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ABSTRACT: We report here a stereodivergent method for the Michael addition of aryl acetic acid esters to α,β-unsaturated
aldehydes catalyzed by a combination of a chiral pyrrolidine and a chiral Lewis base. This reaction proceeds through a synergistic
catalytic cycle which consists of one cycle leading to a chiral iminium electrophile and a second cycle generating a nucleophilic chiral
enolate for the construction of a carbon−carbon bond. By varying the combinations of catalyst enantiomers, all four stereoisomers of
the products with two vicinal stereocenters are accessible with high enantio- and diastereoselectivity. The products of the Michael
addition, 1,5-aldehyde esters, can be readily transformed into a variety of other valuable enantioenriched structures, including those
bearing three contiguous stereocenters in an acyclic system, thus providing an efficient route to an array of structural and
stereochemical diversity.

The control of stereoselectivity has been one of the central
goals in synthetic organic chemistry due to the wide

appearance of chiral molecules in natural products and
pharmaceuticals. Over the past decades, numerous asymmetric
approaches have provided efficient access to enantioenriched
compounds.1 Despite remarkable advances, the development
of catalyst-controlled methods that precisely control relative
and absolute configurations of multiple stereocenters is an
ongoing challenge.2 In 2013, Carreira and co-workers disclosed
a stereodivergent process for the dual catalytic alkylation of
aldehydes with allylic alcohols by the reaction between in situ
generated chiral (allyl)iridium and chiral enamine intermedi-
ates.3 This process allowed the preparation of all four product
stereoisomers containing vicinal stereocenters by altering the
combination of catalyst enantiomers from the same set of
starting materials. While promising, stereodivergent synergistic
catalysis4 remains scarce,5 and progress has largely focused on
the generation of allylmetal complexes of Ir,3,6 Pd,7 and Rh8 as
chiral electrophiles, thus limiting an accessible structural motif.
The achievement of stereodivergence with dual chiral catalysts
in other transformations such as Michael additions would be
an important advance.9

Enantioselective Michael addition is one of the most
powerful reactions in organic synthesis that forms a carbon−
carbon bond, thereby affording synthetically valuable chiral
building blocks.10 One of the most common strategies to
enable such reactions includes the organocatalytic activation of
electrophiles via iminium catalysis.11 α,β-Unsaturated alde-
hydes condense with chiral secondary amine catalysts to create
iminium ions as reactive electrophiles that exhibit high facial
selectivity. In particular, chiral pyrrolidines12 have been shown
to serve as effective catalysts for the asymmetric Michael
additions of aryl acetic acid esters to aldehydes (Scheme 1a).13

Although highly enantioselective, these reactions have
proceeded with poor diastereoselectivity (up to ∼3:1), and

the scope of aryl acetic acid esters has been restricted to those
with high acidities of benzylic protons.
In this report, we establish that a synergistic organocatalytic

system can address the dual challenges of reactivity and
selectivity in stereoselective Michael additions (Scheme 1b).
Specifically, a chiral pyrrolidine in conjunction with a chiral
Lewis base can achieve enantio- and diastereodivergent
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Scheme 1. Strategies for the Stereoselective Michael
Additions of Aryl Acetic Acid Esters
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Michael additions of various aryl acetic acid esters to α,β-
unsaturated aldehydes, thereby enabling selective synthesis of
all four product stereoisomers with two adjacent stereocenters.
To develop a stereodivergent Michael addition of a range of

aryl acetic acid esters including those that do not possess
highly acidic protons at the benzylic position, we wondered if a
chiral iminium electrophile could react with a chiral enolate
(an activated nucleophile) generated in situ from a reaction
with a chiral Lewis base catalyst and form a C−C bond.
Among various chiral Lewis bases, we considered benzote-
tramisole (BTM)14 that was reported to form C1-ammonium
enolates by reacting with acyl precursors such as aryl acetic
acid esters and react with high facial selectivity.15 In particular,
BTM has been shown to readily displace the aryloxide of ester
substrates bearing electron-deficient aryloxides, and this
aryloxide could rebound to the acyl group upon carbon−
carbon bond formation, thus regenerating a BTM catalyst; the
low nucleophilicity of such aryloxide would prevent the direct
reaction with electrophilic reaction partners.6g,7b,16 This
strategy has been successfully combined with transition metal
catalysis in synergistic catalytic reactions.6g,7b,16d−n However,
the chemical and kinetic compatibility of this catalytic cycle
with organocatalytic cycles such as a cycle leading to iminium
activation has remained unknown. Moreover, it has been
uncertain whether the reaction between chiral iminium and
enolate intermediates can accomplish stereodivergence,
because of the potential matched/mismatched interactions at
the transition state.
To assess the synergistic stereoselective Michael additions,

we chose phenyl acetic acid pentafluorophenyl ester (1a) and
cinnamaldehyde (2a) as our model substrates. Upon exploring
various reaction parameters, we determined that the anti-
product 3aa can be obtained as a single diastereomer in 83%
yield with 99% ee in the presence of (S)-pyrrolidine N1 and
(S)-BTM as catalysts (Table 1, entry 1).17 No Michael
addition was observed in the absence of either of the catalysts
(entries 2 and 3). The reactions with other (S)-amine catalysts
or (S)-TM proceeded in lower yield or enantioselectivity
(entries 4−6). Whereas an acid cocatalyst is commonly used in
iminium activation,11 the acid additive was not necessary
(entry 7). The reactions produced low yields of 3aa when
varying the aryloxide leaving group of 2a (entries 8 and 9),
solvents (entries 10 and 11), or temperature (entry 12). The
coupling reaction with either of the racemic catalysts resulted in
inferior yield and enantioselectivity (entries 13 and 14);
notably, the product was obtained as a single diastereomer,
indicating that either chiral catalyst can control the relative
stereochemistry and that anti-selectivity is strongly favored.
The scope of aryl acetic acid esters that reacted with

cinnamaldehyde (2a) under our synergistic organocatalytic
conditions through the use of (R)-N1 and (R)-BTM as
catalysts is summarized in Table 2a; in most cases, the product
was obtained as a single anti-diastereomer with >99% ee. The
aryl group of the pentafluorophenyl esters can be para-
substituted (electron-rich: 3ba, 3ca/electron-poor: 3da, 3ea,
3fa), meta-substituted (3ga), or ortho-substituted (3ha) phenyl
rings, reacting with 2a to produce a single stereoisomer of 1,5-
aldehyde esters in generally high yields. The Michael additions
with esters bearing strong electron-withdrawing groups such as
2,4,5-trifluorophenyl or p-nitrophenyl moieties proceeded to
afford products 3ja and 3ka in good yields with high dr (24:1
and 18:1).18 Pentafluorophenyl esters bearing naphthyl or 2-

thienyl groups also underwent the additions in high yields with
complete selectivity (3la and 3ma).
Under our synergistic organocatalytic conditions, the

Michael additions of phenyl acetic acid pentafluorophenyl
ester (1a) to various β-aromatic α,β-unsaturated aldehydes
containing para-substituted phenyl groups or a 2-furyl ring
proceeded smoothly to furnish the corresponding 1,5-
dicarbonyl products as an anti-diastereomer in good yields
with 96−99% ee (Table 2b).
In addition, the C−C bond formation between β-methyl

substituted α,β-unsaturated aldehyde 2g and 1a occurred to
produce (R,S)-3ag with >99% ee and 7:1 dr but in 33% yield
(eq 1).19

To examine the stereodivergence of our synergistic organo-
catalytic process, we attempted the synthesis of a syn-
diastereomer of 3aa by altering the relative chirality of the
catalyst in the reaction of 1a with 2a (eq 2). Indeed, the syn-

product was afforded as a major diastereomer with 99% ee and
8:1 dr, indicating that the catalysts could govern the relative
stereochemistry of the process. However, the yield was only

Table 1. Anti-Selective Synergistic Organocatalytic Michael
Additions: Effect of Reaction Parameters

entry deviation from standard conditions yield (%)a ee (%)

1 none 83 99
2 no (S)-N1 <5 −
3 no (S)-BTM <5 −
4 (S)-N2, instead of (S)-N1 83 93
5 (2S,5S)-N3, instead of (S)-N1 <5 −
6 (S)-TM, instead of (S)-BTM 48 98
7 with 10% benzoic acid 64 99
8 4-NO2C6H4, instead of C6F5 of 1a 27 n.d.
9 2,4,6-F3C6H2, instead of C6F5 of 1a 28 n.d.
10 THF, instead of DCM 37 99
11 toluene, instead of DCM 27 99
12 0 °C, instead of −10 °C 68 99
13 rac-N1, instead of (S)-N1 41 77
14 rac-BTM, instead of (S)-BTM 27 87

aDetermined by 1H NMR analysis with 1,1,2,2-tetrachloroethane as
an internal standard. Only anti-diastereomer was observed in all cases.
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20% by 1H NMR spectroscopic analysis, perhaps due to the
mismatched interaction at the transition state of C−C bond
forming event.
Switching the pyrrolidine catalyst to N2 (that led to a

slightly lower enantioselectivity compared to N1 in the anti-
selective reaction: Table 1, entry 1 vs 4) enhanced the yield of
the syn-selective, asymmetric Michael addition of 1a to 2b
(Table 3, entry 1 vs 2); due to the instability of the syn-

diastereomer of 3aa, it was isolated as 1,5-aldehyde acid 4aa
after hydrolysis for 20 min.20 Addition of water as a cosolvent
further improved the yield of 4aa to 62% with improved dr of
10:1 (Table 3, entry 4).21 Finally, with 20% catalyst loadings
for both catalysts, the syn-product was obtained in 85% yield
with 99% ee and 12:1 dr (entry 5). These results indicate that
either of the product stereoisomers could be obtained in high
yields with high stereocontrol through the choice of catalyst
combinations from the identical set of starting materials (see
Scheme S2 in Supporting Information for the synthesis of all
four stereoisomers).
The combination of pyrrolidine (R)-N2 and (S)-BTM can

synergistically catalyze the coupling reactions between various
esters 1 and aldehydes 2 bearing substituted phenyl groups or
heteroaryl moieties to produce syn-diastereomers of the
Michael addition products (mostly >99% ee) in generally
good yields with up to 12:1 dr, thus demonstrating the
stereodivergence of our organocatalytic method (Table 4).

The products generated from this process contain useful
functional groups, an aldehyde and a pentafluorophenyl ester,
which can be readily transformed in good yields into other
enantioenriched compounds with vicinal stereocenters by the
reactions with nucleophiles (Scheme 2; 4aa, 5aa, and 6aa).
Catalytic α-chlorination of aldehyde 3aa allowed the

introduction of an additional stereocenter via enamine
intermediates,11,22 thus generating structures that are even
more stereochemically rich (Scheme 2).23 For example,
treatment of 3aa with N-chlorosuccinimide (NCS) in the
presence of L-proline afforded 4-chlorinated product 7aa in

Table 2. Scope of Synergistic Organocatalytic Michael
Additions: Synthesis of (R,S)-Product Stereoisomersa

aYield of the purified product. bDiastereomeric ratios were
determined from the crude mixtures. Combined yield of two
diastereomers; determined by 1H NMR analysis with 1,1,2,2-
tetrachloroethane as an internal standard. cIsolated yield of only
anti-diastereomer in parentheses.

Table 3. Syn-Selective Synergistic Organocatalytic Michael
Additions: Effect of Reaction Parameters

aCombined yield of two diastereomers; determined by 1H NMR
analysis with 1,1,2,2-tetrachloroethane as an internal standard.
bDiastereomeric ratios were determined from the crude mixtures.

Table 4. Scope of Synergistic Organocatalytic Michael
Additions: Synthesis of (R,R)-Product Stereoisomersa

aCombined yield of two diastereomers; determined by 1H NMR
analysis with 1,1,2,2-tetrachloroethane as an internal standard;
isolated yield of only syn-diastereomer in parentheses.
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65% yield with 14:1 dr. Furthermore, the one-pot catalytic α-
fluorination23 with N-fluorodibenzenesulfonimide (NFSI)
followed by chlorination led to the generation of gem-
chlorofluoro compound 8aa as a single stereoisomer in 60%
yield.24−26 These products could serve as versatile, chiral
synthetic intermediates in organic synthesis. However, the
chlorination process proceeded with substrate-controlled
rather than catalyst-controlled diastereoselectivity, producing
the identical stereoisomer of 7aa or 8aa by the halogenations
with either catalyst enantiomer.
Catalyst-controlled, asymmetric α-fluorinations of enan-

tioenriched 1,5-aldehyde esters (anti-3aa or syn-5aa) were
achieved through the use of chiral pyrrolidine N1 to deliver
fluorinated product 9aa or 10aa in good yields (Scheme 3).24

The fluorination process in combination with our method for
the Michael additions could provide rapid access to all eight
stereoisomers of 4-fluorinated 1,5-aldehyde esters that bear
three contiguous stereocenters in an acyclic system, from
simple aldehyde and ester substrates; the absolute config-
urations of all three stereocenters, including the one containing
a fluorine atom, can be controlled individually by the choice of
catalyst enantiomers.
Finally, a one-pot procedure for the organocatalytic Michael

addition/α-fluorination proceeded smoothly to yield the single
diastereomer of 9aa in 67% yield and 91% ee from ester 1a and
aldehyde 2a (eq 3).5k In this process, catalyst N1 that forms an
iminium electrophile in the synergistic Michael addition
catalytic cycle generates an enamine nucleophile in the
fluorination step.

In conclusion, we have developed a stereodivergent Michael
addition of aryl acetic acid esters to α,β-unsaturated aldehydes
catalyzed by the combination of two chiral organocatalysts, a
pyrrolidine, and a Lewis base. The synergistic catalytic system
wherein the C−C bond formation occurs between in situ
generated activated chiral intermediates, an electrophilic
iminium ion and a nucleophilic enolate, allows the coupling
between otherwise unreactive ester and aldehyde substrates.
Variation of the relative chirality of the catalyst combinations
gives access to the full set of stereoisomers of 1,5-aldehyde
esters containing two adjacent stereocenters with high enantio-
and diastereoselectivity. Moreover, the 1,5-dicarbonyl reaction
products are well-suited for further transformations, some of
which introduce an additional stereocenter. Combination of
the synergistic organocatalytic Michael addition and the
subsequent chemo- and stereoselective transformations can
serve as a powerful platform for the stereodivergent synthesis
of valuable chiral building blocks, enabling rapid construction
of structural and stereochemical diversity. Studies to under-
stand the origin of stereoselectivity of this synergistic
organocatalysis are underway.
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