. Front. 2019, 6, 396-406.
- **20** 47 (61) Liu, Y.; Cheng, M.; He, Z.; Gu, B.; Xiao, C.; Zhou, T.; Guo, Z.; Liu, J.; He, H.; Ye, B. Angew. Chem. Int. Ed. 2019, 58, 731-735.
- (62) Kitano, M.; Kujirai, J.; Ogasawara, K.; Matsuishi, S.; Tada, T.; Abe, H.; Niwa, Y.; Hosono, H. J. Am. 22 52 23 Chem. Soc. 2019, 141, 20344-20353. 54

1

- (63) Kammert, J.; Moon, J.; Cheng, Y.; Daemen, L.; Irle, S.; Fung, V.; Liu, J.; Page, K.; Ma, X.; Phaneuf, V. J.
- Am. Chem. Soc. 2020, 142, 7655-7667.
- (64) Hattori, M.; Iijima, S.; Nakao, T.; Hosono, H.; Hara, M. Nat. Commun. 2020, 11, 1-8.
- (65) Wu, Y.; Li, C.; Fang, B.; Wang, X.; Ni, J.; Lin, B.; Lin, J.; Jiang, L. Chem. Commun. 2020, 56, 1141-1144.
- (66) Zhao, Y.; Zheng, L.; Shi, R.; Zhang, S.; Bian, X.; Wu, F.; Cao, X.; Waterhouse, G. I.; Zhang, T. Adv.
- *Energy Mater.* **2020**, 2002199.
- (67) Conner Jr, W. C.; Falconer, J. L. Chem. Rev. 1995, 95, 759-788.
- (68) Prins, R. Chem. Rev. 2012, 112, 2714-2738.
- (69) Ertl, G. Cat. Rev. Sci. Eng. 1980, 21, 201-223.
- (70) Kobayashi, Y.; Hernandez, O. J.; Sakaguchi, T.; Yajima, T.; Roisnel, T.; Tsujimoto, Y.; Morita, M.; Noda,
- Y.; Mogami, Y.; Kitada, A. Nat. Mater. 2012, 11, 507-511.
- (71) Yajima, T.; Takeiri, F.; Aidzu, K.; Akamatsu, H.; Fujita, K.; Yoshimune, W.; Ohkura, M.; Lei, S.;
- Gopalan, V.; Tanaka, K. Nat. Chem. 2015, 7, 1017.
- (72) Strongin, D. R.; Carrazza, J.; Bare, S. R.; Somorjai, G. A. J. Catal. 1987, 103, 213-215.
- (73) Mortensen, J. J.; Hansen, L.; Hammer, B.; Norskov, J. K. J. Catal. 1999, 182, 479-488.
- (74) Dumesic, J. A.; Topsoe, H.; Boudart, M. J. Catal. 1975, 37, 513-522.
- (75) Qian, J.; An, Q.; Fortunelli, A.; Nielsen, R. J.; Goddard, W. A. J. Am. Chem. Soc. 2018, 140, 6288-6297.
- (76) Liu, L.; Yu, P. Y.; Chen, X.; Mao, S. S.; Shen, D. Z. Phys. Rev. Lett. 2013, 111, 065505.
- (77) Fu, Q.; Li, W.-X.; Yao, Y.; Liu, H.; Su, H.-Y.; Ma, D.; Gu, X.-K.; Chen, L.; Wang, Z.; Zhang, H.; Wang,
- B.; Bao, X. Science **2010**, *328*, 1141-1144.
- (78) Gong, Y.; Wu, J.; Kitano, M.; Wang, J.; Ye, T.-N.; Li, J.; Kobayashi, Y.; Kishida, K.; Abe, H.; Niwa, Y.;
- Yang, H.; Tada, T.; Hosono, H. Nat. Catal. 2018, 1, 178-185.
- (79) Wu, S.; Peng, Y.-K.; Chen, T.-Y.; Mo, J.; Large, A.; McPherson, I.; Chou, H.-L.; Wilkinson, I.; Venturini,
- F.; Grinter, D.; Escorihuela, P. F.; Held, G.; Tsang, E. ACS Catal. 2020, 10, 5614-5622.

