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Abstract: In the present work we synthesized a selected series of hydroxylated  

3-phenylcoumarins 5–8, with the aim of evaluating in detail their antioxidant properties. 

From an in depth study of the antioxidant capacity data (ORAC-FL, ESR, CV and ROS 

inhibition) it was concluded that these derivatives are very good antioxidants, with very 

interesting profiles in all the performed assays. The study of the effect of the number and 

position of the hydroxyl groups on the antioxidant activity was the principal aim of this 

study. In particular, 7-hydroxy-3-(3'-hydroxy)phenylcoumarin (8) proved to be the most 

active and effective antioxidant of the selected series in four of the performed assays 

(ORAC-FL = 11.8, capacity of scavenging hydroxyl radicals = 54%, Trolox index = 2.33 

and AI30 index = 0.18). However, the presence of two hydroxyl groups on this molecule did 

not increase greatly the activity profile. Theoretical evaluation of ADME properties of all 

the derivatives was also carried out. All the compounds can act as potential candidates for 

preventing or minimizing the free radical overproduction in oxidative-stress related diseases. 
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These preliminary findings encourage us to perform a future structural optimization of this 

family of compounds. 

Keywords: hydroxylated 3-phenylcoumarins; antioxidant assays; electrochemical study; 

inhibition of ROS; ESR; ADME properties 

 

1. Introduction 

Polyphenolic compounds are one of the major families of plant metabolites. These compounds are 

bioactive substances that have one or more aromatic rings in their structure, bearing one or more 

hydroxyl groups. This family of compounds acts as antioxidants and thereby protect from degenerative 

diseases in which reactive oxygen species (ROS) are involved [1]. In fact, the overproduction of free 

radicals have been related to cellular membrane, protein, RNA and DNA damage, and indirectly with 

aging and oxidative-stress related diseases like cancer, cardiovascular, inflammatory and neurodegenerative 

pathologies [2]. The properties of phenolic compounds are related to their chemical structure, which 

confers stability to the secondary free radical formed from the antioxidant reaction product with a free 

radical [3]. Therefore, the research and characterization of new bioactive phenolic substances from the 

diet has been intensified in the last years, either for the development of nutraceuticals or new drugs [4]. 

Hydroxycoumarins are phenolic compounds which act as potent metal chelators and free radical 

scavengers [5–8]. Hydroxylated 3-arylcoumarins are a family of polyphenolic compounds, which are 

known to possess anti-inflammatory, anti-thrombotic, enzyme inhibitory and antioxidant properties [9–12]. 

In particular, our research group has been studying the potential of differently substituted  

3-arylcoumarins as antioxidant agents [13–17]. In these studies it was concluded that the position and 

number of different electron donator groups (hydroxyl, methoxy or methyl) in the scaffold are structural 

factors contributing to modulate the antioxidant capacity of those compounds. The studied coumarins 

exhibited, in general, excellent antioxidant activities, which depended on the position and number of 

hydroxyl groups [13–17]. 

Resveratrol, structurally 3,4',5-trihydroxystilbene, is a natural phenolic component of Vitis vinifera L. 

and other spermatophyte species, produced in response to exterior or interior damage [18]. Resveratrol 

shows a large number of pharmacological activities, including anti-inflammatory, antioxidant, anticancer 

and cardioprotective properties [18]. Some of these properties, such as antioxidant activity, are coincident 

with those of the hydroxycoumarins. 

Taking into account this background, we proposed to study the antioxidant capacity of a selected 

series of hydroxylated 3-phenylcoumarins (coumarin-resveratrol hybrids—Scheme 1), with one hydroxyl 

group at positions 6, 7 or 8 (compounds 5, 6 and 7, respectively), or two hydroxyl groups at positions 7 

and 3' (compound 8). It is our aim to study the effect of the position and the number of hydroxyl groups 

on the antioxidant capacity of 3-arylcoumarins. A detailed antioxidant study of the molecules was carried 

out, using different assays and methodologies. Since the formation of ROS is presented in several 

biochemical processes and pathologies, these compounds could be valuable as multitarget molecules 

against several diseases.  
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2. Results and Discussion 

2.1. Chemistry 

In order to obtain the desired final products, coumarin derivatives 5–8 were efficiently synthesized 

according to the protocol outlined in Scheme 1 [15,19–24]. The synthetic methodology was carried out 

in two steps, and is briefly described as follows: (a) synthesis of acetoxy-3-phenylcoumarins 1–4 and (b) 

hydrolysis of the previous compounds to afford the final hydroxy-3-phenylcoumarins 5–8. The general 

reaction conditions of the synthesized compounds are described in the Experimental Section. The 

acetoxy-3-phenylcoumarins were efficiently synthesized in 85%–92% yield by a Perkin-Oglialoro 

condensation [25], treating the appropriate ortho-hydroxybenzaldehyde with the adequate phenylacetic 

acid, in the presence of potassium acetate and acetic anhydride. Hydroxyl derivatives were obtained in 

with 90%–94% yield from the abovementioned acetoxy-substituted precursors by acidic hydrolysis, 

using hydrochloric acid in the presence of methanol.  

 
Reagents and conditions: (a) CH3CO2K, Ac2O, reflux, 16 h; (b) HCl 2N, MeOH, reflux, 4 h. 

Scheme 1. Synthetic methodology to obtained hydroxy-3-phenylcoumarins 5–8. 

2.2. Antioxidant Capacity Assays 

The main objective of this study was to assess in detail the antioxidant capacity of the  

hydroxy-3-phenylcoumarins 5–8 in order to compare the profiles of these compounds as antioxidant 

agents. To achieve this goal, the oxidation potentials of compounds 5–8 were determined by CV [26]. 

This parameter gave information not only for evaluating the antioxidant potentials of the compounds, but 

also for understanding their reaction mechanisms [26]. The evaluation of the antioxidant activity of the 

studied compounds towards different types of ROS: peroxyl, hydroxyl, alkoxyl and superoxide radicals, 

was also performed [27]. ORAC, ESR and CV were the techniques used to obtain the desired results. 
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2.2.1. Cyclic Voltammetry (CV) 

The first assay performed to better understand the antioxidant potential of the studied compounds was 

the evaluation of oxidative potentials by CV. Anodic peak potential (Epa) values for compounds 5–8 are 

reported in Table 1, and demonstrated that the coumarin derivatives present a variety of oxidation 

potentials depending on their substitution pattern.  

Table 1. Oxidant potentials recorded for the studied compounds. 

Compounds Epa (V) a 

5 0.762 
6 0.640 
7 0.652 
8 0.720 

a Epa: anodic peak potential. First oxidation peak potential at scan rate of 2000 mV/s. All experiments were 

carried out in triplicate. The data are expressed as means ± SD. 

In the experimental conditions, a single oxidation process (peak I) was observed. In general, it has 

been proposed that the charge transfer process at peak I corresponded to the oxidation of the hydroxyl 

substituent. The compounds with lowest oxidation potential were compounds 6 (Epa = 0.640 V) and 7 

(Epa = 0.652 V). It is known that the antioxidant capacity is conceivably related to the electrochemical 

behaviour, being indicative that a low oxidation potential corresponds to a high antioxidant power.  

(A) (B) 

Figure 1. (A) Cyclic voltammogram for 1 mmol/L of compound 6, in DMSO/75 mmol/L 

phosphate (pH 7.4) buffer 40/60 media at a GCE, for v = 0.5–5 mV/s. (B) Graphic of the 

anodic peak current versus the root of the scanning rate. 

However, this does not present a linear relationship. The low oxidation potential values are only 

indicative of a good antioxidant profile. Therefore, compound 6 proved to be the molecule with best 

profile of the series. As an example, the cyclic voltammogram of compound 6 is illustrated in Figure 1. 

It was recorded at a GCE, in a pH 7.4, containing 1 mmol/L of compound 6, for several scan rates (v). 

Analysing the results, it was observed by CV that all the studied coumarin derivatives showed the same 

oxidation pattern; a single oxidation signal, near 0.7 V, corresponding to an irreversible type of reaction 
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(Figure 1A). From the analysis of the anodic peak current (Ipa) versus v1/2 (Figure 1B), a straight line 

with r2 > 0.99 was obtained, indicating that the electrode process was controlled by diffusion.  

2.2.2. ORAC-Fluorescein (ORAC-FL) 

The ORAC-fluorescein (ORAC-FL) assay, that can assess the scavenging ability of coumarins against 

peroxyl radicals in competition with a fluorescent sensor, was performed and the results expressed as 

ORAC-FL index are presented in Table 2 [28,29]. In this study, AAPH was used as the peroxyl radical 

source [30]. 

Table 2. ORAC-FL values calculated for the studied and reference compounds. 

Compounds ORAC-FL Index a 

5 11.0 ± 2.3 
6 9.6 ± 1.3 
7 5.7 ± 0.6 
8 11.8 ± 1.4 

Trolox 1 
Quercetin 7.28 b 

6,7-Dihydroxy-4-methylcoumarin 3.3 c 
a ORAC-FL studies were carried out in 75 mmol/L sodium phosphate buffer (pH 7.4) with coumarin solutions 

in methanol (range of concentration between 0.3 and 2 μM); b Reference [26]; c Reference [27]. All experiments 

were carried out in triplicate. The data are expressed as means ± SD. 

Analyzing the ORAC-FL results, compounds 5 and 8 proved to be the best candidates of the series 

(ORAC-FL = 11.0 and 11.8, respectively). Nevertheless, compound 6 is also considered a good candidate, 

presenting an ORAC-FL index of 9.6, significantly higher than quercetin, used as reference compound. 

The results obtained are better than the ORAC-FL value of simple coumarins, such as the 6,7-dihydroxy-

4-methylcoumarin, studied by our group (ORAC-FL = 3.3). An enhanced activity of compound 8, comparing 

to compound 6, was found against this radical, proving that the presence of two hydroxyl groups in the 

molecules could slightly improve the antioxidant capacity. It was observed that the derivative with the 

lowest rate is the one bearing the hydroxyl group at position 8 (compound 7). This may be due to the 

formation of an intramolecular hydrogen bond with the oxygen of the lactone, depleting the availability 

of the hydrogen. 

The consumption of FL is commonly inhibited, even by antioxidants of low reactivity, throughout 

kinetic profiles. Figure 2 illustrates the results of AAPH-mediated FL oxidation in the absence and 

presence of an increasing concentration of compounds 5–8, and demonstrates that the AUCNET of the 

kinetic profiles for these compounds were linearly related to the concentration of the additive. Of the 

studied series, compounds 6 and 8 presented an induction time, indicating that these coumarins display 

better activity to protect the sensor of the peroxyl radical than compounds 5 and 7, which showed no 

induction time. In addition, the presence of an induction time observed in the case of compound 6 is 

accompanied by the fact that the slopes are similar for all concentrations. This indicates that the 

antioxidant was completely consumed before the fluorescence decay, due to the attack of free radicals 

remaining on the sensor. 
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Figure 2. Kinetic profiles of FL consumption AAPH-mediated in presence of compounds 

5–8. F0 is the fluorescence in absence of the compound and F the fluorescence in presence 

of the compound. Last graphic: AUCNET versus concentration of compound 6. 

2.2.3. Electron Spin Resonance (ESR) 

In order to test the ability of the selected compounds to scavenge hydroxyl radicals a non-catalytic 

and competitive-type Fenton system was examined [31]. The percentage of scavenging of hydroxyl 

radicals by the studied compounds was measured and is summarized in Table 3. Antioxidant capacity 

against alkoxyl radicals, generated by photolysis of AAPH in aqueous medium, was also determined by 

spin trapping methodology, and the results expressed as Trolox indexes are summarized in Table 3. 
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Table 3. Percentage of scavenging of hydroxyl radicals and Trolox index calculated for 

compounds 5–8. 

Compounds % Scavenging of Hydroxyl Radicals a Trolox Index 

5 24.7 ± 6.3 2.28 ± 0.05 
6 44.7 ± 1.2 2.32 ± 0.05 
7 10.9 ± 1.1 1.23 ± 0.01 
8 51.4 ± 4.5 2.33 ± 0.05 

Trolox - 1 
a Scavenging activity of hydroxyl radicals effect was calculated as follows: [(A0 − Ax)/A0] × 100, where Ax 

and A0 are the double-integral ESR for the first line of samples in the presence and absence of test compounds, 

respectively. All experiments were carried out in triplicate. The data are expressed as means ± SD. 

To study the antioxidant capacity of all the synthesized coumarins towards hydroxyl radicals in depth, 

a non-catalytic and competitive type Fenton system was set up, employing DMPO as a spin trap. The 

percentage of scavenging of the studied compounds was measured and is summarized in Table 3. In this 

assay, DMPO reacts with hydroxyl radicals to generate the spin resonance signal, which was quantified 

by ESR [32]. The ESR spectrum illustrates four hyperfine lines due to the DMPO-OH adduct formation. 

In particular, ESR spectrum obtained to the control (DMPO + N,N-dimethylformamide + NaOH + H2O2) 

presents four hyperfine lines illustrated in magenta (Figure 3). Coumarin derivatives competed with 

DMPO for hydroxyl radicals, diminishing the ESR signal, as represented in Figure 3 for compounds 5–8. 

 

Figure 3. ESR spectra of the control and 3-phenylcoumarins 5–8. 

As expected, the intensity of the spectra decreased when the coumarin derivatives were added to the 

system. This type of response was observed for all derivatives, reflecting different percentages of 

hydroxyl radical scavenging activity (Table 3). Compound 8 proved to be the best compound of the 

studied series, presenting the highest hydroxyl radical scavenging capacity (51.4%). This value could be 

due to the presence of two hydroxyl groups in its structure. Compounds 6 and 8, bearing a hydroxyl 

group at position 7, proved to be the molecules with highest capacity to scavenge hydroxyl radicals. An 

enhanced activity of compound 8, compared to compound 6, was found against this radical, proving that the 

presence of two hydroxyl groups in the molecules could slightly improve the antioxidant capacity. 
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2.2.4. Antioxidant Capacity against Alkoxyl Radicals by ESR  

Antioxidant capacity against alkoxyl radicals generated by photolysis of AAPH in aqueous medium 

was monitored by spin trapping methodology [33–36]. The antioxidant capacity was considered 

proportional to the fall of the signal height compared to the control, in absence of antioxidant  

(Figure 4). All the results were contrasted with Trolox, being the Trolox index proportional to the 

antioxidant capacity against alkoxyl radicals (Table 3). 

 

Figure 4. Spectrogram of the adduct formed between AAPH-derived radical by photolysis 

and DMPO. G-value: 2.0023. Microwave frequency: 9.81 GHz, Modulation amplitude: 0.95 

G, Time constant: 81.92 ms, Conversion time: 40.96 ms. Simple LW = 0.598. 

The results described in Table 3 showed the same tendency observed to the ORAC-FL, in which 

compounds 5, 6 and 8 presented a similar antioxidant capacity, bigger than compound 7. The second 

hydroxyl group in the 3-phenyl moiety (compound 8) seems to have not significantly improve the 

antioxidant capacity against alkoxyl radicals. 

2.2.5. Antioxidant Activity against Superoxide Radicals by CV 

In order to investigate the antioxidant activity of the coumarins against the superoxide anion radical 

(O2
−) generated electrochemically [37,38], a stock solution of the coumarins was added gradually to the 

solution, leading to a decrease of O2
− Ipa, while the intensity of O2 cathodic current was not significantly 

modified, as shown in Figure 5. The oxidation potential peaks of the studied coumarins did not interfere 

with the superoxide radical couple signal, which appeared at more negative potentials. For each antioxidant 

compound, a series of Ipa values was determined from the CVs recorded for increasing antioxidant 

concentrations. All antioxidant substrates exhibited a similar effect upon the O2 reduction. At higher 

concentrations of some antioxidant substrates, a not-well defined reduction peak was observed at a potential 

more positive than the oxygen reduction peak. 

By analogy, with the inhibiting concentration of antioxidant (IC), the antioxidant index values 

expressed by the substrate concentration needed to consume 30% (AI30 index) by the concentration in 
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millimoles of antioxidant substrate needed to consume superoxide radicals was determined as revealed 

by a current decrease to 30% of the initial anodic current (Ipa°) (AI30 = (Ipa° − Ipa
s)/Ipa° = 0.30). With this 

antioxidant characterization, the lower the AI30 values are, the more antioxidant capacity the substrate 

has against superoxide [39,40]. Recorded data is listed in Table 4.  

 

Figure 5. Cyclic voltammograms of superoxide radical at different concentrations of 

compound 6 in DMSO + TBAP 0.1 M, on GC (working electrode) versus Ag/AgCl, at room 

temperature, with scan rate of 30 mV/s. 

Table 4. AI30 index calculated for compounds 5–8.  

Compounds AI30/mM 

5 0.19 ± 0.02 
6 0.23 ± 0.02 
7 0.23 ± 0.04 
8 0.18 ± 0.04 

Trolox 0.24 ± 0.02 

All experiments were carried out in triplicate. The data are expressed as means ± SD. 

It was observed that the best superoxide scavenger of this series was once again compound 8, which 

had the lowest AI30. However, as in some of the above-described assays, none of the studied compounds 

presented significant differences in their AI30 values (Figure 6). 
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Figure 6. Graphs of decreasing anodic peak current between the control (Ipa°) and the 

substrate (Ipa
s) against increasing concentrations of substrate, in this case, compounds 7 and 8; 

AI30 is the concentration of inhibition at 30% of superoxide radical. 

2.2.6. Inhibition of ROS 

An assay on cell models (macrophages from the strain RAW 264.7) was performed to better understand 

the antioxidant potential of the studied compounds in a biological environment [41]. This assay allowed 

determining the amount of ROS formed after an oxidation process. This process is particularly sensitive 

to the detection of H2O2 and peroxyl radicals. The percentage of disappearance of fluorescence in presence 

of menadione (50 μM) and different concentrations of the 3-phenylcoumarins (1, 10 and 100 μM) was 

evaluated, and the results of this study are presented in Table 5 (1 μM) and Figure 7 (10 μM).  

Table 5. Percentage of disappearance of fluorescence in presence of menadione (50 μM) 

and 3-phenylcoumarins 5–8 (1 μM), (p < 0.05). 

Compounds % Disappearance of Fluorescence 

5 92.57 ± 0.09 
6 92.52 ± 0.03 
7 42.88 ± 0.30 
8 88.69 ± 0.08 

Trolox 1.48 ± 0.01 

All experiments were carried out in triplicate. The data are expressed as means ± SD. 

The quenching capacity was biologically studied using radicals generated by stimulation of oxidative 

stress due to the inclusion of menadione in a cellular model. Menadione is capable of generating a wide 

concentration responsible for the occurrence of free radical fluorescence due to oxidation of the sensor. 
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Figure 7. Graphic of ROS inhibition (control and compounds 5–8 at 10 μM). 

Subsequently, with the addition of coumarin at concentrations of 1, 10 and 100 μM, a decrease in 

fluorescence was observed, indicating that the coumarin effectively entered the cell and protected it from 

oxidation (Figure 7). In this assay, the smaller is the slope, and the less is the fluorescence, better 

antioxidant capacity the compounds present. At 10 μM, the effect of all the studied coumarins was less 

than 10% of appearance of fluorescence (Figure 7). At lower concentrations (1 μM), three of the four 

studied compounds (compounds 5, 6 and 8) still presented less than 10% of appearance of fluorescence. 

However, compound 7 presented 57% of appearance of fluorescence.  

2.3. ADME Theoretical Properties Calculation  

To better correlate the drug-like properties of the studied compounds the lipophilicity, expressed as 

the octanol/water partition coefficient and herein called logP, as well as other theoretical calculations 

such as the topological polar surface area (TPSA), the number of hydrogen acceptors and the number of 

hydrogen bond donors were calculated using the Molinspiration property program [42]. TPSA is a commonly 

used medicinal chemistry metric for the optimization of a drug’s ability to permeate cells and achieve 

the desired target. The obtained in silico results are summarized in Table 6 [42]. 

Table 6. Theoretical structural properties of the 3-phenylcoumarins 5–8. a 

Compd. logP TPSA (Å2) n-OH Acceptors n-OHNH Donors Volume (Å3) 

5 3.23 50.44 3 1 208.01 

6 3.23 50.44 3 1 208.01 
7 3.23 50.44 3 1 208.01 
8 2.73 70.67 4 2 216.03 

a TPSA, topological polar surface area; n-OH, number of hydrogen acceptors; n-OHNH, number of hydrogen 

bond donors. The data was determined with Molinspiration calculation software [42]. 

From the data obtained for the theoretical evaluation of the ADME properties, it can be noticed that 

none of the compounds 5–8 break any of the Lipinski rule of five, making them promising leads for drug 
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candidates. TPSA and logP values are compatible with those described as a predictive indicator of the 

drug capacity of membrane penetration [42,43]. 

3. Experimental Section 

3.1. Synthesis 

General procedure for the synthesis of acetoxy-3-phenylcoumarins 1–8. Compounds 1–4 were 

synthesized under anhydrous conditions, using materials previously dried at 60 °C for at least 12 h and 

at 300 °C during few minutes immediately before use. A solution containing anhydrous potassium 

acetate (CH3CO2K, 2.94 mmol), the conveniently substituted phenylacetic acid derivative (1.67 mmol) 

and the corresponding 2-hydroxybenzaldehyde (1.67 mmol) in acetic anhydride (Ac2O, 1.2 mL) was 

refluxed (138 °C) for 16 h. The reaction mixture was cooled, neutralized with 10% aqueous sodium 

bicarbonate (NaHCO3), and extracted (3 × 30 mL) with ethyl acetate (EtOAc). The organic layers were 

combined, washed with distilled water, dried with anhydrous sodium sulfate (Na2SO4), and evaporated 

under reduced pressure. The product was purified by recrystallization in ethanol (EtOH) and dried, to 

afford the desired compound. Hydroxylated coumarins 5–8 were obtained by hydrolysis of their 

acetoxylated counterparts 1–4. In general, the appropriate acetoxylated coumarin was mixed with 2 N 

aqueous hydrochloric acid (HCl) and methanol (MeOH) and refluxed (100 °C) with stirring during 4 h. 

The resulting reaction mixtures were cooled in an ice-bath and the reaction products, obtained as solids, 

were filtered, washed with cold distilled water, and dried under vacuum, to afford the desired compound. 

Characterization of the compounds was previously reported [14,19–24]. 

3.2. Antioxidant Assays 

3.2.1. Oxidation Potential Determination by Cyclic Voltammetry (CV) 

Cyclic voltammetry (CV) was carried out using a Metrohm instrument (Riverview, FL, USA) with a 

797 VA stand convertor and a 797 VA processor, in DMSO/75 mM phosphate (pH 7.4) buffer 40/60 

DMSO/(~1.0 Å, ~10.3 M) at room temperature with KCl (~0.1 M), using a three-electrode cell. A glassy 

carbon electrode (GCE) was used as the working electrode, a platinum wire as the auxiliary electrode, 

and saturated calomel (Ag/AgCl) as the reference electrode. The assays were performed containing 1 

mmol/L of each studied compound, for several scan rates (v = 0.5–5 mV/s). 

3.2.2. Oxygen Radical Antioxidant Capacity-Fluorescein (ORAC-FL) 

The oxygen radical absorbance capacity (ORAC-FL) studies were carried out on a Synergy™ HT 

multidetection microplate reader from Bio-Tek Instruments, Inc. (Winooski, VT, USA), using white 

polystyrene 96-well plates, purchased from Nunc (Roskilde, Denmark) [27,28,30,44–46]. Fluorescence 

was read from the top, with an excitation wavelength of 485/20 nm and an emission filter of 528/20 nm. 

The plate reader was controlled by Gen 5 software. The reaction was carried out in 75 mM sodium 

phosphate buffer (pH 7.4), and 200 μL final volume. Fluorescence (FL; 40 nM, final concentration) and 

coumarin solutions in methanol (range of concentration between 0.3 and 2 μM) were placed in each well 

of the 96-well plate. The mixture was pre-incubated for 15 min at 37 °C, before rapidly adding the  
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2,2'-azo-bis(2-amidinopropane)dihydrochloride (AAPH) solution (18 mM, final concentration). The 

microplate was immediately placed in the reader and automatically shaken prior to each reading. The 

fluorescence was recorded every 1 min for 120 min. A blank with FL and AAPH using methanol instead 

of the antioxidant solution was used in each assay. Five calibration solutions using Trolox® (0.5–2.5 μM) 

as the antioxidant were also used in each assay. The inhibition capacity was expressed as ORAC-FL 

values and it was quantified by integration of the area under the fluorescence decay curve (AUC). All 

reaction mixtures were prepared in triplicate and at least three independent assays were performed for 

each sample. The AUC was calculated integrating the decay of the fluorescence, where F0 is the initial 

fluorescence read at 0 min and F is the fluorescence read at time. The net AUC corresponding to the 

sample was calculated by subtracting the AUC corresponding to the blank. Data processing was performed 

using Origin Pro 8 SR2 (Origin Lab Corporation, Northampton, MA, USA). 

3.2.3. Hydroxyl Radical Scavenging Assay Using Electron Spin Resonance (ESR)  

Reactivity of all the hydroxy-3-phenylcoumarin derivatives against the hydroxyl radical was investigated 

using the non-catalytic Fenton type method. Electron spin resonance (ESR) spectra were recorded in the 

X band (9.7 GHz) using an ECS 106 spectrometer (Bruker, Coventry, UK) with a rectangular cavity and 

50 kHz field modulation, equipped with a high-sensitivity resonator at room temperature. Spectrometer 

conditions were: microwave frequency 9.81 GHz, microwave power 20 mW, modulation amplitude 0.91 

G, receiver gain 59 db, time constant 81.92 ms and conversion time 40.96 ms [46]. The scavenging 

activity of each derivative was estimated by comparing the 5,5-dimethyl-1-pyrroline-N-oxide  

(DMPO-OH) adduct signals in the antioxidant-radical reaction mixture and the control reaction at the 

same reaction time, and was expressed as scavenging percent of hydroxyl radical. To prepare the 

samples, 150 μL of N,N-dimethylformamide (DMF) and 50 μL of NaOH (3 mM) were mixed, followed 

by the addition of 50 μL of DMPO spin trap (30 mM final concentration) and finally 50 μL of hydrogen 

peroxide 30%. The mixture was put in an ESR cell and the spectrum was recorded after five minutes of 

reaction. All the compounds were studied at 4 mM final concentration (300 μL final volume). 

3.2.4. Determination of Alcoxyl Radicals Generated by Photolysis of AAPH Assay Using Electron 

Spin Resonance (ESR) 

Antioxidant capacity against alcoxyl radicals generated by photolysis of AAPH in aqueous  

medium was monitored by spin trapping methodology (ORAC-like assay). The most popular spin trap 

for oxygen-centered free radicals is the previously described DMPO. The photolysis of AAPH, at  

392 nm, had been identified to generate alcoxyl radicals, observing a splitting pattern of 4 lines with 

hyperfine coupling constant of aN = 14.27 G and aH = 14.67 G, for the adduct DMPO/RO• [33–35]. 

Moreover, it was not found the appearance of methyl radical/DMPO adduct, product of the reaction of 

hydroxyl radical and DMSO-d6 [34]. This was an evidence that pattern of lines is due to DMPO/RO•, 

not DMPO/HO•. To achieve this goal, coumarins were prepared in DMSO at concentration of 0.1 mM, 

DMPO was prepared in 0.1 M phosphate buffer pH 7.4 at concentration of 200 mM, and AAPH was 

prepared in buffer medium at concentration of 20 mM. The antioxidant capacity was considered proportional 

to the decrease of signal height compared to the control, in absence of antioxidant.  
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3.2.5. Superoxide Antioxidant Assay Using Cyclic Voltammetry (CV) 

Superoxide anion radical was generated one electron reduction of the atmospheric molecular oxygen in 

DMSO of analytical grade (Sigma-Aldrich, St. Louis, MO, USA), with 0.1 M tetrabutylammonium 

perchlorate (TBAP) as supporting electrolyte. Then, the voltammetric performance of the compounds 

was studied. Coumarins were added incrementally to the in situ generated radical and the resultant 

behavior was recorded. The concentration of the coumarins in the electrochemical cell was in the range 

of 0.0 to 0.4 mM. The scan rate was kept at 50 mV/s and the potential window was −1.0–0.0 V [47,48]. 

The atmospheric solubility of oxygen in DMSO was 2.1 mM. The antioxidant activity was assessed from 

the change in the cathodic current of the voltammograms in absence and present of the derivatives, using 

pertinent mathematical formulations. The relative decrease in the intensity signal was expressed as  

(Ipa° − Ipa
s)/Ipa°; where Ipa° is the current peak in the oxidative scan in absence of substrate, and Ipa

s is the 

current peak in the oxidative scan in presence of substrate. CV measurements were performed in a 

Metrohm instrument with a 694VA stand convertor and a 693VA processor, at room temperature, using 

a three-electrode cell. A GC electrode presenting an area of 0.03 cm2 was used as the working electrode. 

The electrode surface was polished to a mirror finish with alumina powder (0.3 and 0.05 LM) before use 

and after each measurement. Platinum wire was used as auxiliary electrode and silver-silver chloride 

(Ag/AgCl, 3 M KCl) of Metrohm Company with a plastic tip was used as a reference electrode.  

3.3. Statistical Data Analysis 

Statistical analyses were conducted using GraphPad Prism 5 software (GraphPad Software, Inc.,  

San Diego, CA, USA). The data are expressed as means ± SD. The experimental data were analyzed by 

one-way analysis of variance (ANOVA), and differences between groups were assessed using Tukey’s 

post-test. The level of significance was set at p < 0.05, and all experiments were replicated 3 times. 

3.4. Inhibition of Radical Oxygen Species (ROS) 

A variety of reductive enzymes such as NADPH-cytochrome P450 reductase and NADH  

microsomal-ubiquinone oxidoreductase (complex I) are able to metabolize quinones by reductive reactions 

via electron [41,49]. The resulting semiquinone radical can enter a redox cycle, if oxygen is present, 

regenerating the starting quinone and produce ROS. In the present assay, the used quinone source was 

menadione (2-methylnaftoquinone) 50 µM/well, and the fluorescent sensor was 

dichlorodihydrofluoscein diacetate (DCFH2-DA) 20 µM/well, which is a non-fluorescent compound that 

penetrated by diffusion into the cell, and was hydrolysed to 2',7'-dichlorodihydrofluorecein (DCFH2) 

inside the cell, making it susceptible to be oxidized by ROS, giving the fluorescent compound  

2',7'-dichlorofluorescein (DCF) [41,49]. Measuring the fluorescence emitted from the DCF at 530 nm, 

after being excited at 495 nm, allowed determining the amount of ROS formed after the oxidation 

process. This process is particularly sensitive to detection of H2O2 and peroxyl radicals. The cell models 

used in this study were macrophages from the strain RAW 264.7. The medium used for the assay was a 

phosphate buffer solution 0.01 M (0.138 M NaCl; 2.7 mM KCl; pH 7.4). The studied coumarins were 

prepared in DMSO/buffer (no more tan 1% DMSO) to final concentrations of 1, 10 and 100 µM. The 

macrophage cells were diluted in a phosphate buffer solution until concentrations of 50.000 cell/mL.  
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3.5. Theoretical Evaluation of ADME Properties 

The ADME properties of the studied compounds were calculated using the Molinspiration  

property program. LogP was calculated by the methodology developed by Molinspiration as a sum of 

fragment-based contributions and correction factors [42]. Topological Polar Surface Area (TPSA) was 

calculated based on the methodology published by Ertl et al. as a sum of fragment contributions. Oxygen 

and nitrogen centered polar fragments were considered. PSA had been shown to be a very good descriptor 

characterizing drug absorption, including intestinal absorption, bioavailability, Caco-2 permeability and 

blood-brain barrier penetration. Method for calculation of molecule volume developed at Molinspiration 

was based on group contributions. These had been obtained by fitting sum of fragment contributions to 

“real” 3D volume for a training set of about twelve thousand, mostly drug-like molecules. 3D molecular 

geometries for a training set were fully optimized by the semiempirical AM1 method. 

4. Conclusions 

Oxidation potentials of all the studied hydroxylated 3-phenylcoumarins were determined, with 

compounds 6 and 7 giving the lowest oxidation potentials, associated to a higher antioxidant activity 

within the series. Through the ORAC-FL test, derivative 8, bearing two hydroxyl groups on the scaffold, 

presented the highest value (11.8), similar to compound 5 (11.0). In the spin-trapping assays, the highest 

percentage of scavenging of hydroxyl radicals (51.4%) and alkoxyl radicals (trolox index = 2.33) also 

corresponded to compound 8. However, these values are similar to those of compound 6 (scavenging of 

hydroxyl radicals = 44.7% and Trolox index = 2.32). An enhanced activity of compound 8 (compared 

to compound 6) was found, particularly against peroxyl and hydroxyl radicals. The AI30 index of 

compound 8 was also the best one in the series (0.18). Finally, in the biological assay, it was observed 

that all coumarins decreased ROS generation in an oxidative stress situation due to the metabolism of 

menadione. As main conclusion, the position of the hydroxyl group on the benzene ring of the coumarin 

scaffold is in general critical for the antioxidant activity, even though all the derivatives presented a good 

profile. Also, in general, the increase of a hydroxyl group in the 3-phenyl ring did not improve 

significantly the antioxidant profile of the derivatives. Therefore these preliminary findings have 

encouraged us to perform a future structural optimization of this kind of compounds. 

Acknowledgments 

This project was partially supported by the FONDECYT (projects 1110029 and 1090078), PhD 

fellowship CONICYT, fellowship for operational expenses (N°21120376), Spanish researchers personal 

founds, University of Santiago de Compostela and Fundação para a Ciência e Tecnologia (FCT) for the 

Pest/C-QUI/UI0081/2013. MJ Matos was supported by the fellowship from Fundação para a Ciência e 

Tecnologia (FCT), POPH (Programa Operacional Potencial Humano) and QREN (Quadro de Referência 

Estratégica Nacional) (SFRH/BPD/95345/2013). S Vazquez-Rodriguez was supported by the Universidade 

de Porto postdoctoral grant NORTE-07-0124-FEDER-000065. 
  



Molecules 2015, 20 3305 

 

 

Author Contributions 

MJM, FB, LS, EU and COA designed research; MJM and SVR performed research and analyzed the 

data related to the synthetic methodologies; FM performed research and analyzed the data related to the 

electrochemical studies; MJM and FM wrote the paper. FB, LS, EU and COA contributed to the SVR 

study and revised the manuscript. All authors read and approved the final manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Guardado-Yordi, E.; Pérez-Molina, E.; Matos, M.J.; Uriarte, E. Antioxidant and pro-oxidant effects 

of polyphenolic compounds and structure-activity relationship evidence. In Nutrition, Well-Being 

and Health; Bouayed, J., Bohn, T., Eds.; InTech: Rijeka, Croatia, 2012; Chapter 2, pp. 23–48. 

2. Tyagi, Y.K.; Kumar, A.; Raj, H.G.; Vohra, P.; Gupta, G.; Kumari, R.; Kumar, P.; Gupta, R.K. 

Synthesis of novel amino and acetyl amino-4-methylcoumarins and evaluation of their antioxidant 

activity. Eur. J. Med. Chem. 2005, 40, 413–420. 

3. Hamdi, N.; Puerta, C.; Valerga, P. Synthesis, structure, antimicrobial and antioxidant investigations 

of dicoumarol and related compounds. Eur. J. Med. Chem. 2008, 43, 2541–2548. 

4. Panteleon, V.; Kostakis, I.K.; Marakos, P.; Pouli, N.; Andreado, I. Synthesis and free radical scavenging 

activity of some new spiropyranocoumarins. Bioorg. Med. Chem. Lett. 2008, 18, 5781–5784. 

5. Symeonidis, T.; Chamilos, M.; Hadjipavlou-Litina, D.J.; Kallitsakis, M.; Litinas, K.E. Synthesis of 

hydroxycoumarins and hydroxybenzo[f]- or [h]coumarins as lipid peroxidation inhibitors. Bioorg. 

Med. Chem. Lett. 2009, 19, 1139–1142. 

6. Fylaktakidou, K.C.; Hadjipavlou-Litina, D.J.; Litinas, K.; Nicolaides, D.N. Natural and synthetic 

coumarin derivatives with anti-inflammatory/antioxidant activities. Curr. Pharm. Des. 2004, 10, 

3813–3833. 

7. Kostova, I. Synthetic and natural coumarins as antioxidants. Mini Rev. Med. Chem. 2006, 6,  

365–374. 

8. Tabart, J.; Kevers, C.; Pincelmail, J.; Defraigne, J.-O.; Dommes, J. Comparative antioxidant capacities 

of phenolic compounds measured by various tests. Food Chem. 2009, 113, 1226–1233. 

9. Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple coumarins and analogues in 

medicinal chemistry: Occurrence, synthesis and biological activity. Curr. Med. Chem. 2005, 12, 

887–916. 

10. Borges, F.; Roleira, F.; Milhazes, N.; Uriarte, E.; Santana, L. Simple coumarins: Privileged scaffolds 

in medicinal chemistry. Front. Med. Chem. 2009, 4, 23–85. 

11. Matos, M.J.; Terán, C.; Pérez-Castillo, Y.; Uriarte, E.; Santana, L.; Viña, D. Synthesis and study of a 

series of 3-arylcoumarins as potent and selective monoamine oxidase B inhibitors. J. Med. Chem. 

2011, 54, 7127–7137. 



Molecules 2015, 20 3306 

 

 

12. Matos, M.J.; Viña, D.; Vázquez-Rodríguez, S.; Uriarte, E.; Santana, L. Focusing on new monoamine 

oxidase inhibitors: Differently substituted coumarins as an interesting scaffold. Curr. Top. Med. Chem. 

2012, 12, 2210–2239. 

13. Pérez-Cruz, F.; Serra, S.; Delogu, G.; Lapier, M.; Maya, J.D.; Olea-Azar, C.; Santana, L.; Uriarte, E. 

Antitrypanosomal and antioxidant properties of 4-hydroxycoumarins derivatives. Bioorg. Med. 

Chem. Lett. 2012, 22, 5569–5573. 

14. Janeiro, P.; Matos, M.J.; Santana, L.; Uriarte, E.; Oliveira-Brett, A.M. New hydroxylated  

3-arylcoumarins, synthesis and electrochemical study. J. Electroanal. Chem. 2013, 689, 243–251. 

15. Matos, M.J.; Pérez-Cruz, F.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L.; Borges, F.;  

Olea-Azar, C. Remarkable antioxidant properties of a series of hydroxy-3-arylcoumarins. Bioorg. 

Med. Chem. 2013, 21, 3900–3906. 

16. Pérez-Cruz, F.; Vazquez-Rodriguez, S.; Matos, M.J.; Herrera-Morales, A.; Villamena, F.A.; Das, A.; 

Gopalakrishnan, B.; Olea-Azar, C.; Santana, L.; Uriarte, E. Synthesis and electrochemical and 

biological studies of novel coumarin-chalcone hybrid compounds. J. Med. Chem. 2013, 56,  

6136–6145. 

17. Vazquez-Rodriguez, S.; Figueroa-Guíñez, R.; Matos, M.J.; Santana, L.; Uriarte, E.; Lapier, M.; 

Maya, J.D.; Olea-Azar, C. Synthesis of coumarin-chalcone hybrids and evaluation of their antioxidant 

and trypanocidal properties. Med. Chem. Commun. 2013, 4, 993–1000. 

18. Orallo, F. trans-Resveratrol: A magical elixir of eternal youth? Curr. Med. Chem. 2008, 15,  

1887–1898. 

19. Krishnaswamy, N.R.; Seshadri, T.R.; Sharma, B.R. Study of partial demethylation of some 

polymethoxy-3-phenylcoumarins and preparation of some new members. Indian J. Chem. 1966, 4, 

120–126.  

20. Dey, B.B.; Row, K.K. The reactivity of the methylene group in coumarin-4-acetic acids and their 

esters. Condensation with salicylaldehyde to 4:3'-dicoumaryls. J. Indian Chem. Soc. 1924, 1, 107–124. 

21. Baker, W. 7-Hydroxy-3-phenylcoumarin. J. Chem. Soc. 1927, 2898–2899. 

22. Richtzenhain, H.; Alfredsson, B. cis- and trans-2,3-Dimethoxy-α-phenylcinnamic acid.  

Acta Chem. Scand. 1953, 7, 1173–1175. 

23. Walker, G.N. Reduction of phenols. New synthesis of oxyhexahydro-3-oxophenanthrenes by 

cyclodehydration of 4-(β-arylethyl)-1,3-cyclohexanediones. J. Am. Chem. Soc. 1958, 80, 645–652. 

24. Kirkiacharian, S.; Lormier, A.T.; Resche-Rigon, M.; Bouchoux, F.; Cerede, E. Synthesis and binding 

affinity of 3-aryl-7-hydroxycoumarins to human alpha and beta estrogen receptors.  

Ann. Pharm. Francaises 2003, 61, 51–56. 

25. Kabeya, L.M.; Marchi, A.A.; Kanashiro, A.; Lopes, N.P.; Silva, C.H.T.P.; Pupo, M.T.;  

Lucisano-Valima, Y.M. Inhibition of horseradish peroxidase catalytic activity by new  

3-phenylcoumarin derivatives: Synthesis and structure-activity relationships. Bioorg. Med. Chem. 2007, 

15, 1516–1524. 

26. Hotta, H.; Sakamoto, H.; Nagano, S.; Osakai, T.; Tsujino, Y. Unusually large numbers of electrons 

for the oxidation of polyphenolic antioxidants. Biochim. Biophys. Acta 2001, 1526, 159–167. 

27. Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen 

radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 

2001, 49, 4619–4626. 



Molecules 2015, 20 3307 

 

 

28. Niki, E. Assessment of antioxidant capacity in vitro and in vivo. Free Radic. Biol. Med. 2010, 49, 

503–515. 

29. Perez-Cruz, F.; Montecinos, R.; Villamena, F.A.; Das, A.; Uriarte, E.; Lopez-Alarcón, C.;  

Olea-Azar, C. Protective effect of synthetic hydroxycoumarin derivatives on bovine aortic endothelial 

cells against oxidative stress induced by 3-morpholinosydnonimine and hydrogen peroxide. Free 

Radic. Biol. Med. 2012, 53, S115. 

30. Bisby, R.H.; Brooke, R.; Navaratnam, S. Effect of antioxidant oxidation potential in the oxygen 

radical absorption capacity (ORAC) assay. Food Chem. 2008, 108, 1002–1007. 

31. Yoshimura, Y.; Inomata, T.; Nakazawa, H.; Kubo, H.; Yamaguchi, F.; Ariga, T. Evaluation of free 

radical scavenging activities of antioxidants with an H2O2/NaOH/DMSO system by electron spin 

resonance. J. Agric. Food Chem. 1999, 47, 4653–4656. 

32. Endo, N.; Oowada, S.; Sueishi, Y.; Shimmei, M.; Makino, K.; Fujii, H.; Kotake, Y. Serum hydroxyl 

radical scavenging capacity as quantified with iron-free hydroxyl radical source. J. Clin. Biochem. 

Nutr. 2009, 45, 193–201. 

33. Nakajima, A.; Matsuda, E.; Masuda, Y.; Sameshima, H.; Ikenoue, T. Characteristics of the  

spin-trapping reaction of a free radical derived from AAPH: Further development of the  

ORAC-ESR assay. Anal. Bioanal. Chem. 2012, 403, 1961–1970. 

34. Sueishi, Y.; Ishikawa, M.; Yoshioka, D.; Endoh, N.; Oowada, S.; Shimmei, M.; Fujii, H.; Kotake, Y. 

Oxygen radical absorbance capacity (ORAC) of cyclodextrin-solubilized flavonoids, resveratrol and 

astaxanthin as measured with the ORAC-EPR method. J. Clin. Biochem. Nutr. 2012, 50, 127–132. 

35. Kohri, S.; Fujii, H.; Oowada, S.; Endoh, N.; Sueishi, Y.; Kusakabe, M.; Shimmei, M.; Kotake, Y. 

An oxygen radical absorbance capacity-like assay that directly quantifies the antioxidant’s scavenging 

capacity against AAPH-derived free radicals. Anal. Biochem. 2009, 386, 167–171. 

36. Qian, S.; Kadiiska, M.; Guo, Q.; Mason, R. A novel protocol to identify and quantify all spin trapped 

free radicals from in vitro/in vivo interaction of HO• and DMSO: LC/ESR, LC/MS, and dual spin 

trapping combinations. Free Radic. Biol. Med. 2005, 38, 125–135. 

37. Ahmed, S.; Shakeel, F. Antioxidant activity coefficient, mechanism, and kinetics of different 

derivatives of flavones and flavanones towards superoxide radical. Czech J. Food Sci. 2012, 30, 

153–163. 

38. Le Bourvellec, C.; Hauchard, D.; Darchen, A.; Burgota, J.L.; Abasqa, M.L. Validation of a new 

method using the reactivity of electrogenerated superoxide radical in the antioxidant capacity 

determination of flavonoids. Talanta 2008, 75, 1098–1103. 

39. Korotkova, E.I.; Karbainov, Y.A.; Shevchuk, A.V. Antioxidant activity coefficients for plant 

aquatic-alcohol extracts. J. Electroanal. Chem. 2002, 518, 56–60. 

40. Korotkova, E.I.; Karbainov, Y.A.; Avramchik, O.A. Investigation of antioxidant and catalytic 

properties of some biologically active substances by voltammetry. Anal. Bioanal. Chem. 2003, 375, 

465–468. 

41. Criddle, D.N.; Gillies, S.; Baumgartner-Wilson, H.K.; Jaffar, M.; Chinje, E.C.; Passmore, S.; 

Chvanov, M.; Barrow, S.; Gerasimenko, O.V.; Tepikin, A.V.; et al. Menadione-induced reactive 

oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells. 

J. Biol. Chem. 2006, 281, 40485–40492. 



Molecules 2015, 20 3308 

 

 

42. Molinspiration Cheminformatics. Available online: http://www.molinspiration.com/services/ 

properties.html (accessed on 15 December 2014).  

43. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Toward minimalistic modeling of oral 

drug absorption. Adv. Drug Deliv. Rev. 1997, 23, 3–25. 

44. Wardman, P. Fluorescent and luminescent probes for measurement of oxidative and nitrosative 

species in cells and tissues: Progress, pitfalls, and prospects. Free Rad. Bio. Med. 2007, 43,  

995–1022. 

45. Roginsky, V.; Lissi, E. Review of methods to determine chain-breaking antioxidant activity in food. 

Food Chem. 2005, 92, 235–254. 

46. Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of antioxidant 

activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric 

reducing antioxidant power (FRAP) assays: A comparative study. J. Agric. Food Chem. 2002, 50, 

3122–3128. 

47. Tsushima, M.; Tokuda, K.; Ohsaka, T. Use of hydrodynamic chronocoulometry for simultaneous 

determination of diffusion coefficients and concentrations of dioxygen in various media. Anal. Chem. 

1994, 66, 4551–4556. 

48. Ahmed, S.; Shakeel, F. Voltammetric determination of antioxidant character in Berberis lycium 

Royel, Zanthoxylum armatum and Morus nigra Linn plants. Pak. J. Pharm. Sci. 2012, 25, 501–507. 

49. Alves, C.Q.; David, J.M. Métodos para determinação de atividade antioxidante in vitro em substratos 

orgânicos. Quim. Nova 2010, 33, 2202–2210. 

Sample Availability: Samples of the compounds are available from the authors.  

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


