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The synthesis of the dihydroquinoxaline-2(1H)-one framework, 
which is a derivative of the extensively biologically studied 

2(1H)-quinoxalinone system,
1
 has been the subject of recent 

investigations due to its prevalence in the cores of bioactive 

products.  The dihydroquinoxaline-2(1H)-one core is found in 

compounds active against HIV,
2
 potent Bradykinin B1 receptor 

antagonists,
3
 and potential antimicrobial agents.

4
 An aspect of 

this organic moiety that has not been fully explored is the range 

of substituents that can be incorporated into the molecule by 

varying the groups at the nitrogen and -carbon positions.  A 

recent strategy for preparation of dihydroquinoxaline-2(1H)-ones 

harnesses Ugi reaction
5
 for one-pot substrate synthesis followed 

by palladium-catalyzed cyclization (Scheme 1).
6-8

 This strategy 

 

 
 

Scheme 1: Ugi reaction approach to dihydroquinoxaline-
2(1H)-ones. 

 

 

is elegant, however the range of substituents at N4 is limited to 
amide functionalities. We have previously reported the synthesis 

of the related 2H-1,4-benzoxazin-3-(4H)-one framework (2) via 

palladium-catalyzed cyclization of amidoalcohols (1) (Scheme 

2).
9
 We reasoned that these palladium-catalysis methods could be 

adapted for the divergent preparation of highly substituted 

dihydroquinoxaline-2(1H)-one frameworks by controlled 
assembly of amidoamine analogues of our amidoalcohols.  This 

route would allow introduction of a range of nitrogen substituents 

from a common precursor.  Here we report our preliminary 

results in the synthesis of amidoamine substrates through NaI-

catalyzed SN2 substitution and their subsequent palladium-

catalyzed cyclization. 

Our synthetic strategy begins from alcohol compounds 1a and 

1b, which are prepared by coupling 2-bromo-N-methylaniline
10

  

 

 
 

Scheme 2: Preparation of 2H-1,4-benzoxazin-3-(4H)-ones. 
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A new strategy for the preparation of highly-substituted dihydroquinoxaline-2(1H)-ones is 

reported.  The strategy harnesses a divergent NaI-catalyzed amine substitution of mesylates to 

prepare a range of sterically hindered amidoamine substrates.  These substrates are then 

subjected to Pd(dba)2/P(tBu)3 mediated cyclization.  The preparation of amidoalcohol substrates 

occurs with resonable yields (40 - 84%), with lower yields being obtained with aromatic and 

bulky amines.  Palladium-catalyzed intramolecular C-N bond formation is slow, requiring 20 

mol% catalyst loadings for complete conversion in 16 hours.  All substrates cyclized with 

reasonable yields (48 - 73%). 

2009 Elsevier Ltd. All rights reserved. 
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Table 1:  Synthesis of amine substrates.11 

 

 
with either benzoylformic acid or pyruvic acid via the acyl halide 

intermediate, followed by NaBH4 reduction in MeOH (Scheme 

3).
9,12

 The alcohol is then activated for nucleophilic substitution 
by conversion to the mesylate.

13
 Direct substitution of the 

mesylate with benzylamine was not effective, with excess amine 

at 80 - 100 °C in toluene resulting in no conversion. This 

problem was circumvented through application of a Finkelstein-

type process, catalyzing the SN2 substitution with NaI (Table 

1).
14,15

 Finkelstein reactions are generally performed for 
substitution at primary positions due to the slower rate of SN2 

reactions at sterically hindered secondary positions.  As can be 

seen from Table 1, steric hindrance plays a significant role in the 

substitution reaction, with the sterically hindered products 5a-c 

being formed in relatively low yields (ca. 50%) when compared 

to the much less hindered 5g and 5h, where the yields are ca. 
80%.  The relatively unhindered n-hexylamine is a good 

nucleophile (5d, 80%), while the larger benzyl-, furfuryl-, and 

cyclohexylamines saw significantly lower yields (5a-c, ca. 50%). 

While the Finkelstein catalysis method was effective for 

substitution with aliphatic amine nucleophiles, it failed for 

aromatic amines.  Here, we adapted a literature procedure using 
Na2CO3 in wet EtOH solvent, resulting in acceptable yields of 

amine products 5e and 5f (40 and 16%).
16

  

Attempts to incorporate the amine directly from compound 3 

through reductive amination were not successful.
17

 This is 

attributed to failure to form the necessary imine intermediate.  

Attempts to discretely prepare the imine failed under acid-
catalyzed Dean-Stark distillation, with no reaction occurring in 

benzene and only decomposition occurring at reflux in toluene.  

The presence of the bromine atom may be responsible for this 

decomposition, given that related reactions have been 

demonstrated from non-halogenated analogues of 3.
18 

 
 

Scheme 3: The synthesis of key mesyl substrate 4. 

 
With the requisite amidoamines 5 in hand we turned our 

attention to palladium-catalyzed cyclization. We first explored 
cyclization of 5a under our previously reported conditions for 

benzoxazinone preparation (1 mol% Pd(dba)2, 2 mol% 

[HP(tBu)3]BF4,
19

 and 1.2 equiv. Cs2CO3 in toluene at 80 °C),
9
 

with very low conversions being obtained.  Increasing the  

Table 2:  Pd-catalyzed cyclization.11 

 

 
 



  

 3 
temperature to 100 °C resulted in enhanced conversion, yet still 

incomplete reaction.  To achieve full conversion at 100 °C, it was 

necessary to increase the catalyst loading to 10 mol%.  Varying 

the base did not result in significant changes to the conversion 

rate, with Cs2CO3 proving the most effective.
20

  The yield of 

dihydroquinoxaline-2(1H)-one products was reasonable in most 
cases, averaging 60% (Table 2).

21
 Both aliphatic and aryl amines 

cyclized in approximately the same amounts, showing no 

negative impact from the moderately electron-withdrawing aryl 

substituents. 

The observations are consistent with our previous study on the 

synthesis of benzoxazinone species; therefore, we propose a 
similar mechanism is at play (Scheme 4).  From the active 

Pd(P(tBu3))2 catalyst, C-Br bond activation occurs to yield 

carbonyl-stabilized palladacycle 7.
22

 Anion exchange yields 

carbonate complex 8, followed by deprotonation to yield 

palladium amide complex 9.  Previous reports have proposed that 

the superior reactivity of carbonate bases in palladium-catalyzed  
reactions arises from intramolecular deprotonation.

23
 The 

catalytic cycle is closed through reductive elimination of the C-N 

bond and regeneration of the Pd-catalyst. 
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Scheme 4:  Proposed catalytic cycle. 

 
In summary, we have demonstrated a new NaI-catalyzed SN2 

substitution for synthesis of amidoamine substrates and their 

subsequent palladium-catalyzed cyclization to yield 
dihydroquinoxaline-2(1H)-ones.  The substitution reaction is 

effective for alkylamines and has lower yield for arylamines.  

The cyclization reaction does not display significant substitution 

dependence, proceeding well for both alkyl and aryl substituted 

substrates.  The resulting products are currently being screened 

for biological activity.     
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- Pd-catalyzed C-N coupling for heterocycle 

preparation. 

 

- NaI-catalyzed SN2 substitution with alkyl and aryl 

amine nucleophiles. 

 

- Divergent synthesis of aminoalchols. 

 

- Highly-substituted dihydroquinoxaline-2(1H)-one 

synthesis.   

 

 
 


