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Abstract—In a search for new inhibitors that exploit 5 0–6 0 �hydrolytic activity� of AdoHcy hydrolase, a new series of haloethyl and
dihalocyclopropyl esters 2–3 were designed and their interaction with the enzyme studied. Incubation of the enzyme with 2–3
resulted in time- and concentration-dependent inactivation of AdoHcy hydrolase as well as almost total depletion of its NAD+ con-
tent. Further results indicated that the �oxidative� but not the �hydrolytic� activity was involved in the inactivation process.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The enzyme S-adenosyl-LL-homocysteine (AdoHcy)
hydrolase (EC 3.3.1.1) catalyses the hydrolytic cleavage
of AdoHcy to adenosine (Ado) and homocysteine
(Hcy).1 Due to its pivotal role in the regulation of bio-
logical methylation reactions2 AdoHcy hydrolase has
become an attractive pharmacological target for the
design of antiviral,3–6 antiparasitic,3,4 immunosuppres-
sive,3,4 and plasma Hcy-lowering agents.4,7 A number
of inhibitors, which function as substrates for the �3 0-
oxidative activity� of the enzyme and irreversibly keep
AdoHcy hydrolase in its inactive NADH form, have
been identified (type I).5,8

A second type of mechanism-based inhibitors (covalent,
type II) used the �5 0–6 0 hydrolytic activity� of the enzyme
to generate an electrophilic site on the inhibitor, which
can then bind to an active site nucleophile.9 In addition
to these irreversible inactivation processes, we also re-
ported10 that liberation of electrophilic entity from an
inhibitor upon its interaction with the enzyme�s �hydro-
lytic activity� provoked covalent inhibition of AdoHcy
hydrolase. A large number of homoadenosine analogues
have been identified as inactivators of AdoHcy hydro-
lase.9 During our investigation on AdoHcy hydrolase
inhibition, we recently found (unpublished results) that
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homoadenosine-6 0-carboxylic acid 1 had an affinity for
the binding site of the enzyme (Ki = 3lM) in the range
of the Km for the substrate adenosine (Km/Ado=1lM).

This result led us to hypothesize that esters 2–3 derived
from the nucleoside carboxylic acid 1 might function as
alternative substrates for the hydrolytic activity of Ado-
Hcy hydrolase and should be good candidates as new
covalent mechanism-based inhibitors of the enzyme.

Conceptually, hydrolysis of esters 2–3 by the enzyme�s
sequestered water5,6 could generate active alkoxides
within the active site in the closed form of the enzyme.5,6

Spontaneous decomposition of the latter should pro-
duce highly reactive acylating agents, which might acyl-
ate nucleophilic residues involved in the catalytic
process of the enzyme (Fig. 1).
We now describe the synthesis of haloethyl esters 2 and
the diastereoisomeric dihalocyclopropyl esters 3 as well
as their interaction with human AdoHcy hydrolase.
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Scheme 2. Reagents and conditions: (a) Cl3CCO2Et, MeONa, pen-

tane, 30%; (b) THF, HCl cat., 100%; (c) Hg(OCOCF3)2, 60%; (d)

CClF2COONa, diglyme, 180�C, 66%; (e) H2, Pd(OH)2/C, 100%.
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Figure 1. Proposed mechanisms for inactivation of AdoHcy hydrolase

with 2–3.
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2. Synthesis

Esters 2–3 were obtained from the protected homoadeno-
sine-6 0-carboxylic acid 6 (Scheme 1) and appropriate
alcohols, prepared according to the general procedures
described in Scheme 2.

Because the homologation of adenosine to homoadeno-
sine-6 0-carboxylic acid via 5 0-cyano-5 0-deoxy adenosine
derivatives required multistep procedures,11–13 which
gave in our hands low overall yields, we found useful
to prepare the homoadenosine derivative 6 via an
Arndt–Eistert reaction.14 Thus, 2 0,3 0-O-isopropylidene
adenosine, protected on the N6 position with a benzoyl
group, was oxidized on the 5 0 position by a mild proce-
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Scheme 1. Reagents and conditions: (a) TEMPO, bis(acetoxy)iodo-

benzene, CH3CN/H2O 1/1, 80%; (b) SOCl2, CH2Cl2, 100%; (c)

TMSCHN2, CH2Cl2, 80%; (d) cat. PhCO2Ag, dioxane/H2O 2/1, D,
47% then MeOH, MeONa, 96%; (e) EDCI, HOBT, 2-haloethan-1-ol,

CH2Cl2, X = Cl 44%, X = F 16% then HCOOH/H2O 1/1, X = Cl 81%,

X = F 27%; (f) EDCI, HOBT, 2,2-dihalocyclopropan-1-ol, CH2Cl2,

X = Cl 61%, X = F 69% then HCOOH/H2O 1/1, 70%.
dure giving the adenosine-5 0-carboxylic acid derivative 4
in high yields15 (Scheme 1). The corresponding acid
chloride was obtained quantitatively16 as an intermedi-
ate by treatment with thionyl chloride without purifica-
tion. The acid chloride thus obtained was converted to
the diazoketone 517 by condensation with trimethyl-
silyldiazomethane.18 The Wolff rearrangement of 5 was
initiated with catalytic silver benzoate in a 1/2 dioxane/
water mixture and yielded, after N6 deprotection, the
homologated acid 6.

Dihalocyclopropanols are known to be unstable.19 They
were prepared just before use. The racemic dichlorocy-
clopropanol 8 was obtained from its O-trimethylsilyl
derivative 720 by mild acidic treatment (Scheme 2a). A
three step procedure was used to generate in neutral
conditions the difluorocyclopropanol (±)11 (Scheme
2b). Reaction of vinyloxymethylbenzene21 with the
difluorocarbene generated by thermal decomposition
of sodium salt of chlorodifluoro acetic acid22 led to the
racemic protected difluorocyclopropanol 10 in 66%
yield. Catalytic hydrogenation of compound 10 yielded
quantitatively the corresponding alcohol 11.

2-Chloroethanol and 2-fluoroethanol are commercially
available.

Esterification of the 2 0,3 0-O-isopropylidene acid 6 with
the corresponding alcohols, catalyzed by EDCI and
HOBT (Scheme 1), afforded the target nucleosides 2–
323 after acidic removal of the isopropylidene protecting
group. The dihalocyclopropyl esters 3a and 3b were ob-
tained as a mixture of inseparable diastereoisomers.
3. Inactivation of AdoHcy hydrolase: results and
discussion

Recombinant human placenta AdoHcy hydrolase puri-
fied to homogeneity was used in this study.24 AdoHcy
hydrolase (10nM) was assayed in the synthetic direction
in the presence of [8-14C]-Ado or [2,8-3H]-Ado (15lM,
300Bq) and Hcy (5mM) in 20mM potassium phosphate
buffer pH7.5, 1mM EDTA.

Incubation of the enzyme with 2a, 2b, 3a, and 3b re-
sulted in time- and concentration-dependent inactiva-
tion, as illustrated for compound 2a in Figure 2.
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Figure 2. Time- and concentration-dependent inactivation of AdoHcy

hydrolase with 2a. AdoHcy hydrolase (2lM) was incubated with

inhibitor at various concentrations and various times in 20mM

potassium phosphate buffer pH7.5, 1mM EDTA at 37�C. Residual

activity was determined as described.
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Figure 3. Variation of NAD+/NADH content upon incubation with

inhibitors: AdoHcy hydrolase (20lM) was incubated with 600lM of

2a, 2b, 3a, or 3b in 20mM potassium phosphate buffer pH7.5, 1mM

EDTA at 37�C until total inactivation. NAD+ and NADH present in

native AdoHcy hydrolase (E) and after inactivation (2a, 2b, 3a, and 3b)

were measured by a fluorescence method.26
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In each case, the inactivation observed was irreversible
since the enzyme activity could not be restored after
dialysis against assay buffer. Protection experiments
with Ado confirm that the nucleosides 2–3 act as site-di-
rected inhibitors. The Kitz and Wilson method25 was
used to calculate Ki and kinact values (Table 1).

The kinact values measured for the haloethylesters 2a and
2b were substantially higher than those for dihalocyclo-
propyl esters 3a and 3b. The difference in the affinity ob-
served between the corresponding chloro and fluoro
derivatives can easily be explained by the steric hin-
drance of the chlorine present in compounds 2a and 3a.

We also determined the effects of 2–3 on the NAD+/
NADH content of the enzyme. As summarized in Figure
3, incubation of inhibitors 2–3 at 600mM with AdoHcy
hydrolase (20lM) produced large depletion of its
NAD+ content. This is indicative of the participation
of the oxidative activity of AdoHcy hydrolase in the
inactivation process.

The mechanism of inactivation was further investigated
by analysis of the reaction products. The reaction mix-
Table 1. Ki and kinact values for the inhibitory effect of 2–3 on AdoHcy

hydrolase

Compounds Ki, lM kinact, min�1

2a 302 0.43

2b 75 0.19

3a 750 0.09

3b 17 0.008

AdoHcy hydrolase (2lM) was incubated with inhibitor at various

concentrations and various times in 20mM potassium phosphate

buffer pH7.5, 1mM EDTA at 37�C. Residual activity was determined

as described and a double reciprocal plot of the initial pseudo-first

order inactivation rate constant versus 1/[I] gave the Ki and kinact
values.25
ture obtained after complete inactivation of AdoHcy
hydrolase with 2–3 was subjected to HPLC analysis,
after treatment with three volumes of ethanol and ultra-
filtration to remove the protein. No trace of homoadeno-
sine-6 0-carboxylic acid was detected.

These results support the conclusion that esters 2–3 are
not substrates for the hydrolytic activity of the enzyme,
instead 2–3 inactivate AdoHcy hydrolase by a type I
mechanism. Similar results have been obtained previ-
ously with amide and ester derivatives of Ado-5 0-carb-
oxylic acid.27
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