ChemComm

COMMUNICATION

View Article Online View Journal | View Issue

Cite this: Chem. Commun., 2014, 50, 219

Received 29th July 2013, Accepted 30th October 2013

DOI: 10.1039/c3cc45772a

www.rsc.org/chemcomm

Palladium-catalyzed stereospecific cross-coupling of enantioenriched allylic alcohols with boronic acids[†]

Hai-Bian Wu,^a Xian-Tao Ma^a and Shi-Kai Tian*^{ab}

In the presence of 2.5 mol% $Pd_2(dba)_3$ -TMEDA (1:4), a range of enantioenriched allylic alcohols smoothly coupled with boronic acids in a highly regioselective fashion with inversion of configuration to afford structurally diverse alkenes in good yields with perfect retention of ee.

Boronic acids are widely employed in cross-coupling reactions due to their ready accessibility, stability, and reactivity.¹ Particularly, the cross-coupling of boronic acids with allylic electrophiles constitutes a powerful approach for the formation of carbon-carbon bonds by introducing the allyl moiety to target compounds,² which permit a variety of chemical transformations such as oxidation, reduction, and addition.³ Although allylic halides⁴ and alcohol derivatives, such as allylic esters,⁵ carbonates,⁶ and phosphates,⁷ have been identified as useful allylic electrophiles with varying reactivity and selectivity in their cross-coupling reactions with boronic acids, the use of allylic alcohols as electrophiles is more attractive with respect to atom-economy because the leaving hydroxy group has a mass of only 17 amu,^{8,9} which is much smaller than common leaving groups. Moreover, the synthetic routes for allylic alcohols, including enantioenriched ones, are in general shorter than those for the corresponding halides and alcohol derivatives.¹⁰

Although the cross-coupling of enantioenriched allylic alcohols with boronic acids constitutes a promising atom-economic method for the synthesis of optically active alkenes, it has been reported to afford racemic products.^{8e} Clearly, the poor leaving ability and compatibility of the hydroxy group impose formidable challenges to the direct substitution of enantioenriched allylic alcohols with retention of ee. To our knowledge, effective retention of ee has not yet been disclosed for the direct substitution of enantioenriched

allylic alcohols with carbon nucleophiles.^{11,12} Prompted by our recent exploration of substitution reactions with allylic amines,¹³ we envisioned that effective retention of ee could be realized in the cross-coupling of enantioenriched allylic alcohols with boronic acids by screening palladium catalysts and reaction conditions. Here we report, for the first time, an efficient stereospecific cross-coupling reaction of enantioenriched allylic alcohols with boronic acids, which affords a range of optically active alkenes with excellent ee.¹⁴

A number of palladium sources and ligands were examined for the cross-coupling of enantioenriched allylic alcohol **1a** (94% ee) with boronic acid **2a** in dioxane at 110 $^{\circ}$ C (Table 1, entries 1–10). Both the yield and the stereochemistry (inverted) were significantly affected by the nature of the ligand and the palladium source, and

 Table 1
 Optimization of reaction conditions^a

	OH Ph Me 1a (94% ee)	_e + PhB(OH) ₂ – 2a	[Pd], ligand solvent, 110 °C Ph	Ph L Me	
Entry	[Pd]	Ligand	Solvent	Yield ^b (%)	ee ^c (%)
1	$Pd_2(dba)_3$	None	Dioxane	0	_
2	$Pd_2(dba)_3$	TMEDA	Dioxane	78	91
3	$Pd_2(dba)_3$	2,2'-Bipyridine	Dioxane	29	90
4	$Pd_2(dba)_3$	(\pm) -BINOL	Dioxane	0	_
5	$Pd_2(dba)_3$	(±)-BINAP	Dioxane	73	32
6	$Pd_2(dba)_3$	dppb	Dioxane	8	11
7	$Pd(PPh_3)_4$	TMEDA	Dioxane	32	0
8	$Pd(OAc)_2$	TMEDA	Dioxane	Trace	—
9	$PdCl_2$	TMEDA	Dioxane	Trace	—
10	$[Pd(allyl)Cl]_2$	TMEDA	Dioxane	Trace	—
11	$Pd_2(dba)_3$	TMEDA	Toluene	12	66
12	$Pd_2(dba)_3$	TMEDA	MeCN	10	11
13	$Pd_2(dba)_3$	TMEDA	DMF	Trace	—
14	$Pd_2(dba)_3$	TMEDA	DMSO	Trace	—
15	$Pd_2(dba)_3$	TMEDA	t-AmOH	58	93
16	$Pd_2(dba)_3$	TMEDA	Dioxane-t-AmOH (1:1)	84	94

^{*a*} Reaction conditions: alcohol **1a** (0.30 mmol), boronic acid **2a** (0.36 mmol), [Pd] (2.5 mol%; for entries 7–9, 5 mol%), ligand (10 mol%), solvent (2.0 mL), 110 $^{\circ}$ C, 15 h. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis on a chiral stationary phase.

^a Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China. E-mail: tiansk@ustc.edu.cn; Fax: +86 551-6360-1592; Tel: +86 551-6360-0871

^b Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

 $[\]dagger$ Electronic supplementary information (ESI) available: Experimental procedures, characterization data, and copies of $^1{\rm H}$ NMR and $^{13}{\rm C}$ NMR spectra and HPLC traces. See DOI: 10.1039/c3cc45772a

gratifyingly, the use of Pd₂(dba)₃–TMEDA (1:4) as the catalyst system afforded alkene **3a** in 78% yield with 91% ee (Table 1, entry 2). Moreover, the reaction proceeded with exclusive α -selectivity, and no *E*/*Z* isomerization was observed for the allyl carbon–carbon double bond. To improve the efficiency of chirality transfer, we screened a number of common solvents and found that replacing dioxane with a 1:1 mixture of dioxane and tertiary amyl alcohol led to complete inversion of the chiral center of allylic alcohol **1a** (Table 1, entry 16).

In the presence of 2.5 mol% Pd₂(dba)₃–TMEDA (1:4), a range of unsymmetrical enantioenriched allylic alcohols (α -substituent $\neq \gamma$ -substituent) smoothly coupled with boronic acid **2a** in an α -selective fashion with inversion of configuration to afford the corresponding alkenes in good yields with perfect retention of ee and alkene geometry (Table 2, entries 1–11). The α - and γ -positions of the allylic alcohols could bear various substituents such as aryl, heteroaryl, alkyl, ester, and amide groups, but the reaction was not applicable to α -chiral allylic alcohols with β -substituents due to poor reactivity. When the γ -substituent was an alkyl group (*e.g.*, a cyclohexyl group), a considerable portion of the allylic alcohol coupled with boronic acid **2a** in a γ -selective fashion (Table 2, entry 9),¹⁵ which could be attributed to the generation of an

 Table 2
 Stereospecific cross-coupling of enantioenriched allylic alcohols

 with boronic acids^a
 Provide the state of the

R	$\begin{array}{c} OH \\ 1 & \overline{} \\ 1 \\ or \\ OH \\ 1 \\ OH \\ R^2 \end{array}$	H) ₂ H) ₂	bl%) (1:1)	3 or		ξ ²			
ent-1ent-3									
					ee	(%)			
Entry	1 (ent-1) , R ¹ , R ²	2 , R ³	3 or ent-3	Yield ^b (%)	1	3 or ent-3			
1	1a, Ph, Me	2a , Ph	3a	83	99	99			
2	1b , Ph, Et	2a, Ph	3b	73	97	97			
3^d	1c , Ph, CHMe ₂	2a, Ph	3c	60	91	91			
4	1d, 4 -MeOC ₆ H ₄ , Me	2a , Ph	3d	77	94	94			
5	1e , 4-ClC ₆ H ₄ , Me	2a , Ph	3e	76	96	96			
6	1f , 2-MeOC ₆ H ₄ , Me	2a , Ph	3f	76	96	96			
7	1g , 3-pyridinyl, Me	2a, Ph	3g	87	93	92			
8 ^e	1h , 2-furyl, Me	2a, Ph	3h	81	95	95			
9 ⁷	1i, cyclohexyl, Me	2a, Ph	3i	70	97	97			
10	ent-1j, CO ₂ Me, Me	2a, Ph	ent-3j	63	96	96			
11	ent-1k, CONEt ₂ , Me	2a, Ph	ent-3k	72	97	97			
12	1a , Ph, Me	2b , 4-MeC ₆ H₄	31	81	99	99			
13	1a , Ph, Me	2c, 4 -PhC ₆ H ₄	3m	70	99	99			
14	1a , Ph, Me	$2d, 4-FC_6H_4$	3n	64	99	99			
15	1a , Ph, Me	2e , 4 -MeO ₂ CC ₆ H ₄	30	75	99	99			
16	1a , Ph, Me	2f , $3 - H_2 NC_6 H_4$	3р	66	99	99			
17^g	1a, Ph, Me	2g , 3-AcNHC ₆ H ₄	3q	61	99	99			
18	1a , Ph, Me	2h , 3-MeO ₂ CC ₆ H ₄	3r	61	99	99			
19^n	1a, Ph, Me	2i , 2-FC ₆ H ₄	3s	63	99	99			
20	1a, Ph, Me	2j , 2-naphthyl	3t	61	99	99			
21	1a, Ph, Me	2k, 1-naphthyl	3u	85	99	98			
22	1a, Ph, Me	2l, 9-phenanthrenyl	3v	80	99	99			
23	1d, 4 -MeOC ₆ H ₄ , Me	2 m , (<i>E</i>)-PhCH==CH	3w	71	94	94			

^{*a*} Reaction conditions: alcohol **1** or **ent-1** (0.50 mmol), boronic acid **2** (0.60 mmol), Pd₂(dba)₃ (2.5 mol%), TMEDA (10 mol%), dioxane*t*-AmOH (1:1, 3.5 mL), 110 °C, 15 h. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis on a chiral stationary phase. ^{*d*} The reaction was run for 48 h. ^{*e*} 97:3 α/γ . ^{*f*} 88:12 α/γ . ^{*g*} 98:2 α/γ . ^{*h*} The reaction was run for 36 h.

unsymmetrical π -allylpalladium intermediate from the palladium catalyst and the allylic alcohol (see below). The reaction worked well with a variety of aryl- and alkenylboronic acids under the standard conditions and a range of optically active alkenes were obtained in good yields with exclusive *E* selectivity and excellent ee (Table 2, entries 12–23). Nevertheless, no desired product was obtained from the corresponding reaction with alkylboronic acids such as *n*-butyl-, cyclohexyl-, and benzylboronic acids. As demonstrated by the results summarized in Table 2, the reaction tolerated a variety of functional groups such as heteroaryl, vinyl, alkoxy, chloro, fluoro, amino, ester, and amide groups.

The regioselectivity largely depends on the structure of the allylic alcohol. The cross-coupling of allylic alcohol **11** (97% ee), a regioisomer of allylic alcohol **1a**, with boronic acid **2a** proceeded in a γ -selective fashion to afford alkene **ent-3a** in 82% yield with exclusive *E* selectivity and retention of ee (eqn (1)). The γ -selectivity probably arises from both maximizing conjugation and minimizing steric hindrance prior to the coupling of the boronic acid with the putative π -allylpalladium intermediate (see below).

$$\begin{array}{c} \begin{array}{c} \text{PhB}(OH)_2 \ (\textbf{2a}) \\ \text{Pd}_2(dba)_3 \ (2.5 \ \text{mol}\%) \\ \text{TMEDA} \ (10 \ \text{mol}\%) \\ \hline \textbf{dioxane/t-AmOH} \ (1:1) \\ 110 \ ^\circ\text{C}, \ 15 \ \text{h} \end{array} \begin{array}{c} \begin{array}{c} \text{Ph} \\ \text{Ph} \\ \text{ent-3a}, \ 82\%, \ 97\% \ ee \end{array} \right. \end{array} \tag{1}$$

We also examined the reaction of a symmetrical allylic alcohol (α -substituent = γ -substituent). Treatment of allylic alcohol **1m** (98% ee) with boronic acid **2b** under the standard conditions led to the formation of racemic alkene **3x** (eqn (2)). The complete loss of ee should be attributed to the generation of a symmetrical π -allylpalladium intermediate during the reaction (see below).

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{OH} \\ \text{Ph} \end{array} \\ \begin{array}{c} \text{OH} \\ \text{Ph} \end{array} \\ \begin{array}{c} \text{A-MeC}_{6}H_{4}B(OH)_{2}\left(2b\right) \\ \text{Pd}_{2}(dba)_{3}\left(2.5 \text{ mol}\%\right) \\ \begin{array}{c} \text{TMEDA}\left(10 \text{ mol}\%\right) \\ \begin{array}{c} \text{dioxane/t-AmOH}\left(1:1\right) \\ \begin{array}{c} \text{110 °C, 15 h} \end{array} \\ \begin{array}{c} \text{3x, 46\%, 0\% ee} \end{array} \end{array} \\ \begin{array}{c} \text{Ph} \end{array}$$

Based on our experimental results and previous studies,⁸ we propose a catalytic cycle depicted in Scheme 1 for the stereospecific cross-coupling of enantioenriched allylic alcohols with boronic acids. The hydroxy group of allylic alcohol 1 is activated by boronic acid 2 and the allylic carbon–oxygen bond is cleaved by palladium(0) (PdL_n) with inversion of configuration to give π -allylpalladium 5, which undergoes transmetallation followed by reductive elimination to give alkene 3 and concurrently

Scheme 1 Proposed catalytic cycle.

regenerate palladium(0) to continue the catalytic cycle. The regioselectivity is determined by the steric and electronic properties of the R¹ and R² groups. If R¹ = R², the reaction would lose optical purity completely because of the symmetry of the π -allylpalladium intermediate. The efficiency of chirality transfer largely depends on the rate of racemization of π -allylpalladium 5 *via* Pd–Pd exchange.^{2*c*-*e*} In our case, the use of TMEDA as the ligand (L) shuts down the racemization of π -allylpalladium 5 under the standard conditions and consequently the reaction proceeds with retention of ee.

In summary, we have developed an unprecedented stereospecific cross-coupling reaction of enantioenriched allylic alcohols with boronic acids. In the presence of 2.5 mol% $Pd_2(dba)_3$ -TMEDA (1:4), a range of enantioenriched allylic alcohols smoothly coupled with boronic acids in a highly regioselective fashion with inversion of configuration to afford structurally diverse alkenes in good yields with perfect retention of ee and alkene geometry. The reaction tolerated a variety of functional groups such as heteroaryl, vinyl, alkoxy, chloro, fluoro, amino, ester, and amide groups. The current study paves the way for the direct stereospecific substitution of enantioenriched allylic alcohols with carbon nucleophiles.

We are grateful for the financial support from the National Natural Science Foundation of China (21232007 and 21172206), the National Basic Research Program of China (973 Program 2010CB833300), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT1189).

Notes and references

- 1 For reviews of the Suzuki-Miyaura coupling, see: (a) N. Miyaura and A. Suzuki, *Chem. Rev.*, 1995, **95**, 2457; (b) A. Suzuki, *J. Organomet. Chem.*, 1999, **576**, 147; (c) N. Miyaura, in *Metal-Catalyzed Cross-Coupling Reactions*, ed. A. de Meijere and F. Diederich, Wiley-VCH, Weinheim, 2nd edn, 2004, p. 41.
- 2 For reviews of the Tsuji-Trost allylic substitution, see: (a) J. Tsuji, Acc. Chem. Res., 1969, 2, 144; (b) B. M. Trost, Tetrahedron, 1977, 33, 2615; (c) B. M. Trost and D. L. Van Vranken, Chem. Rev., 1996, 96, 395; (d) B. M. Trost and M. L. Crawley, Chem. Rev., 2003, 103, 2921; (e) U. Kazmaier and M. Pohlman, in Metal-Catalyzed Cross-Coupling Reactions, ed. A. de Meijere and F. Diederich, Wiley-VCH, Weinheim, 2nd edn, 2004, p.531.
- 3 F. A. Carey and R. J. Sundberg, *Advanced Organic Chemistry Part B: Reactions and Synthesis*, Springer, New York, 5th edn, 2007.
- 4 (a) M. Moreno-Mañas, F. Pajuelo and R. Pleixats, J. Org. Chem., 1995, 60, 2396; (b) R. S. Varma and K. P. Naicker, Green Chem., 1999, 1, 247; (c) L. Botella and C. Nájera, J. Organomet. Chem., 2002, 663, 46; (d) C. Nájera, J. Gil-Moltó and S. Karlström, Adv. Synth. Catal., 2004, 346, 1798; (e) R. Singh, M. S. Viciu, N. Kramareva, O. Navarro and S. P. Nolan, Org. Lett., 2005, 7, 1829; (f) D. C. Gerbino, S. D. Mandolesi, H.-G. Schmalz and J. C. Podestá, Eur. J. Org. Chem., 2009, 3964; (g) E. Alacid and C. Nájera, J. Organomet. Chem., 2009, 694, 1658; (h) H. Yang, G. Li, Z. Ma, J. Chao and Z. Guo, J. Catal., 2010, 276, 123; (i) R. Ghosh, N. N. Adarsh and A. Sarkar, J. Org. Chem., 2010, 75, 5320; (j) J. F. Civicos, D. A. Alonso and C. Nájera, Adv. Synth. Catal., 2011, 353, 1683; (k) A. Scrivanti, V. Beghetto, M. Bertoldini and U. Matteoli, Eur. J. Org. Chem., 2012, 264; (l) L. Chiummiento, M. Funicello, P. Lupattelli and F. Tramutola, Org. Lett., 2012, 14, 3928.
- 5 (a) Y. Uozumi, H. Danjo and T. Hayashi, J. Org. Chem., 1999, 64, 3384; (b) K.-G. Chung, Y. Miyake and S. Uemura, J. Chem. Soc., Perkin Trans. 1, 2000, 15; (c) J. Ramnauth, O. Poulin, S. Rakhit and S. P. Maddaford, Org.

Lett., 2001, 3, 2013; (d) D. Bouyssi, V. Gerusz and G. Balme, Eur. J. Org. Chem., 2002, 2445; (e) L. Dong, Y.-J. Xu, L.-F. Cun, X. Cui, A.-Q. Mi, Y.-Z. Jiang and L.-Z. Gong, Org. Lett., 2005, 4285; (f) L. Dong, Y.-J. Xu, W.-C. Yuan, X. Cui, L.-F. Cun and L.-Z. Gong, Eur. J. Org. Chem., 2006, 4093; (g) V. Poláčková, Š. Toma and C. O. Kappe, Tetrahedron, 2007, 63, 8742; (h) H. Ohmiya, Y. Makida, T. Tanaka and M. Sawamura, J. Am. Chem. Soc., 2008, 130, 17276; (i) Y. M. A. Yamada, T. Watanabe, T. Beppu, N. Fukuyama, K. Torii and Y. Uozumi, Chem.-Eur. J., 2010, 16, 11311; (j) H. Ohmiya, Y. Makida, D. Li, M. Tanabe and M. Sawamura, J. Am. Chem. Soc., 2010, 132, 879; (k) D. Li, T. Tanaka, H. Ohmiya and M. Sawamura, Org. Lett., 2010, 12, 3344; (l) Y. Makida, H. Ohmiya and M. Sawamura, Chem.-Asian J., 2011, 6, 410; (m) Y. M. A. Yamada, S. M. Sarkar and Y. Uozumi, J. Am. Chem. Soc., 2012, 134, 3190.

- 6 (a) F. Menard, T. M. Chapman, C. Dockendorff and M. Lautens, Org. Lett., 2006, 8, 4569; (b) F. Menard, D. Perez, D. S. Roman, T. M. Chapman and M. Lautens, J. Org. Chem., 2010, 75, 4056; (c) C. Li, J. Xing, J. Zhao, P. Huynh, W. Zhang, P. Jiang and Y. J. Zhang, Org. Lett., 2012, 14, 390; (d) J. Zhao, J. Ye and Y. J. Zhang, Adv. Synth. Catal., 2013, 355, 491.
- 7 V. Maslak, Z. Tokic-Vujosevic and R. N. Saicic, *Tetrahedron Lett.*, 2009, **50**, 1858.
- 8 (a) G. W. Kabalka, G. Dong and B. Venkataiah, Org. Lett., 2003, 5, 893; (b) Y. Kayaki, T. Koda and T. Ikariya, Eur. J. Org. Chem., 2004, 4989; (c) H. Tsukamoto, M. Sato and Y. Kondo, Chem. Commun., 2004, 1200; (d) K. Manabe, K. Nakada, N. Aoyama and S. Kobayashi, Adv. Synth. Catal., 2005, 347, 1499; (e) H. Tsukamoto, T. Uchiyama, T. Suzuki and Y. Kondo, Org. Biomol. Chem., 2008, 6, 3005; (f) T. Gendrineau, J.-P. Genet and S. Darses, Org. Lett., 2010, 12, 308; (g) Y. Wang, X. Feng and H. Du, Org. Lett., 2011, 13, 4954; (h) F. Wang, S. Li, M. Qu, M.-X. Zhao, L.-J. Liu and M. Shi, Chem. Commun., 2011, 47, 12813.
- 9 For the cross-coupling of allylic alcohols with other organoborons, see: (a) T. Miura, Y. Takahashi and M. Murakami, *Chem. Commun.*, 2007, 595; (b) A. Jiménez-Aquino, E. F. Flegeau, U. Schneider and S. Kobayashi, *Chem. Commun.*, 2011, 47, 9456; (c) J. Y. Hamilton, D. Sarlah and E. M. Carreira, *J. Am. Chem. Soc.*, 2013, 135, 994.
- For reviews, see: (a) S. Skucas, M.-Y. Ngai, V. Komanduri and M. J. Krische, Acc. Chem. Res., 2007, 40, 1394; (b) A. Lumbroso, M. L. Cooke and B. Breit, Angew. Chem., Int. Ed., 2013, 52, 1890.
- 11 For a review on the direct substitution of enantioenriched allylic alcohols with nitrogen and oxygen nucleophiles, see: (a) M. Bandini, Angew. Chem., Int. Ed., 2011, 50, 994. For examples, see: (b) F. Ozawa, H. Okamoto, S. Kawagishi, S. Yamamoto, T. Minami and M. Yoshifuji, J. Am. Chem. Soc., 2002, 124, 10968; (c) Y. S. Vikhe, S. M. Hande, N. Kawai and J. Uenishi, J. Org. Chem., 2009, 74, 5174; (d) P. Mukherjee and R. A. Widenhoefer, Org. Lett., 2010, 12, 1184; (e) M. Roggen and E. M. Carreira, J. Am. Chem. Soc., 2010, 132, 11917; (f) P. Mukherjee and R. A. Widenhoefer, Chem. -Eur. J., 2013, 19, 3437.
- 12 For the direct substitution of enantioenriched allylic alcohols with tethered nitrogen and oxygen nucleophiles, see: (a) N. Kawai, J.-M. Lagrange, M. Ohmi and J. Uenishi, J. Org. Chem., 2006, 71, 4530; (b) S. M. Hande, N. Kawai and J. Uenishi, J. Org. Chem., 2009, 74, 244; (c) N. Kawai, R. Abe and J. Uenishi, *Tetrahedron Lett.*, 2009, 50, 6580; (d) P. Mukherjee and R. A. Widenhoefer, Org. Lett., 2011, 13, 1334; (e) N. Kawai, R. Abe, M. Matsuda and J. Uenishi, J. Org. Chem., 2011, 76, 2102; (f) T. Ghebreghiorgis, B. Biannic, B. H. Kirk, D. H. Ess and A. Aponick, J. Am. Chem. Soc., 2012, 134, 16307; (g) T. Ghebreghiorgis, B. H. Kirk, A. Aponick and D. H. Ess, J. Org. Chem., 2013, 78, 7664.
- 13 (a) M.-B. Li, Y. Wang and S.-K. Tian, Angew. Chem., Int. Ed., 2012, 51, 2968; (b) X.-S. Wu, Y. Chen, M.-B. Li, M.-G. Zhou and S.-K. Tian, J. Am. Chem. Soc., 2012, 134, 14694; (c) M.-B. Li, H. Li, J. Wang, C.-R. Liu and S.-K. Tian, Chem. Commun., 2013, 49, 8190.
- 14 During the review process, the reaction was reported to be catalyzed by Pd₂(dba)₃·CHCl₃/BINAP. See: J. Ye, J. Zhao, J. Xu, Y. Mao and Y. J. Zhang, *Chem. Commun.*, 2013, **49**, 9761.
- 15 When the cyclohexyl group in alcohol **1i** was replaced with a hexyl group, the reaction gave the corresponding alkene in 50% yield with $58:42 \alpha/\gamma$ selectivity.