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Studies of thermal IMDA cyclizations of (1E,7E)-1-nitro-deca-1,7,9-trienes and (1E,3Z,7E)-1-nitro-deca-
1,3,7,9-tetraenes have been examined. Reactions of these nitroalkenes proceed via transition states fea-
turing characteristics of asymmetric stretch asynchronicity and result in stereoselective formation of
trans-fused decalin products. Substantial rate acceleration is observed for IMDA cyclizations exemplified
by triene 14 due to steric repulsions of substituents in the tethering chain which promote facile stereo-
controlled formation of trans-fused 26.
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The intramolecular Diels–Alder reaction (IMDA) has been tivity in the production of nearly equal amounts of trans-fused

extensively utilized as a powerful strategy for the efficient con-
struction of polycyclic systems.1 Applications of transannular ver-
sions of IMDA reactions, as well as a number of creative IMDA
strategies, have been featured for natural product synthesis.2 Nev-
ertheless, there are surprisingly few examples of IMDA processes
which describe the use of nitroalkenes as dienophilic components.
An early precedent illustrated the thermal cyclizations of 1-nitro-
1,6,8-decatrienes for the synthesis of hexahydroindenes,3 and
Kunesch and Tillequin described the cycloaddition of a 1,1-dini-
troalkene with a tethered furan to produce 3,7-dinitro-11-oxatri-
cycloundec-9-ene.4 In 2000, we reported the first study of IMDA
reactions of (E)-1-nitro-1,7,9-decatrienes leading to substituted
decalins as a preliminary investigation toward the synthesis of
the AB ring system of norzoanthamine.5 Alternatively, the use of
the nitroalkene moiety as a heterodiene in formal [4 + 2] cycliza-
tions leading to nitronates has been extensively exploited by Den-
mark and coworkers as an effective strategy for the synthesis of
alkaloids.6 In this communication, we describe studies of IMDA
reactions of nitroalkenes which detail factors affecting the relative
reactivity of these substrates as well as the observed stereoselec-
tivity of the cyclization process.

A comparative summary is compiled in Table 1 for reports of
thermal IMDA cyclizations of several representative decatrienes
1a–d. Houk has previously noted that the unactivated and unsub-
stituted (E)-deca-1,3,9-triene (1a) displays very little stereoselec-
ll rights reserved.

: +1 812 855 8300.
ms).
and cis-fused decalins 2a and 3a.7 Four concerted synchronous
transition state arrangements stemming from 4–7 are feasible in
which the staggered conformations of the tethering carbon chain
are compatible with a minimization of ring strain in the developing
chair-like B-ring. Thus cis-fused decalins are derived from arrange-
ments 5 and 6 in which the transition state positions the diene
in an axial orientation with respect to the developing cyclohexane
of the tether. The incorporation of the ester in methyl (E,E)-
undeca-2,8,10-trienoate (1b) does not significantly alter the
product distribution even though this electron-withdrawing func-
tionality increases the relative rate of the IMDA process.8 Further
enhancement of the rate of the reaction is observed by the inclusion
of the terminal nitro group in 1c and 1d, and these examples display
a modest improvement in stereoselectivity which favors the trans-
fused products 2c and 2d.5 Finally, the precoordination of Lewis
acids results in powerful electron-withdrawing effects which
dramatically alter the LUMO of the dienophile in 1e, and result in
high trans-stereoselectivity (2e:3e ratio 97:3).9 These aspects of
stereocontrol appear to correlate with a change from a concerted
and highly synchronous reaction to a concerted, asynchronous
pathway with increasing polarization of the dienophile. Indeed,
Houk and Brown first described asymmetric stretch asynchronici-
ty10 as a relevant concept leading to internal compression of the
reacting C2 and C7 loci which proceeds to a greater preference for
the trans-fused endo-transition states from 4 and 7.

Our recent studies have examined the intramolecular [4P + 2P]
cycloaddition of the 1-nitro-deca-1,3,6,8-tetraene system 8
(Scheme 1).11
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Table 1
A comparison study of the formation of trans- and cis-decalins via thermal IMDA cyclizations
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Investigations of IMDA reactions of related tetraenes have not
been previously explored. However, the incorporation of the
(Z)-C3–C4 double bond in 8 was expected to provide an important
element of conformational constraint which, in addition to the
presence of the fully substituted C6 carbon, would facilitate the
cyclization process. One caveat is posed by the potential for ther-
mal (Z) ? (E) isomerization in 8. Mulzer and coworkers have re-
cently addressed this issue by the design of an exo-selective
transannular Diels–Alder reaction yielding cis-decalin products.12

In the event, we have observed slow cyclizations of 8 proceed-
ing to 50% conversion upon heating at 90 �C under argon atmo-
sphere in toluene (or xylenes) over a period of 12–15 h. Small
quantities of BHT are added to curtail radical decomposition pro-
cesses, but longer reaction times lead to side products from
destruction of the starting tetraene. In practice, we have routinely
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Scheme 1. Studies of tetraene 8.
isolated a 50% yield of the substituted decalins 9 and 10 as a 88:12
ratio of diastereomers with the recovery of 45% yield of the starting
material. In this fashion, approximately 72% yield of the trans-
decalins 9 and 10 can be achieved after one recycle of starting
tetraene.

Purification by flash silica gel chromatography afforded com-
plete characterizations of 9 and 10, and NMR studies showed key
NOESY correlations as depicted in Figure 1, which led to the assign-
ments of relative stereochemistry.

Under basic conditions, product 9 underwent isomerization to
give a separable mixture of C1 epimers (99%, dr 5:1) in which the
axial diastereomer 11 was identified as the major component. A
number of bases produced the same unanticipated result. Indeed,
our calculations confirm that 11 is less stable than the starting
equatorial 9 by approximately 2.0 kcal/mol. This outcome suggests
that the accumulation of 11 is the result of an unanticipated kinetic
effect. Removal of the PMB ether and esterification yielded a highly
crystalline sample of 12 (mp 111–112 �C), and X-ray diffraction
studies of 12 provided an unambiguous stereochemical assign-
ment.13 In addition, selective reduction with zinc in methanolic
HCl yields the amino-substituted trans-decalins, such as 13 (70%)
for further derivations.

Based on the cyclization results, we postulate that features of
extended conjugation in tetraene 8, which lower the LUMO energy
of the nitroalkene dienophile, have very little effect on the rate of
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Figure 1. Key NOESY correlations for 9 and 10.
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this IMDA reaction. However, geometrical constraints imposed by
the additional C@C benefit the asynchronous, endo-transition state
affording higher trans-selectivity as compared with corresponding
exo-transition states leading to cis-decalins as seen in Table 1.

The observed stereochemical preference favoring the produc-
tion of trans-fused decalins provided encouragement for studies
of increasing structural complexity within the tethering chain as
a prelude for efforts toward biologically significant natural prod-
ucts. In this regard, Scheme 2 illustrates a pathway of general util-
ity which has led to the Diels–Alder nitroalkene precursors 14 and
15. The optically active (Z)-allylic alcohol 16 affords nearly quanti-
tative esterification with (+)-3-methylnonanoic acid (17) to yield
18 as a single, nonracemic diastereomer.14

A Claisen rearrangement protocol, featuring the slow addition
of 18 into a THF solution of LDA and freshly distilled TMS-Cl, pro-
vides for conversion to an intermediate (E)-silylketene acetal
which is heated to reflux in toluene (12 h). The methyl ester 19
is obtained in 86% yield following an aqueous workup and esterifi-
cation. Subsequent cleavage of the silyl ether gave a primary alco-
hol and mesylation provided an unstable homoallylic mesylate for
elimination, yielding the desired diene 19 (91% yield; three-steps).
Elongation of the carbon chain via an aldol condensation of the
enolate of tert-butylacetate with aldehyde 20 leads to 21 (dr
approximately 1:1) in excellent overall yield. However, further
manipulations incorporating the (E)-nitroalkene dienophile re-
quired a selection of conditions to avoid b-elimination of the C-4
MOM ethers. This is accomplished by DIBAL reduction of 21 at
�78 �C and buffered Dess–Martin oxidation of the resulting pri-
mary alcohols to give the aldehydes 22. Finally, Henry reactions15

with nitromethane are effectively achieved using KF in isopropanol
at 22 �C (98% yields) and resulted in the isolation of the diastereo-
meric b-hydroxy-nitroalkane adducts. Subsequently, mild dehy-
drations are accomplished with methanesulfonyl chloride and
Et3N to produce the triene precursors 14 and 15, respectively, as
unstable species which readily undergo the IMDA reaction.

Based upon our mechanistic analysis of these IMDA cycliza-
tions, we anticipated a transition state B-ring anchored by the
branched alkyl group at C5 as an equatorial substituent of a pre-
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Scheme 2. Preparation of trienes 14 and 15.
ferred chair arrangement. The protected hydroxyl functionality
was viewed as less significant although there were initial concerns
about the propensity for elimination reactions under the thermal
conditions. These fears proved to be unwarranted since the IMDA
reaction of triene 23, as described in our previous efforts toward
norzoanthamine, proceeded at 80 �C in refluxing benzene over
65 h to yield 24 and 25 in 92% yield [dr 91:9] (Scheme 3).5 On
the other hand, we were surprised to observe a remarkable rate
enhancement in studies of the trienes 14 and 15 which resulted
in the production of small amounts of cyclization products at room
temperature during silica gel chromatography of the IMDA precur-
sors. Upon heating to reflux in benzene (containing BHT), the triene
14 was completely converted to 26 (85% yield) and 27 (4% yield)
within 4 h (Scheme 4).16 Under identical conditions, the C-4 diaste-
reomer 15 yielded three cyclization products (dr 25:55:20). The
more polar, minor component was readily separated by flash
chromatography and identified as cis-fused 29.17 Preparative HPLC
led to the separation and purification of the trans-fused decalin 28
as the major product,17 and an additional isomer, which is assumed
to be the alternative trans-fused system based on previous
trends. Unfortunately, an unambiguous assignment of this third
diastereomer was not feasible because key 1H signals were over-
lapping and insufficiently resolved for correlations in 2D-COSY
and 2D-NOESY spectra.

The presence of the branched C-5 alkyl substituent in trienes 14
and 15 leads to a substantial IMDA rate acceleration as a conse-
quence of a Thorpe–Ingold effect from which steric repulsions of
C-5 and C-6 substituents result in the compression of internal
C-2 and C-7 loci in the Diels–Alder endo-transition states. The
presentation of an axial OMOM substituent in the transition state
from 15 destabilizes the B-ring chair arrangement owing to the
1,3-diaxial interaction with the C-6 methyl group and diminishes
trans-selectivity in this IMDA example.

In conclusion, investigations of IMDA reactions using nitro-
alkene dienophiles have demonstrated the production of trans-
fused decalin systems with high stereoselectivity. Our mechanistic
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rationale considers the benefits of geometrical constraints and ste-
ric repulsions within the tethering carbon chain which facilitate
asynchronous, endo-transition states. Applications for the synthe-
sis of natural products are underway.
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