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Abstract 

 

The Malaria burden was an escalating global encumbrance and need to be addressed with critical care. 

Anti-malarial drug discovery was integrated with supervised machine learning (ML) models to identify 

potent thiazolyl-traizine derivatives. This assimilated approach of Direct Kernel-based Partial Least 

Squares regression (DKPLS) with molprint 2D fingerprints in Quantitative Structure Activity 

Relationship models was utilized to map the knowledge of known actives and to design novel 

molecules. This QSAR study had revealed the structural features required for better antimalarial 

activity. Two of the molecules which were designed based on the results of this QSAR study, had 

shown good percentage of parasitemia against both chloroquine sensitive (3D7) and chloroquine 

resistant (Dd2) strains of Plasmodium falciparum respectively. The IC50 of 201D and 204D was 3.02 

and 2.17 µM against chloroquine resistant Dd2 strain of Plasmodium falciparum. This result had 

proved the efficiency of a multidisciplinary approach of medicinal chemistry and machine learning for 

the design of novel potent anti-malarial compounds. 
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1. Introduction 

  

Based on the observation that Cycloguanil which was a potent antimalarial antifolate inhibits 

Lactobacillus casei moderately [1, 2] the synthesis of 2-amino-4-phenyl thiazolyl-1, 3, 5- triazine 

derivatives as antimalarial was started. Some of the thiazolyl-triazine derivatives synthesized by our 

group for the first time showed encouraging inhibition of Lactobacillus casei [3-6].  Testing the 

compounds against Lactobacillus casei clarifies the observation found between antibacterial and 

antimalarial effect of Cycloguanil. These observations inspired us to design different thiazolyl-traizine 

derivatives and to explore their antimalarial activities. Till now our group has synthesized hundreds of 

such derivatives out of which, the thiazolyl-triazine core having secondary amine substitution on the 

triazine ring and chlorine or nitro substitution on the second, third and/or fourth positions of the phenyl 

thiazole ring (Table 1) exhibited better activity compared to the others [7, 8]. This finding is taken as 

the backbone of the current study which is further analysed using machine learning (ML) models. 

ML is the exercise of expending systems to analyze statistics, acquire knowledge from it and mark a 

determination. It is also a forecast of the upcoming result of original data. Here the machine is taught 

by means of statistics and algorithms that contribute it the capability to learn to accomplish the 

assignment. Supervised and unsupervised learning are the two types of methods that can be used based 

on the available data. Supervised learning approaches are used to progress training datasets to calculate 

forthcoming values and these are all constant variables, while unsupervised procedures are used for 

investigative drives to improve models that permit assembling of the statistics that are not indicated by 

the user. So in this study we used supervised learning methods that train a model on known data that 

can predict impending outputs using known inputs. The presence of in house generated data on 

antimalarial activity prompted us to study 2D and 3D QSAR models for further refinement in their 

structure and enhanced antimalarial activity. 

Fifty seven thiazolyl triazine derivatives which has been reported by our group previously in various 

journals [7-10] are been used for this QSAR study. Based on the results of the QSAR studies 

favourable substitutions on 1, 3, 5-triazine ring was made with piperazine ring. The overlap of the 2D 

and 3D visualization shows that this group has favourable effect on the activity. These analogues with 

piperazine on triazine ring was synthesized and tested for the biological activity. 201D and 204D had 

shown promising antimalarial activity against the Chloroquine resistant strain of Plasmodium 

falciparum (Dd2). 

 

                  



2. Material and methods 

2.1 2D & 3D QSAR 

Data-driven or Machine learning methods are rapidly evolving and becoming very important in various 

stages of drug discovery. The Supervised machine learning models are very significant in generating 

the QSAR models. In this work we have applied supervised machine learning methods for the 2D and 

3D finger-prints of the anti-malarial compounds with respect to their biological activity to generate 2D 

and 3D QSAR models respectively. 

The first and significant step in these data driven method was the selection of the input samples 

(Training Set). Using supervised method, hierarchical clustering was used to cluster 57 antimalarial 

compounds according to their chemical space (Table 1). Radial hashed fingerprint was used for the 

clustering according to their chemical space. Compounds from each cluster with different ranges of 

activity were selected as training set to cover chemical space and activity range. Thus 47 out of 57 

compounds were selected as training set having activity (pIC50) range of 5.0 to 2.82 to build the 2D 

QSAR model. Remaining 10 compounds with activity (pIC50) range of 4.92 to 2.82 were used as test 

set to validate the hypothesis. There was a small change in the training and test sets of the 2D and 3D 

QSAR models. This is because the 2 molecules alignment was not proper for the 3D QSAR and so 

those were added to test set. 

Table 1: List of compounds used in QSAR models 

N

N N

N
H

NH

N
H

R2

R1

S

N
R  

Sl 

No. 

Compound 

Code 

Structure Activity Test/Training  

2D 

Test/Training 

3D 

1 A5 R= 2, 4-dichloro; R1, R2= -CH3 4.999 Training Training 

2 H16 R= 3-nitro; R1, R2= -Phenyl 4.945 Training Training 

3 A3 R= 2, 4-dichloro; R1, R2= -n-propyl 4.904 Test Test 

4 H18 R= 3-nitro; R1, R2= -piperidinyl 4.874 Training Training 

5 H2 R= 3-nitro; R1, R2= -cyclopropyl 4.818 Training Training 

6 A29 R= 2, 4-dichloro; R1, R2= -benzyl 4.736 Training Training 

7 66B R= 4-chloro; R1=-H, R2= piperazinyl 4.65 Training Training 

8 A2 R= 2, 4-dichloro; R1, R2= -cyclopropyl 4.632 Test Test 

9 A21 R= 2, 4-dichloro; R1, R2= -o-toluidininyl 4.586 Training Training 

                  



10 A20 R= 2, 4-dichloro; R1, R2= -p-toluidininyl 4.539 Training Test 

11 79B R= 4-chloro; R1=aminoethyl, R2= -CH3 4.511 Training Training 

12 A19 R= 2, 4-dichloro; R1, R2= -cyclohexyl 4.509 Training Training 

13 68B R= 4-chloro; R1=hydroxyethyl, R2= -H 4.488 Training Training 

14 H5 R= 3-nitro; R1, R2= -CH3 4.487 Training Test 

15 H20 R= 3-nitro; R1, R2= -p-toluidininyl 4.483 Training Training 

16 H19 R= 3-nitro; R1, R2= -cyclohexyl 4.481 Test Training 

17 H29 R= 3-nitro; R1, R2= -benzyl 4.472 Training Training 

18 81B R= 4-chloro; R1=-CH3, R2= piperazinyl 4.45 Test Training 

19 A4 R= 2, 4-dichloro; R1, R2= -dimethyl 4.447 Training Training 

20 E16 R= -H; R1, R2= -Phenyl 4.421 Training Training 

21 A16 R= 2, 4-dichloro ; R1, R2= -Phenyl 4.417 Training Training 

22 A18 R= 2, 4-dichloro; R1, R2= -piperidinyl 4.415 Training Test 

23 E3 R= -H; R1, R2= -n-propyl 4.41 Training Training 

24 E2 R= -H; R1, R2= -cyclopropyl 4.391 Training Training 

25 H4 R= 3-nitro; R1, R2= -dimethyl 4.383 Training Training 

26 E5 R= -H; R1, R2= -CH3 4.373 Test Test 

27 H3 R= 3-nitro; R1, R2= -n-propyl 4.34 Training Training 

28 H21 R= 3-nitro; R1, R2= -o-toluidininyl 4.263 Test Test 

29 F5 R= 4-chloro; R1, R2= -CH3 4.253 Training Training 

30 67B R= 4-chloro; R1= -H, R2= methylpiperazinyl 4.15 Training Training 

31 78B R= 4-chloro; R1= -CH3, R2= morpholinyl 3.85 Training Training 

32 34d R=3,4-dichloro; R1= diethyl,R2= -SHC4H9 3.59 Training Training 

33 E18 R= -H; R1, R2= -piperidinyl 3.56 Training Test 

34 E20 R= -H; R1, R2= -p-toluidininyl 3.56 Training Training 

35 F21 R= 4-chloro; R1, R2= -o-toluidininyl 3.47 Training Training 

36 84B R= 4-chloro;R1= -CH3,R2= hydroxyethylpiperazinyl 3.47 Training Training 

37 F2 R= 4-chloro; R1, R2= -cyclopropyl 3.44 Training Training 

38 F18 R= 4-chloro; R1, R2= -piperidinyl 3.44 Training Training 

39 23c R= 4-chloro; R1= diethyl, R2= furan-2-methyl 3.44 Training Training 

40 82B R= 4-chloro; R1= -CH3, R2= methylpiperazinyl 3.31 Training Training 

41 E21 R= -H; R1, R2= -o-toluidininyl 3.2 Training Test 

42 F3 R= 4-chloro; R1, R2= -n-propyl 3.2 Test Training 

43 28d R=3,4-dichloro; R1= diethyl, R2= -Cl 3.2 Training Training 

44 21c R= 4-chloro; R1= diethyl, R2= -n-butyl 3.13 Test Test 

45 12b R= 3, 4-dichloro; R1= -H, R2= -n-butyl 3.11 Training Training 

46 F4 R= 4-chloro; R1, R2= -dimethyl 3.1 Training Training 

47 F19 R= 4-chloro; R1, R2= -cyclohexyl 3.1 Training Test 

48 72B R= 4-chloro; R1= -H, R2= -H 2.99 Test Training 

                  



49 4a R= 4-chloro; R1= -H, R2= -phenyl 2.98 Training Training 

50 F20 R= 4-chloro; R1, R2= -p-toluidininyl 2.98 Training Training 

51 29d R=3,4-dichloro; R1= diethyl, R2= isopropyl 2.94 Training Training 

52 35d R=3,4-dichloro; R1= diethyl, R2= -SHC6H5 2.92 Training Training 

53 69B R= 4-chloro; R1= -H, R2= hydroxyethylpiperazinyl 2.82 Training Training 

54 E4 R= -H; R1, R2= -dimethyl 2.82 Training Test 

55 E19 R= -H; R1, R2= -cyclohexyl 2.82 Training Training 

56 E29 R= -H; R1, R2= -benzyl 2.82 Training Training 

57 F29 R= 4-chloro; R1, R2= -benzyl 2.82 Test Training 

Numerical representation of the structural features and atom typing schemes of input compounds 

required for the quantitative prediction using QSAR techniques. The hashed fingerprints, Molprint2D 

were used to generate the binary fingerprint for all the compounds used in this study. Molprint2D 

considers each heavy atom in a structure and is characterized by an environment that consists of all 

other heavy atoms within a distance of two bonds [11]. We have used supervised learning method that 

couples Direct Kernel-based Partial Least Squares regression (DKPLS) [12] with molprint2D 

fingerprints in Canvas software [13] to obtain predictive and interpretable 2D QSAR models. 

Comparison with other eigenvector methods, DKPLS is highly efficient and its low rank approximation 

tends to yield more robust regression models that can be visualized in terms of favourable and 

unfavourable structural characteristics on the molecule. It produces the low rank approximation which 

is suited well to regressions and in turn gives accurate results. Orthogonal factorization is used by 

DKPLS regression to build low ranked estimates of kernel matrix K. These approximation and 

estimates were used to evaluate regression in this work. Total emphasis was on how this technique is 

adjusted to use through fingerprints generated using molprint along with QSAR visualization and 

cunning of uncertainties in the estimates of the models. Gaussian kernel matrix with auto scaled 

variable pairs denoted by column vectors Xi & Xj is defined as follows. 

Kij = exp(-|| Xi – Xj ||2 / 2σ2 

Atom based 3D QSAR models were developed based on our previous work on antimalarials [14]. 

 

2.2 Chemistry 

The QSAR study performed in this work was considered as the basis for the design of new potent 

thiazolyl-triazine derivatives as antimalarial compounds. These compounds were synthesized using 

scheme 1.  

 

 

                  



Scheme 1: Synthesis of thiazolyl-traizine derivatives 
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2.3 Antimalarial activity evaluation 

The chloroquine sensitive 3D7 and  chloroquine resistant Dd2  strain  of P. falciparum was routinely 

maintained in medium, rose well park memorial institute-1640 (RPMI-1640) supplemented with 25 

mmol 4-(2-hydroxyethyl)-1-piperazin-ethane sulphonic acid (HEPES), 1% D(+)-glucose, 0.23% 

sodium bicarbonate and 10% heat inactivated human serum. The asynchronous parasites of P. 

falciparum were synchronized after 5% D-sorbitol treatment to obtain only the ring stage parasitized 

cells. The initial ring stage parasitaemia of 0.8–1.5% at 3% haematocrit in a total volume of 200 µL of 

medium RPMI-1640 was uniformly maintained for carrying out the assay. 

The in-vitro antimalarial assay was carried out with modified micro-assay of Reickmann and co-

workers [1] in 96 well-microtitre plates. A stock solution of 5 mg/mL of each of the test samples was 

prepared in DMSO and subsequent dilutions were made with culture medium. The test compounds in 

20 µL volume at 50 µg/mL concentration in duplicate well were incubated with parasitized cell 

preparation at 37
°
C and 5% CO2 level in a carbon dioxide incubator. After 36–40 h of incubation, the 

blood smears were prepared from each well and stained with 3% Giemsa. The level of parasitemia in 

terms of % dead rings along with schizonts was determined by counting a total of 100 asexual parasites 

microscopically. Chloroquine was used as reference standard drug. Table 4 shows the in-vitro 

antimalarial activity of the synthesized molecules. 

                  



3. Results and Discussion 

3.1 QSAR modelling 

3.1.1 2D-QSAR modelling 

The QSAR model was generated using 47 training set compounds using KPLS method with a 

maximum of four latent factors based on standard deviation of regression (SD). The model was 

validated using 10 test set compound for evaluating the predictive power of the model. The statistics of 

the generated model was shown in the table 2. As listed in the table, at four factor KPLS model showed 

a good internal correlation (R
2
) of 0.79 between the actual activity and predicted activity (figure 1) for 

the training set. The model is having high predictive power for the external dataset having a correlation 

(Q
2
) of 0.78. 

Table 2: 2D QSAR statistics for the 4 latent variables generated using KPLS method 

Factors 1 2 3 4 

SD 0.59 0.43 0.36 0.34 

R
2
 0.33 0.65 0.75 0.79 

Q
2
 0.28 0.64 0.72 0.78 

RMSE 0.59 0.42 0.36 0.33 

 

Figure 1: A) Actual and predicted activity of training set compounds obtained in 2D QSAR. B) Actual and predicted 

activity of test set compounds obtained in 2D QSAR. 

3.1.2 2D QSAR Model Visualization  

A visual analysis of atomic effects for Canvas KPLS models built from molprint 2D were shown in 

Figure 2 for compounds with strong (H-bonded interaction) and weak affinities (ionic interaction) for 

the antimalarial compounds in this study. Favourable atoms for the activity were coloured red, whereas 

non-favourable atoms were coloured blue. Further the colour intensity reflects the strength of the effect. 

                  



In the highest active compound  A5, the two amino methyl substitutions on the 1,3,5-triazine  and the 

second Carbon of di-chloro substituted phenyl were mapped with high intense red color indicating that 

these groups were important for strong binding of antimalarial compounds with the target. Another 

active compound H18, the anionic oxygen of NO2 group substituted on meta- position of phenyl ring 

was showing strong red colour and contributed for higher activity. The nitrogen atom of the two 

piperidine ring substituted on the 1,3,5-triazine ring was also contributing for the activity. The 

hydrophobic carbon (blue color) of piperadine ring was not favouring the activity. This trend was also 

observed in least active compounds F29 and 29C, the hydrophobic atoms on these compounds were 

showing high intense blue colour and reduced activity. 

 

Figure 2: 2D-QSAR visualization of highest active compounds A5 (A), H18 (B) and least active compounds 29d (C), F29 

(D). Atoms mapped with red are favourable for activity and the blue are non-favourable for the activity. 

 3.1.3 3D-QSAR Modelling 

Further to explore the 3D features of the substitutions on the phenyl thiazol-2-yl-1,3,5-triazine-2 amine 

scaffold and to quantify the activity, a supervised learning model using atom based properties a 3D 

QSAR model was generated. During the generations of atom-based QSAR, all the compounds were 

aligned according to similarity in their shape with respect to the highest active compound. Based on the 

occupancy of type of atom of each aligned molecule in 3 dimensional grid space quantitative models 

were generated. The types of atoms were hydrogen bond donors, hydrophobic/non-polar (H), negative 

                  



ionic (N), positive ionic (P) and electron-withdrawing (W) atoms. Each atom occupied in the grid space 

was converted into bit string. The bit string was a collection of binary valued 3D descriptors and 

considered as independent variables to generate a quantitative model using partial least squares (PLS). 

For generating the models, 57 antimalarial compounds synthesized earlier by our group were divided 

into 45 compounds as training set and 12 compounds as test set using unsupervised learning methods 

(described elsewhere in the paper). Using 5 latent variables and with leave-one-out (LOO) cross 

validation method 3D QSAR model was generated and the predictive statistics was illustrated in the 

table 3 and figure 3. As show in table 3, 5 factorial models were having the highest internal correlation 

(R
2
) of 0.82 and also external correlation of 0.81. 

Table 3: Atom Based 3D-QSAR statistics for the 5 latent variables generated by using PLS method 

Factors 1 2 3 4 5 

SD 0.58 0.44 0.37 0.34 0.33 

R
2
 0.37 0.65 0.75 0.8 0.82 

R
2
 CV 0.26 0.45 0.55 0.59 0.6 

P 5.52e-08 1.29e-10 6.26e-13 5.49e-14 4.4e-14 

RMSE 0.66 0.4 0.31 0.33 0.3 

Q
2
 0.1 0.66 0.8 0.78 0.81 

Pearson-r 0.34 0.85 0.93 0.95 0.95 

 

Figure 3: The scatter plot between the actual activity (X-axis) vs predicted activity (Y-axis) obtained by using 5 latent 

variables of atom based QSAR. A is the training set correlation and B is the test set correlation. 

3.1.4 3D-QSAR Visualisation 

                  



The 3D-countours generated by the atom based QSAR model showed the significance of the 

substituents on the biological activity. Figure 4 illustrates the most significant favourable (blue) and 

unfavourable interactions (red) when the two-factor QSAR model was applied to active (IC50 > 4.2 µM) 

and inactive compounds (IC50 < 3.2 µM). 

The large blue region around potential hydrogen bond donors on the substitutions of 1, 3, 5-triazine 

ring suggest that these features were important for high activity. The compounds 66B, 79B were 

showing higher activity due to the presence of donor group at this position. The blue contours of 

electronegative, electro positive and electron withdrawing on the active compounds were overlapping 

with the NO2 group of highly active compounds H16, H18 and H2. The small blue colour region near 2 

and 4 substitution of 1, 3, 5-triazine ring suggested that smaller hydrophobic groups were tolerable at 

this region and hence the N-methyl substitutions of the compound A5 and A3 were showing highest 

activity. A large red region depicted the non-favourable interaction for activity. Most of the inactive 

compounds were substituted with large hydrophobic groups at these positons and hence they were 

weak binders.  The blue colour path near ortho and meta-position of phenyl ring showed the favourable 

region of the hydrophobic groups. The presence of the chlorine atom at this position tends to increase 

the activity. But the non-favourable hydrophobic feature at para position of the phenyl ring decreases 

the antimalarial activity for the compounds. 

 

 

                  



Figure 4: A- Hydrogen Bond Donor, B- electronegative, C- electron withdrawing, D- electro positive, E-, electro positive 

and hydrophobic maps on active compounds. Blue colour contours indicates the favourable regions and red colour indicates 

the non-favourable regions. 

 

3.1.5 Visualizations of 2D and 3D QSAR models on newly designed compounds  

Based on the results of the 2D and 3D QSAR studies, favourable nitrogen atom was kept on 1, 3, 5-

triazine ring and the non-favourable hydrophobic atoms were substituted with favourable hydrogen 

bond donors like substituted piperazine. We have tried piperazine bioisosteres like 2,6-diazaspiro [3.3] 

heptane, (1S,4S)-2,5-diazabicyclo [2.2.1] heptane and octahydropyrrolo [3,4-c] pyrrole. Among all the 

bioisosteres piperazine moiety has good synthetic feasibility, so preceded with piperazine ring. Further 

as detected from 3D QSAR study, the favourable hydrophobic region at meta position of the phenyl 

ring was obtained by substituting the hydrogen with chlorine atom to design new analogues. The 

overlap of the 2D and 3D visualization (Figure 5) showed that this group has favourable effect on the 

activity. Two analogues with piperazine on triazine ring and chlorine at meta position was synthesized 

and tested for their in-vitro antimalarial activity. Further to validate our hypothesis we synthesized 3 

more compounds which were predicting low activity with both the QSAR models and were tested. 

 

Figure 5: Visualizations of 2D and 3D QSAR models on newly designed compounds; A. 2D visualization map; B are the 

countor maps of 3D QSAR on the new design. 

 

3.2 Chemistry 

N2-(4-(3,4-dichlorophenyl)thiazol-2-yl)-N4-methyl-6-(piperazin-1-yl)-1,3,5-triazine-2,4-diamine 

(201D): Physical state: yellow powder; % yield: 71; m.p.: 280ºC; Rf (silica gel G): 0.66 (ethyl 

                  



acetate:hexane, 1:1); Solubility: DMSO, ethanol, methanol, chloroform. UVmax (nm): 290.0; FTIR (cm
-

1
) 3369.20 (N-H sec, Str.); 3103.60 (C-H Str.); 1237.21, 1182.08 (CN, Ar.) 

1
H NMR (MeOD): δ ppm: 

2.5 (s, 3H, methyl), 2.9 (d, 4H, piperazine), 3.4 (d, 4H, piperazine), 6.7 (s, 1H, thiazole), 7.5 (d, 2H, 

phenyl), 7.8 (d, 2H, phenyl). 
13

CNMR (MeOD): δ, ppm: 40.01, 122.38, 124.73, 126.67, 128.22, 129.40, 

149.01, 152.21, 164.77, 167.32, 169.21. MS (EI) m/z 436.42 (M +1). 

 

2-(4-(4-(4-(3,4-dichlorophenyl)thiazol-2-ylamino)-6-(methylamino)-1,3,5-triazin-2-yl)piperazin-1-

yl)ethanol (204D): Physical state: yellow sticky solid; % yield: 65; m.p.: 218ºC; Rf (silica gel G): 0.51 

(ethyl acetate:hexane, 1:1); Solubility: DMSO, ethanol, methanol, chloroform. UVmax (nm): 244.0; 

FTIR (cm
-1

) 3388.47 (O-H, str.); 3266.41 (N-H sec, Str.); 2988.98 (C-H Str.); 1238.79, 1187.04 (CN, 

Ar.) 
1
H NMR (MeOH): δ ppm: 2.5 (s, 3H, methyl), 2.8 (d, 4H, piperazine), 3.7 (d, 4H, piperazine), 6.4 

(s, 1H, Thiazole), 7.5 (d, 2H, phenyl), 7.7 (d, 2H, phenyl). 
13

CNMR (MeOD): δ,ppm: 40.19, 

52.77,125.54, 129.22, 131.90, 132.32, 152.11, 155.44, 165.44, 169.43, 171.32. MS (EI) m/z 479.82 (M 

+1). 

 

6-(4-methylpiperazin-1-yl)-N2-(4-phenylthiazol-2-yl)-1,3,5-triazin e-2,4-diamine (7A): Physical state: 

brown sticky solid. Yield 62%, m.p.:40
o
C, Rf value TLC (Hexane:Ethylacetate, 1:1) 0.83, Solubility: 

Methanol, DMSO, ethanol, chloroform, UVmax (nm): 309.0; FTIR(cm
-1

) 3449.34, 3359.67 (N-H 

primary, Str.); 1640.02, 851.83(N-H primary, Bend.); 1451.92 (N-H secondary, Bend.); 2949.05 

2809.33 (C-H Str.); 1279.57, 1185.64 (CN, Ar.), 
1
H NMR (MeOD):δ ppm: 2.302 (m, 3H, methylene), 

2.41 (d, 4H, piperazine), 3.67 (d, 4H, piperazine), 6.66 (s, 1H, Thiazole), 7.25 (m, 1H, phenyl) 7.35 (d, 

2H, phenyl), 7.47 (d, 2H, phenyl).  
13

CNMR (MeOD): δ ppm: 42.99, 45.15-46.31, 55.21, 6.85, 76.87-

77.72, 101.62, 125.77-128.56, 134.67, 150.73, 168.27, MS (EI) m/z 369.12 (M +1). 

 

2-(4-(4-(methylamino)-6-(4-p-tolylthiazol-2-ylamino)-1,3,5-triazin-2-yl)piperazin-1-yl)ethanol (144C): 

Physical state: yellow sticky; % yield: 79; m.p.: 45ºC; Rf (silica gel G): 0.74 (ethyl acetate:hexane, 

1:1); Solubility: DMSO, ethanol, methanol; UVmax (nm): 233.0; FTIR (cm
-1

) 3301.66 (O-H, Str.); 

1592.84 (N-H sec, Bend.); 2941.19, 2820.99 (C-H Str.); 1303.26, 1262.86 (CN, Ar.) 
1
H NMR (MeOD): 

δ ppm: 2.2 (s, 3H, methyl), 2.4 (s, 3H, methyl), 2.7 (d, 4H, piperazine), 3.9 (d, 4H, piperazine), 6.6 (s, 

1H, Thiazole), 7.4 (d, 2H, phenyl), 7.6 (d, 2H, phenyl). 
13

CNMR (MeOD): δ,ppm: 40.22, 52.09, 

121.22, 123.22, 125.01, 126.59, 127.71, 147.67, 150.98, 163.02, 166.65, 167.88. MS (EI) m/z 426.21 

(M +1). 

                  



N2,N2-dimethyl-6-(piperazin-1-yl)-N4-(4-p-tolylthiazol-2-yl)-1,3,5-triazine-2,4-diamine (171C): 

Physical state: yellow sticky; % yield: 73; m.p.: 68ºC; Rf (silica gel G): 0.65 (ethyl acetate:hexane, 

1:1); Solubility: DMSO, ethanol, methanol; UVmax (nm): 277.0; FTIR (cm
-1

) 3361.61 (N-H sec, Str.); 

1560.21 (N-H sec, Bend.); 2922.17, 2865.72 (C-H Str.); 1367.96, 1230.58 (CN, Ar.) 
1
H NMR (MeOD): 

δ ppm: 2.2 (s, 3H, methyl), 2.5 (s, 3H, methyl), 3.2 (d, 4H, piperazine), 3.7 (d, 4H, piperazine), 6.7 (s, 

1H, Thiazole), 7.6 (d, 2H, phenyl), 7.8 (d, 2H, phenyl). 
13

CNMR (MeOD): δ,ppm: 40.29, 51.89, 

124.77, 128.33, 129.45,130.98, 150.62, 164.79, 167.19, 168.21. MS (EI) m/z 396.37 (M +1).  

3.3 Antimalarial activity evaluation 

Table 4: In -vitro antimalarial activity of the synthesized molecules 

*The strain used was RKL2 (One of the resistant strains of P.  falciparum) 

 

Molecules that were designed based on the observations from 2D & 3D QSAR had shown good anti-

malarial activity. All the molecules were tested against sensitive and resistant strains of P. falciparum. 

Among five molecules 201D and 204D had shown 100% inhibition on resistant strain (Dd2) of P. 

falciparum. Both the molecules were highly active on same resistant strain (Dd2) with IC50 of 3.02 and 

2.17 µM. As predicted remaining three molecules (7A, 144C and 171C) were depreciated in biological 

activity when compared to active molecules. In-vitro activities of all the synthesized molecules were 

shown in table 4.  

4. Conclusion 

The 2D and 3D QSAR models generated by the machine learning approach to understand the relevance 

of different substitutions on the thiazolyl-triazine core has suggested the presence of favourable 

secondary amino nitrogen and replacement of the non-favourable hydrophobic atoms with favourable 

hydrogen bond donors like substituted piperazine on triazine ring. Also, the favourable hydrophobic 

interaction of the phenyl ring was obtained by substituting the hydrogen with chlorine atoms at third 

and fourth positions. These findings of the ML approach was further validated by the synthesis of five 

Molecule % parasitemia 
(3D7) 

% parasitemia 
(Dd2/RKL2) 

IC50 
(Dd2/RKL2) 

(µM) 

pIC50 

 
Predicted 
Activity – 
2D QSAR 

Predicted 
Activity – 
3D QSAR 5 µg/ml 50 µg/ml 5 µg/ml 50 µg/ml 

201D 98.5 100 71.0 100 3.02 5.52 4.92 5.14 

204D 96.0 98.5 69.0 100 2.17 5.66 4.95 5.23 

7A 21.5 46.5 17.5
*
 32.5

*
 43.8

*
 4.35 3.94 4.75 

144C 31 47 0
*
 16.5

*
 38.43

*
 4.41 4.17 4.03 

171C 19 47 0
*
 13.5

*
 39.24

*
 4.40 3.89 4.14 

                  



compounds, two having chlorine substitution on the phenyl ring whereas the other three was having 

hydrogen or methyl groups attached to the phenyl ring. The two thiazolyl-traizine derivatives, 201D 

and 204D proved to be active against resistant strains of Plasmodium falciparum and can be further 

developed as next level anti-malarials to diminish the global burden using the model detailed in this 

study. This interdisciplinary process of combining medicinal chemistry, supervised machine learning 

and QSAR had steered the advancement of alternate approaches in antimalarial drug discovery process. 
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