An Efficient and Convenient Method for the Direct Conversion of Alkyl Silyl Ethers into the Corresponding Alkyl Ethers Catalyzed by Iron(III) Chloride

Katsuyuki Iwanami, Kentaro Yano, Takeshi Oriyama*

Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Japan Fax +81(29)2288403; E-mail: tor@mx.ibaraki.ac.jp *Received 23 March 2005; revised 12 May 2005*

Abstract: Various alcohol silyl ethers were readily and efficiently transformed into the corresponding alkyl ethers in high yields by the use of aldehydes combined with triethylsilane in the presence of a catalytic amount of iron(III) chloride.

Key words: silyl ether, alkyl ether, protecting group, iron(III) chloride, reductive etherification

Alkyl ethers such as benzyl ethers and substituted benzyl ethers are indispensable functional groups in synthetic organic chemistry, and have been used among a wide range of protecting groups of the hydroxyl function.¹ Dialkyl ethers are generally formed by the treatment of the parent alcohols with the corresponding alkyl halides under the influence of a base such as sodium hydride,² sodium hydroxide,³ and so on. Direct transformations between various typical protecting groups of the hydroxyl function are of great importance from the point of view of green chemistry, economy of time and reagents. In the series of our studies on the direct conversion between various types of protecting groups of the hydroxyl function (Figure 1),⁴ we have previously demonstrated that direct conversion of aryl trialkylsilyl ethers into the corresponding aryl benzyl ethers can be conveniently performed by reaction with benzyl bromide in the presence of cesium fluoride.^{4f} Although direct transformation of silyl ethers into the corresponding alkyl ethers is known to be possible using the method of reductive etherification,⁵ the starting silvl ethers of almost all examples are limited to trimethylsilyl ethers.

Figure 1 Direct conversion between typical protecting groups of the hydroxyl function (DPM = Ph_2CH).

SYNTHESIS 2005, No. 16, pp 2669–2672 Advanced online publication: 04.08.2005 DOI: 10.1055/s-2005-872120; Art ID: F05505SS © Georg Thieme Verlag Stuttgart · New York Herein, we wish to report an efficient and convenient method for the direct conversion of alkyl silyl ethers into the corresponding alkyl ethers catalyzed by iron(III) chloride in a one-pot procedure. In the course of our exploration of the usefulness of the reactions promoted by iron(III) chloride,⁶ quite recently, we have developed a highly efficient reductive etherification of aldehydes with alkoxytrimethylsilane and triethylsilane catalyzed by iron(III) chloride.^{6d} Next, we applied this reductive etherification into the direct conversion of silyl-protected alcohols into alkyl-protected alcohols.

First, we undertook to examine the conversion of the *tert*butyldimethylsilyl ether of 3-phenylpropanol into the corresponding benzyl ether. A mixture of silyl ether **1a**, benzaldehyde, and 5 mol% of iron(III) chloride was treated with triethylsilane in nitromethane for ten minutes. The usual work-up of the reaction mixture afforded the desired benzyl ether **2a** in quantitative yield as shown in Scheme 1.

Next, we tested the effect of the trialkylsilyl moiety of silyl ethers (Table 1). In the case of triethylsilyl (TES) and *tert*-butyldimethylsilyl (TBS) ether, the corresponding benzyl ethers could be obtained in quantitative yield (en-

Ph(CH₂)₃OTBS PhCHO, Et₃SiH FeCl₃, CH₃NO₂ Ph(CH₂)₃OBn

 1a
 0 °C to r.t., 10 min
 2a: 100%

Scheme 1 Benzyl etherification of TBS ether of 3-phenylpropanol (molar ratio of silyl ether:aldehyde: $Et_3SiH:FeCl_3 = 1:1.2:1.2:0.05$)

Ph(CH ₂	.)₃O Si	PhCHO, Et ₃ SiH		Ph(CH ₂) ₃ OBn		
1			2a			
Entry	Ph(CH ₂) ₃ OSi	Temp (°C)	Time	Yield of 2a (%) ^b		
1	Ph(CH ₂) ₃ OTES	0	2 h	quant		
2	Ph(CH ₂) ₃ OTBS	0 to r.t.	10 min	quant		
3	Ph(CH ₂) ₃ OTIPS	0	24 h	71		
4	Ph(CH ₂) ₃ OTBDPS	0	24 h	37		

^a Molar ratio of silyl ether:aldehyde:Et₃SiH:FeCl₃ = 1:1.2:1.2:0.05.

^b Isolated yield of purified product.

Table 2 Synthesis of Various Benzyl and Substituted Benzyl Ethers from Alcohol TBS Ethers^a

POTRS	R'CHO, Et₃SiH	:H ₂ B'				
HOTES	FeCl ₃ , CH ₃ NO ₂					
1		2				
Entry	ROTBS	R'CHO	Temp (°C)	Time (min)	Product	Yield (%) ^b
1	Ph(CH ₂) ₂ CH ₂ OTBS	PhCHO	0 to r.t.	10	2a	quant
2 ^c		4-MeOC ₆ H ₄ CHO	-20	80	2b	88
3°		2-MeOC ₆ H ₄ CHO	0	30	2c	96
4		4-NO ₂ C ₆ H ₄ CHO	0	45	2d	97
5		4-BrC ₆ H ₄ CHO	0	30	2e	quant
6		4-NCC ₆ H ₄ CHO	0 to r.t.	30	2f	92
7	Ph(CH ₂) ₂ CH(Me)OTBS	PhCHO	0 to r.t.	15	2g	quant
8 ^c		4-MeOC ₆ H ₄ CHO	-20	240	2h	76
9°		2-MeOC ₆ H ₄ CHO	0	60	2i	89
10		4-NO ₂ C ₆ H ₄ CHO	0 to r.t.	120	2ј	92
11		4-BrC ₆ H ₄ CHO	0	180	2k	92
12	<i>cyclo</i> -C ₆ H ₁₁ OTBS	PhCHO	0 to r.t.	40	21	80
13	Ph(CH ₂) ₂ C(Me) ₂ OTBS	PhCHO	0	60	2m	30
14	PhOTBS	PhCHO	r.t.	90	-	0
15	BnO(CH ₂) ₆ OTBS	PhCHO	0	30	2n	83
16	BzO(CH ₂) ₆ OTBS	PhCHO	0	180	20	88
17 ^d	TBSOCH ₂ CH(OBz)(CH ₂) ₂ OTBS	PhCHO	0 to r.t.	10	2p	80

^a Molar ratio of silyl ether: aldehyde: Et_3SiH : $FeCl_3 = 1:1.2:1.2:0.05$, unless otherwise noted.

^b Isolated yield of purified product.

^c CH₃CN was used as a solvent.

^d 2.4 Equiv of aldehyde and 2.4 equiv of Et₃SiH was used.

tries 1 and 2). On the other hand, the reactions of more sterically hindered trialkyl silyl ethers, triisopropylsilyl (TIPS) and *tert*-butyldiphenylsilyl (TBDPS) ether, did not proceed smoothly under comparable reaction conditions (entries 3 and 4).

The direct conversion was conducted with various TBS ethers of primary, secondary, tertiary, and phenolic alcohols and the successful results are summarized in Table 2.

The TBS ether of a secondary alcohol was converted to the corresponding benzyl ether quantitatively (entry 7). It should be noted that various *para*-substituted benzyl ethers, which are purposeful protecting groups for a hydroxyl function, are obtained in high to excellent yields by the use of the corresponding *para*-substituted benzaldehyde instead of benzaldehyde (entries 2–6, 8–11). On the other hand, the TBS ether of a tertiary alcohol gave the desired product in only 30% yield (entry 13). In the case of silyl ether of phenol, the expected reaction did not proceed at all (entry 14). Furthermore, in the presence of other types of protective groups such as benzyl ether and benzoate, TBS ethers are chemoselectively transformed into the corresponding benzyl ethers in satisfactory yields (entries 15–17). And besides, migration of benzoyl group was not observed (entry 17). In contrast, tetrahydropyranyl (THP) ether was also converted into the corresponding benzyl ether **2a** (Scheme 2).

Furthermore, we examined the direct conversion of TBS ethers into various alkyl ethers using various carbonyl compounds instead of benzaldehyde as shown in Table 3. Use of propionaldehyde and valeraldehyde afforded the corresponding *n*-propyl and *n*-pentyl ethers in 73 and 86% yield, respectively (entries 1 and 2). On the other hand, when ketone was used as the carbonyl compound, the cor-

Ph(CH ₂) ₃ OTHP	PhCHO, Et ₃ SiH FeCl ₃ , CH ₃ CN ►	Ph(CH ₂) ₃ OBn
	0 °C to r.t., 30 min	2a : 93%

Scheme 2 Benzyl etherification of tetrahydropyranyl ether of 3-phenylpropanol (molar ratio of silyl ether:aldehyde: $Et_3SiH:FeCl_3 = 1:1.2:2.2:0.05$).

Ph(CH ₂) ₃ OTBS -		RCOR', Et ₃ SiH			
		FeCl ₃ , CH ₃ NO ₂	2	2	
Entry	RCOR'	Time (mi	n) Product	Yield (%) ^b	
1	EtCHO	30	2q	73	
2	n-BuCHO	30	2r	86	
3	benzylacetone	60	2s	91	
4	cyclohexanone	60	2t	88	

^a Molar ratio of silyl ether:aldehyde: Et_3SiH : $FeCl_3 = 1:1.2:1.2:0.05$. The reaction was performed at 0 °C.

^b Isolated yield of purified product.

responding secondary alkyl ether was obtained in high yield (entries 3 and 4).

In conclusion, the present reaction has the following synthetic advantages: 1) in contrast to the known procedure of reductive etherification, this one-pot procedure can use not only TMS ether but also TES and TBS ethers as the starting silyl ether; 2) various ethers are obtained from a wide range of aldehydes and ketones; 3) high-yielding process; 4) extremely mild reaction conditions; and 5) experimental convenience. In our series of studies on the direct conversion between typical protecting groups of the hydroxyl function, we have added a new direct transformation of the silyl ether type protecting group of alcohol into an alkyl ether type.

All reactions were carried out under argon. ¹H and ¹³C NMR spectra were recorded on a JEOL GSX-400 spectrometer at 400 MHz and 100 MHz, respectively. The chemical shifts are reported in ppm (δ) relative to tetramethylsilane in CDCl₃. IR spectra were recorded in cm⁻¹ on a JASCO FT/IR-300E spectrometer. FeCl₃ was purchased from Aldrich and used without further purification. Nitromethane was dried over MS 4Å prior to use. TLC was performed on Wakogel B-5F silica gel with Et₂O and hexane as eluents.

1-Benzyloxy-3-phenylpropane (2a); Typical procedure

To a suspension of anhyd FeCl₃ (5.0 mg, 0.031 mmol) and benzaldehyde (76 μ L, 0.75 mmol) in nitromethane was added *tert*-butyldimethylsilyl ether of 3-phenylpropanol (155.4 mg, 0.62 mmol) and triethylsilane (120 μ L, 0.751 mmol) successively at 0 °C under argon. After stirring for 10 min at r.t., the mixture was quenched with a phosphate buffer (pH 7). The organic materials were extracted with CH₂Cl₂, washed with brine, and dried (Na₂SO₄). 1-Benzyloxy-3-phenylpropane (**2a**; 139.8 mg, quant) was isolated by TLC on silica gel.

Products 2a,^{4h,7,8} 2b,^{4h,8} 2d,^{2,4h} and $2l^9$ had data identical to that reported in the literature.

1-(2-Methoxybenzyloxy)-3-phenylpropane (2c)

IR (neat): 2936, 1492, 1458, 1243, 1097, 1031, 752, 699 cm⁻¹.

¹H NMR: δ = 1.95 (tt, *J* = 7.7, 6.2 Hz, 2 H), 2.72 (t, *J* = 7.7 Hz, 2 H), 3.53 (t, *J* = 6.2 Hz, 2 H), 3.83 (s, 3 H), 4.55 (s, 2 H), 6.95–6.98 (m, 2 H), 7.15–7.40 (m, 7 H).

¹³C NMR: δ = 31.41, 32.40, 55.30, 67.55, 69.62, 110.07, 120.32, 125.59, 126.86, 128.17, 128.40, 128.72, 141.99, 156.91.

1-(4-Bromobenzyloxy)-3-phenylpropane (2e)

IR (neat): 2857, 1488, 1102, 1070, 1011, 699 cm⁻¹.

¹H NMR: δ = 1.93 (tt, *J* = 7.7, 6.2 Hz, 2 H), 2.71 (t, *J* = 7.7 Hz, 2 H), 3.47 (t, *J* = 6.2 Hz, 2 H), 4.44 (s, 2 H), 7.15–7.29 (m, 7 H), 7.45–7.49 (m, 2 H).

¹³C NMR: δ = 31.32, 32.37, 69.58, 72.10, 121.26, 125.71, 128.24, 128.35, 129.15, 131.36, 137.50, 141.73.

1-(4-Cyanobenzyloxy)-3-phenylpropane (2f)

IR (neat): 2941, 2861, 2228, 1496, 1454, 1364, 1103, 820 cm⁻¹.

¹H NMR: δ = 1.96 (tt, *J* = 7.7, 6.2 Hz, 2 H), 2.73 (t, *J* = 7.7 Hz, 2 H), 3.51 (t, *J* = 6.2 Hz, 2 H), 4.54 (s, 2 H), 7.16–7.30 (m, 5 H), 7.44 (d, *J* = 8.1 Hz, 2 H), 7.63 (d, *J* = 8.1 Hz, 2 H).

¹³C NMR: δ = 31.18, 32.38, 67.00, 71.80, 111.01, 118.77, 125.74, 127.53, 128.23, 128.29, 132.05, 141.51, 144.06.

3-Benzyloxy-1-phenylbutane (2g)

IR (neat): 2927, 2861, 1496, 1453, 1134 1092, 1065, 697 cm⁻¹.

¹H NMR: δ = 1.22 (d, *J* = 5.9 Hz, 3 H), 1.70–1.80 (m, 1 H), 1.87–1.97 (m, 1 H), 2.61–2.70 (m, 1 H), 2.72–2.80 (m, 1 H), 3.53 (s, 1 H), 4.43 (d, *J* = 11.7 Hz, 1 H), 4.57 (d, *J* = 11.7 Hz, 1 H), 7.14–7.37 (m, 10 H).

¹³C NMR: δ = 19.66, 31.85, 38.48, 70.32, 74.08, 125.58, 127.34, 127.59, 128.21, 128.25, 128.32, 138.88, 142.25.

3-(4-Methoxybenzyloxy)-1-phenylbutane (2h)

IR (neat): 2931, 1612, 1512, 1456, 1248, 1035, 699 cm⁻¹.

¹H NMR: δ = 1.21 (d, *J* = 6.2 Hz, 3 H), 1.69–1.79 (m, 1 H), 1.85–1.95 (m, 1 H), 2.58–2.79 (m, 2 H), 3.47–3.56 (m, 1 H), 3.80 (s, 3 H), 4.38 (d, *J* = 11.4 Hz, 1 H), 4.51 (d, *J* = 11.4 Hz, 1 H), 6.88 (d, *J* = 8.8 Hz, 2 H), 7.14–7.29 (m, 7 H).

¹³C NMR: δ = 19.68, 31.87, 38.48, 55.26, 69.96, 73.72, 113.67, 125.57, 128.20, 128.33, 129.15, 130.99, 142.30, 158.93.

3-(2-Methoxybenzyloxy)-1-phenylbutane (2i)

IR (neat): 2929, 1602, 1494, 1464, 1243, 1074, 753 cm⁻¹.

¹H NMR: $\delta = 1.23$ (d, J = 6.2 Hz, 3 H), 1.70–1.80 (m, 1 H), 1.88– 1.97 (m, 1 H), 2.62–2.81 (m, 2 H), 3.51–3.60 (m, 1 H), 3.83 (s, 3 H), 4.49 (d, J = 12.5 Hz, 1 H), 4.62 (d, J = 12.5 Hz, 1 H), 6.86 (d, J = 8.1 Hz, 1 H), 6.95 (t, J = 7.3 Hz, 1 H), 7.14–7.28 (m, 6 H), 7.42 (d, J = 8.1 Hz, 1 H).

¹³C NMR: δ = 12.77, 31.84, 38.58, 55.24, 65.15, 74.24, 110.01, 120.34, 125.51, 127.36, 128.18, 128.30, 128.37, 128.81, 142.48, 156.86.

3-(4-Nitrobenzyloxy)-1-phenylbutane (2j)

IR (neat): 2928, 2861, 1604, 1520, 1345, 1092, 739 cm⁻¹.

¹H NMR: $\delta = 1.26$ (d, J = 5.9 Hz, 3 H), 1.76–1.86 (m, 1 H), 1.91– 2.01 (m, 1 H), 2.65–2.81 (m, 2 H), 3.52–3.60 (m, 1 H), 4.52 (d, J = 13.2 Hz, 1 H), 4.67 (d, J = 13.2 Hz, 1 H), 7.15–7.30 (m, 5 H), 7.50 (d, J = 8.8 Hz, 2 H), 8.19 (d, J = 8.8 Hz, 2 H).

¹³C NMR: δ = 19.58, 31.82, 38.29, 69.10, 75.05, 123.49, 125.75, 127.55, 128.27, 128.31, 141.90, 146.65.

3-(4-Bromobenzyloxy)-1-phenylbutane (2k)

IR (neat): 2927, 2862, 1488, 1134, 1070, 1011, 804 cm⁻¹.

¹H NMR: δ = 1.22 (d, *J* = 5.9 Hz, 3 H), 1.71–1.80 (m, 1 H), 1.86–1.96 (m, 1 H), 2.61–2.79 (m, 2 H), 3.47–3.56 (m, 1 H), 4.38 (d,

¹³C NMR: δ = 19.61, 31.80, 38.36, 69.51, 74.28, 121.14, 125.64, 128.24, 128.28, 129.17, 131.31, 137.89, 142.06.

3-Benzyloxy-3-methyl-1-phenylbutane (2m)

IR (neat): 2971, 1496, 1454, 1090, 1062, 734, 697 cm⁻¹.

¹H NMR: δ = 1.32 (s, 6 H), 1.86–1.91 (m, 2 H), 2.70–2.75 (m, 2 H), 4.47 (s, 2 H), 7.15–7.39 (m, 10 H).

¹³C NMR: δ = 25.83, 30.43, 42.44, 63.70, 74.95, 125.57, 127.05, 127.22, 128.22, 128.24, 128.28, 139.67, 142.79.

1,6-Di(benzyloxy)hexane (2n)

IR (neat): 2934, 2856, 1454, 1362, 1100, 734, 697 cm⁻¹.

¹H NMR: $\delta = 1.36-1.42$ (m, 4 H), 1.56–1.66 (m, 4 H), 3.46 (t, J = 6.6 Hz, 4 H), 4.49 (s, 4 H), 7.24–7.35 (m, 10 H).

¹³C NMR: δ = 26.11, 29.76, 70.38, 72.84, 127.38, 127.53, 128.25, 138.57.

6-Benzyloxyhexyl Benzoate (20)

IR (neat): 2936, 2858, 1718, 1275, 1111, 712 cm⁻¹.

¹H NMR: δ = 1.42–1.50 (m, 4 H), 1.61–1.69 (m, 2 H), 1.74–1.81 (m, 2 H), 3.48 (t, *J* = 6.6 Hz, 2 H), 4.31 (t, *J* = 6.6 Hz, 2 H), 4.50 (s, 2 H), 7.24–7.34 (m, 5 H), 7.40–7.45 (m, 2 H), 7.52–7.57 (m, 1 H), 8.02–8.05 (m, 2 H).

¹³C NMR: δ = 25.94, 28.71, 29.69, 64.97, 70.22, 72.85, 127.38, 127.50, 128.20, 128.23, 129.41, 130.36, 132.68, 138.48, 166.49.

1, 4-Dibenzyloxybut-2-yl Benzoate (2p)

IR (neat): 2861, 1717, 1452, 1274, 1099, 713 cm⁻¹.

¹H NMR: δ = 2.07–2.12 (m, 2 H), 3.54–3.60 (m, 2 H), 3.69 (d, *J* = 4.8 Hz, 2 H), 4.46 (s, 2 H), 4.51 (d, *J* = 12.1 Hz, 1 H), 4.60 (d, *J* = 12.1 Hz, 1 H), 5.45–5.51 (m, 1 H), 7.21–7.30 (m, 10 H), 7.40– 7.45 (m, 2 H), 7.53–7.57 (m, 1 H), 8.01–8.04 (m, 2 H).

¹³C NMR: δ = 31.39, 66.42, 71.16, 71.23, 73.06, 73.11, 127.43, 127.50, 127.59, 128.21, 128.24, 128.25, 129.60, 130.33, 132.78, 138.02, 138.13, 165.97.

1-(Propyloxy)-3-phenylpropane (2q)

IR (neat): 2935, 2857, 1496, 1455, 1118, 745 cm⁻¹.

¹H NMR: $\delta = 0.94$ (t, J = 7.3 Hz, 3 H), 1.56–1.65 (m, 2 H), 1.86–1.94 (m, 2 H), 2.69 (t, J = 7.7 Hz, 2 H), 3.37 (t, J = 6.6 Hz, 2 H), 3.42 (t, J = 6.6 Hz, 2 H), 7.15–7.30 (m, 5 H).

¹³C NMR: δ = 10.71, 23.01, 31.38, 32.40, 69.84, 72.57, 125.62, 128.20, 128.39, 141.97.

1-(Pentyloxy)-3-phenylpropane (2r)

IR (neat): 2932, 2858, 1456, 1114, 698 cm⁻¹.

¹H NMR: δ = 0.88–0.93 (m, 3 H), 1.30–1.37 (m, 4 H), 1.54–1.62 (m, 2 H), 1.85–1.93 (m, 2 H), 2.69 (t, *J* = 7.7 Hz, 2 H), 3.40 (t, *J* = 6.6 Hz, 2 H), 3.41 (t, *J* = 6.6 Hz, 2 H), 7.16–7.30 (m, 5 H).

¹³C NMR: δ = 14.12, 22.61, 28.44, 29.52, 31.37, 32.40, 69.87, 70.97, 125.61, 128.18, 128.38, 141.97.

3-(3-Phenylpropyloxy)-1-phenylbutane (2s)

IR (neat): 2928, 2860, 1496, 1454, 1136, 1100, 745 cm⁻¹.

¹H NMR: δ = 1.16 (d, *J* = 6.2 Hz, 3 H), 1.66–1.76 (m, 1 H), 1.81–1.94 (m, 3 H), 2.61–2.79 (m, 4 H), 3.30–3.55 (m, 3 H), 7.15–7.30 (m, 10 H).

¹³C NMR: δ = 19.75, 31.78, 31.91, 32.53, 38.50, 67.47, 74.52, 125.57, 125.63, 128.20, 128.21, 128.32, 128.38, 142.00, 142.32.

1-Cyclohexyloxy-3-phenylpropane (2t)

IR (neat): 2931, 2855, 1451, 1363, 1108 cm⁻¹.

¹H NMR: δ = 1.15–1.32 (m, 5 H), 1.50–1.57 (m, 1 H), 1.70–1.77 (m, 2 H), 1.84–1.94 (m, 4 H), 2.69 (t, *J* = 7.7 Hz, 2 H), 3.15–3.23 (m, 1 H), 3.45 (t, *J* = 6.6 Hz, 2 H), 7.15–7.29 (m, 5 H).

¹³C NMR: δ = 24.30, 25.91, 31.75, 32.42, 32.45, 66.91, 77.49, 125.57, 128.16, 128.39, 142.06.

References

- Greene, T. W.; Wuts, P. G. M. In *Protective Groups in* Organic Synthesis, 3rd ed.; Wiley: New York, **1999**, Chap. 2.
- (2) (a) Czernecki, S.; Georgoulis, C.; Provelenghiou, C.; Fusey, G. *Tetrahedron Lett.* **1976**, 3535. (b) Takaku, H.; Kamaike, K. *Chem. Lett.* **1982**, 189. (c) Kanai, K.; Sakamoto, I.; Ogawa, S.; Suami, T. *Bull. Chem. Soc. Jpn.* **1987**, *60*, 1529. (d) Fukuzawa, A.; Sato, H.; Masamune, T. *Tetrahedron Lett.* **1987**, *28*, 4303. (e) Grice, P.; Ley, S. V.; Pietruszka, J.; Priepke, H. W. M.; Warriner, S. L. J. Chem. Soc., Perkin Trans. 1 **1997**, 351.
- (3) Freedman, H. H.; Dubois, R. A. *Tetrahedron Lett.* **1975**, 3251.
- (4) (a) Oriyama, T.; Kimura, M.; Oda, M.; Koga, G. Synlett 1993, 437. (b) Oriyama, T.; Oda, M.; Gono, J.; Koga, G. Tetrahedron Lett. 1994, 35, 2027. (c) Oriyama, T.; Kimura, M.; Koga, G. Bull. Chem. Soc. Jpn. 1994, 67, 885. (d) Oriyama, T.; Yatabe, K.; Kawada, Y.; Koga, G. Synlett 1995, 45. (e) Oriyama, T.; Yatabe, K.; Sugawara, S.; Machiguchi, Y.; Koga, G. Synlett 1996, 523. (f) Oriyama, T.; Noda, K.; Yatabe, K. Synlett 1997, 701. (g) Oriyama, T.; Noda, K.; Sugawara, S. Synth. Commun. 1999, 29, 2217. (h) Suzuki, T.; Ohashi, K.; Oriyama, T. Synthesis 1999, 1561. (i) Suzuki, T.; Oriyama, T. Synthesis 2001, 555 (j) Suzuki, T.; Kobayashi, K.; Noda, K.; Oriyama, T. Synth. Commun. 2001, 31, 2761. (k) Oriyama, T.; Kobayashi, K.; Suzuki, T.; Oda, M. Green Chem. 2002, 4, 30. (1) Kobayashi, K.; Watahiki, T.; Oriyama, T. Synthesis 2003, 484.
- (5) (a) Kato, J.-I.; Iwasawa, N.; Mukaiyama, T. *Chem. Lett.* 1985, 743. (b) Sassaman, M. B.; Kotian, K. D.; Surya Prakash, G. K.; Olah, G. A. *J. Org. Chem.* 1987, *52*, 4314.
 (c) Hatakeyama, S.; Mori, H.; Kitano, K.; Yamada, H.; Nishizawa, M. *Tetrahedron Lett.* 1994, *35*, 4367.
 (d) Bajwa, J. S.; Jiang, X.; Slade, J.; Prasad, K.; Repič, O.; Blacklock, T. J. *Tetrahedron Lett.* 2002, *43*, 6709.
 (e) Chandrasekhar, S.; Chandrashekar, G.; Nagendra Babu, B.; Vijeender, K.; Venkatram Reddy, K. *Tetrahedron Lett.* 2004, *45*, 5497.
- (6) (a) Watahiki, T.; Oriyama, T. *Tetrahedron Lett.* 2002, 43, 8959. (b) Watahiki, T.; Akabane, Y.; Mori, S.; Oriyama, T. *Org. Lett.* 2003, 5, 3045. (c) Iwanami, K.; Oriyama, T. *Chem. Lett.* 2004, 33, 1324. (d) Iwanami, K.; Seo, H.; Tobita, Y.; Oriyama, T. *Synthesis* 2005, 183.
- (7) Sajiki, H.; Hirota, K. *Tetrahedron* **1998**, *54*, 13981.
- (8) Akiyama, T.; Hirofuji, H.; Ozaki, S. Bull. Chem. Soc. Jpn. 1992, 65, 1932.
- (9) Ochiai, M.; Ito, T.; Takahashi, H.; Nakanishi, A.; Toyonari, M.; Sueda, T.; Goto, S.; Shiro, M. J. Am. Chem. Soc. 1996, 118, 7716.