

Published on Web 08/06/2005

Chelation-Controlled Diastereoselective Reduction of α-Fluoroketones

Pramod K. Mohanta,[†] Todd A. Davis,[‡] Jeremy R. Gooch,[‡] and Robert A. Flowers, II*,[†]

Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061

Received April 19, 2005; E-mail: rof2@lehigh.edu

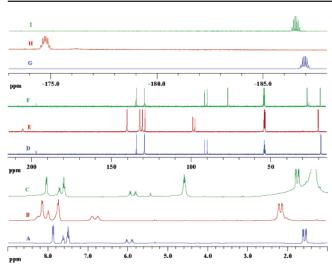
The replacement of hydrogen or heteroatoms with fluorine can provide an enormous impact on the biological activity of substrates.1 There is currently great demand for the development of new synthetic methodologies to obtain optically active pure isomers of fluorine-containing substrates, and in particular, stereoselective approaches to α -fluoro alcohols are important in numerous drug targets.² In recent decades, considerable progress has been made in controlling the stereochemistry of newly formed chiral centers by aid of interactions between carbonyls and polar neighboring groups (e.g., alkoxy, amine, etc.) with Lewis acids (LA) through chelation.³ While there are a number of approaches to the stereoselective synthesis of α -fluoro alcohols, to the best of our knowledge, none utilize chelation with Lewis acids to control stereoselectivity.^{4,5} To examine the use of chelation control, a series of α -fluoroketones were synthesized and reduced with common reductants in the presence of TiCl₄ and Ti(OⁱPr)₄. The data described herein show two important features: (1) The identity of the Tibased Lewis acid has a large impact on the diastereoselectivity of reduction, and (2) NMR (¹H, ¹³C, ¹⁹F) data are consistent with the presence of chelation between TiCl₄ and α -fluoroketones under conditions utilized in synthetic studies.

Salts of titanium(IV) are known to be effective Lewis acids for chelation-controlled reactions of α - and β -alkoxyketones,³ and since fluorine is a relatively hard, electron-rich atom, analogous approaches should work for α - and β -fluoroketones. A mechanistic pathway for chelation-controlled reduction of α -fluoroketones requires a relatively strong interaction between Ti-based Lewis acids and fluorine. Examination of the bond strengths of diatomic titanium–fluorides (Ti–F, 136 ± 8 kcal/mol) shows that there is a strong interaction between fluorine and titanium.⁶ Further evidence supporting the interaction of Lewis acids with fluoro substituents is found in the recent work of Hessen and co-workers who have shown that the titanocene cation has a high affinity for fluorine.⁷ Another potential advantage of using Ti(IV) Lewis acids is their solubility in a range of organic solvents.

To examine the concept of chelation control in detail, α -fluoropropiophenone was prepared using standard methods. Reductions were examined in CH₂Cl₂ and Et₂O using the mild reductants NaBH₄ and LiBH₄ in the presence and absence of TiCl₄ and Ti(OⁱPr)₄. When the Lewis acids were used, they were premixed with substrate for 15 min at -78 °C before addition of reductant. Diastereomers were determined by ¹H and ¹⁹F NMR coupling constants, and the selectivity was determined by GC. The results of these experiments are shown in Table 1. In the absence of a Lewis acid, NaBH₄ provides the *anti* diastereomer predominantly, whereas LiBH₄ provides the *syn* isomer, but overall, the selectivity was modest. The addition of TiCl₄ produced the *syn* diastereomer regardless of the solvent or reductant used, and the selectivity is

Table 1.	Data for Reduction of α -Fluoropropiophenone in the
Presence	and Absence of Ti-Based Lewis Acids ^a

entry	Lewis acid	reducing agent	solvent	syn:anti	yield (%)
1	none	NaBH ₄	Et ₂ O	1:2	q ^b
2	none	NaBH ₄	CH_2Cl_2	1:4	$\hat{\mathbf{q}}^c$
3	none	$LiBH_4$	Et ₂ O	3:1	q^b
4	none	$LiBH_4$	CH_2Cl_2	2:1	\mathbf{q}^c
5	TiCl ₄	$NaBH_4$	Et_2O	9:1	88^b
6	TiCl ₄	$NaBH_4$	CH_2Cl_2	6:1	83 ^c
7	TiCl ₄	$LiBH_4$	Et_2O	24:1	96 ^b
8	TiCl ₄	$LiBH_4$	CH_2Cl_2	7:1	76^{d}
9	Ti(O ⁱ Pr) ₄	$LiBH_4$	Et ₂ O	1:3	99^{b}
10	Ti(O ⁱ Pr) ₄	$LiBH_4$	CH_2Cl_2	1:2	98 ^c


^{*a*} Experimental conditions: 1 equiv of substrate is treated with 1.25–2.5 equiv of LA at -78 °C; 2 equiv of metal hydrides with respect to substrate is used. ^{*b*} Reaction time = 6 h. ^{*c*} Reaction time = 7 h. ^{*d*} Reaction time = 4 h.

higher in the presence of this Lewis acid with higher diastereoselectivities in $Et_2O.^8$ In particular, the combination of TiCl₄ with LiBH₄ in Et_2O produces very high *syn* selectivity of 24:1. Conversely, the addition of Ti(O'Pr)₄ to the substrate prior to reduction by LiBH₄ provides the *anti* diastereomer predominantly.

The stereochemical results of the reactions shown in Table 1 can be explained using Cram's chelation⁹ and the Felkin-Ahn¹⁰ models. In the absence of chelation, the dipoles of the carbonyl and C-F bond align to minimize repulsion.¹¹ Attack on this conformation by reductant would be expected to provide the anti product predominantly. Conversely, the presence of a Lewis acid capable of interacting with the carbonyl oxygen and fluorine would provide a chelated intermediate, and attack on the less hindered side of this conformation would lead to the syn fluoro alcohol. The anti product reduction is observed when NaBH4 is used alone or when Ti(OⁱPr)₄ is used as the LA in concert with LiBH₄, indicating that the Na⁺ or the sterically encumbered LA are incapable of providing a chelated intermediate. When LiBH₄ is used alone or when TiCl₄ is used as the LA with either reductant, the syn diastereomer is the major product, a finding consistent with chelation.

To examine the likelihood of chelation in detail, NMR experiments were initiated to explore the influence of the Ti-based Lewis acid on α -fluoropropiophenone. The seminal work of Keck has shown the utility of this approach in exploring the extent of chelation in β -alkoxyketones.¹² Figure 1 contains the ¹H, ¹³C, and ¹⁹F NMR spectra of α -fluoropropiophenone in the presence and absence of 1.25 equiv of Ti(IV)-based Lewis acids in CD₂Cl₂ at -78 °C. Further addition of up to 2.5 equiv of Lewis acid showed no change in the NMR spectrum. In the absence of LA, the proton signals of $-CH_3$ and -CHF- appear at δ 1.58 (dd, $J_{\text{HH}} = 6.7$ Hz, $J_{\text{HF}} = 24.4$ Hz) and δ 5.96 (dq, $J_{\text{HH}} = 6.7$ Hz, $J_{\text{HF}} = 49.0$ Hz) (Figure 1A), respectively. A significant downfield shift of the corresponding proton signals to δ 2.15 (dd, $J_{\text{HH}} = 6.4$ Hz, $J_{\text{HF}} = 28.8$ Hz, CH_3) and δ 6.82 (bdd, $J_{\text{HH}} = 5.8$ Hz, $J_{\text{HF}} = 50.4$ Hz,

[†] Lehigh University. [‡] Texas Tech University.

Figure 1. All spectra are recorded at -78 °C in CD₂Cl₂.¹H, ¹³C, and ¹⁹F NMR spectra of 2-fluoropropiophenone are shown in A, D, and G, respectively. Spectra B, E, H and C, F, I are the ¹H, ¹³C, and ¹⁹F NMR spectra of 2-fluoropropiophenone—TiCl₄ complex and 2-fluoropropiophenone—TiCl₃ complex and 2-fluoropropiophenone—TiCl₄ complex and 2-fluoropropiophenone—TiCl₄ to trace amounts of CHDCl₂ in CD₂Cl₂, whereas the additional peaks at δ 1.41 and 4.67 in spectrum C are due to isopropoxide. In all ¹²C NMR spectra, the peak at δ 54.0 is due to CD₂Cl₂, and the peaks at δ 25.54 in F is due to 2-propanol impurity.

CHF) are observed when ¹H NMR is recorded in the presence of TiCl₄ under similar conditions (Figure 1B).

In the presence of TiCl₄, the ¹³C spectrum shows that the carbonyl carbon, CH₃CFH- and CH₃ appear at δ 205.8 (bs), δ 98.36 (d), and δ 20.12 (d) (Figure 1E), whereas the respective ¹³C signals of α -fluoropropiophenone in the absence of Lewis acid appear at δ 196.17 (d), δ 90.93 (d), and δ 18.11 (d) (Figure 1D). Addition of TiCl₄ also results in a downfield shift of the aromatic ¹³C signals $[\delta$ 129.0, 130.7, 132.23, 140.33] with respect to original aromatic ¹³C signals [δ 129.0, 129.12, 134.07, 134.47]. In addition, ¹⁹F NMR spectra of α -fluoropropiophenone in the presence and absence of TiCl₄ display the ¹⁹F signal at δ -174.82 (m) and δ -187.0 (m), respectively. Interaction of Ti with the fluorine and the carbonyl, as shown by the concomitant shift of the ¹⁹F signal and ¹³C, provides compelling evidence for the formation of $TiCl_4-\alpha$ -fluoropropiophenone chelate. Furthermore, the ¹H and ¹³C $\Delta\delta$ values for the CH₂ of propiophenone in the presence and absence of TiCl₄ (where chelation is not possible) were 0.46 and 0.93 ppm, respectively, whereas the corresponding ¹H and ¹³C $\Delta\delta$ values for the -CHF α -fluoropropiophenone were 0.86 and 7.43 ppm, further supporting the intermediacy of a chelated intermediate.

In further studies, ¹H and ¹³C NMR spectra of α -fluoropropiophenone obtained in the presence of Ti(OⁱPr)₄ (Figure 1C,F) do not show significant downfield shifts of aliphatic proton and carbon signals (Figure 1A,D). While the Ti(OⁱPr)₄ is bulkier than TiCl₄, the Lewis acidity of alkoxytitanium reagents decreases drastically as chlorides are replaced by alkoxides in the series from TiCl₄ to Ti(OⁱPr)₄, suggesting that the latter might be incapable of chelation.¹³

Taken together, these experiments show the following. (1) The identity of the counterion on the reductant and the Ti-based Lewis acid alters the diastereoselectivity of reduction of α -fluoropropiophenone. (2) NMR data are consistent with chelation between TiCl₄ and α -fluoropropiophenone. For this approach to be useful, it should be applicable to a range of α -fluoroketones. To initially examine the generality of this protocol, a series of α -fluoroketones were reduced using LiBH₄ in the presence and absence of TiCl₄

Table 2. Reduction of $\alpha\text{-}Fluoroketones by LiBH_4$ in Et_2O in the Presence of $\text{TiCl}_4{}^a$

entry	substrate	LA	syn:anti	yield (%)
1	α -fluorotetralone	none	8:1	q
2	α -fluorotetralone	TiCl ₄	27:1	q
3	α -fluoroindanone	none	3:1	98
4	α -fluoroindanone	TiCl ₄	32:1	87
5	3-fluoro-2-butanone	none	1:1	91
6	3-fluoro-2-butanone	TiCl ₄	5:1	85
7	3-fluoro-2-octanone	none	1:1	93
8	3-fluoro-2-octanone	TiCl ₄	6:1	88
9	4-fluoro-5-nonanone	none	2:1	96
10	4-fluoro-5-nonanone	TiCl ₄	5:1	89

^{*a*} Experimental conditions: 1 equiv of substrate is treated with 1.25-2.5 equiv of LA at -78 °C, followed by addition of 2 equiv of LiBH₄. Reaction times were 5-7 h.

(Table 2). In each case, pretreatment with TiCl₄ substantially increased the diastereoselectivity of the reduction, providing a selectivity consistent with chelation. Detailed mechanistic studies on the use of other Lewis acids and the role of solvent on the diastereoselectivity of reductions and bond-forming reactions are currently being examined. The results of these studies will be reported in due course.

Acknowledgment. R.A.F. is grateful to the National Science Foundation (CHE-0413845) and Lehigh University for support of this work. We thank the reviewers for their insightful comments on the manuscript.

Supporting Information Available: General experimental conditions, synthetic procedures, and spectral data (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Welch, J. T.; Eswarakrishnan, S. Fluorine in Bioorganic Chemistry; John Wiley & Sons: New York, 1991. (b) Banks, R. E.; Smart, B. E.; Tatlow, J. C. Organofluorine Chemistry: Principles and Commercial Applications; Plenum Press: New York, 1994. (c) Ojima, I.; McCarthy, J. R.; Welch, J. T. Biomedical Frontiers of Fluorine Chemistry; ACS Symposium Series 639; American Chemical Society: Washington, DC, 1996.
- (2) Myers, A. G.; Barbay, J. K.; Zhong, B. J. Am. Chem. Soc. 2001, 123, 7207-7219.
- (3) (a) Reetz, M. T. Angew. Chem., Int. Ed. Engl. 1984, 23, 556–569. (b) Våbenø, J.; Brisander, M.; Lejon, T.; Luthman, K. J. Org. Chem. 2002, 67, 9186–9191.
- (4) (a) Islas-González, G.; Puigjaner, C.; Vidal-Ferran, A.; Moyano, A.; Riera, A.; Pericàs, M. A. *Tetrahedron Lett.* **2004**, *45*, 6337–6341 and all references therein. (b) Wölker, D.; Haufe, G. J. Org. Chem. **2002**, *67*, 3015–3021.
- (5) Chelation involving Lewis acids and trifluoromethyl or aromatic fluoro groups has been proposed in a number of reductions and bond-forming reactions: (a) Hanamoto, T.; Fuchikami, T. J. Org. Chem. 1990, 55, 4969-4971. (b) Ooi, T.; Kagoshima, N.; Maruoka, K. J. Am. Chem. Soc. 1997, 119, 5754-5755. (c) Ooi, T.; Kagoshima, N.; Uraguchi, D.; Maruoka, K. Tetrahedron Lett. 1998, 39, 7105-7108. (d) Ding, H.; Friestad, G. K. Org. Lett. 2004, 6, 637-640. (e) Itoh, Y.; Yamanaka, M.; Mikami, K. J. Am. Chem. Soc. 2004, 126, 13174-13175. (f) Itoh, Y.; Mikami, K. Org. Lett. 2005, 7, 649-651.
- (6) Lide, D. R. CRC Handbook of Chemistry and Physics, 78th ed.; CRC Press: New York, 1997–1998; p 54.
- (7) Bouwkamp, M. W.; de Wolf, J.; Morales, I. D.; Gercama, J.; Meetsma, A.; Troyanov, S. I.; Hessen, B.; Teuben, J. H. J. Am. Chem. Soc. 2002, 124, 12956–12957.
- (8) The higher syn selectivity in Et₂O is consistent with previous studies on Ti-based reagents utilizing electron-donor solvents: Reetz, M. T.; Westermann, J. Synth. Commun. 1981, 11, 647–654.
- (9) Cram, D. J.; Kopecky, K. R. J. Am. Chem. Soc. 1959, 81, 2748-2755.
- (10) Ahn, N. T. Top. Curr. Chem. 1980, 88, 145-162.
- (11) Wong, S. S.; Paddon-Row, M. N. J. Chem. Soc., Chem. Commun. 1991, 327–330.
- (12) Keck, G. E.; Castellino, S. J. Am. Chem. Soc. 1986, 108, 3847-3849.
- (13) Reetz, M. T. Top. Curr. Chem. 1982, 106, 1-54.

JA052546X