Cite this: Med. Chem. Commun., 2012, 3, 673

www.rsc.org/medchemcomm

CONCISE ARTICLE

Homologous piperazine-alcanols: chiral pool synthesis and pharmacological evaluation

Ralph Holl, Dirk Schepmann and Bernhard Wünsch*

Received 9th March 2012, Accepted 6th May 2012 DOI: 10.1039/c2md20070h

Starting with the proteinogenic amino acids (S)-aspartate and (S)-glutamate the homologous piperazine-alcanols **3** and **4** were prepared in a five step synthesis. The diversity was introduced by N-1 alkylation of the piperazinediones **5** and **6** with various alkyl halides. Subsequent LiAlH₄ reduction of the dioxopiperazine-esters **7** and **8** provided the alcohols **3** and **4**. The ethanol derivatives **3** show similar σ_1 affinity as the methanol derivatives **2**, but increased selectivity over the σ_2 subtype. The corresponding propanol derivatives **4** are considerably less potent. A benzyl or dimethylallyl residue at N-1 appears to be optimal for high σ_1 affinity.

1. Introduction

The σ_1 receptor represents a promising target for the development of innovative therapies of various neurological and neuropsychiatric diseases. It has been shown that σ_1 receptor agonists can be used as antidepressants and antiamnesic drugs. The neuroprotective activity of σ_1 agonists permits the treatment of memory disorders (e.g. Alzheimer's disease, Parkinson's disease) with σ_1 agonists. In animal studies σ_1 receptor antagonists are able to reduce the unpleasant and dangerous effects after withdrawal of cocaine, amphetamine or ethanol from addicted animals. The development of σ_1 antagonists as innovative analgesics with reduced side effects is driven by their potentiation of opioid induced antinociception.¹⁻⁴ Recently the potential of σ_1 antagonists for the treatment of neuropathic pain has been demonstrated.^{5,6} In addition to their CNS effects, σ_1 antagonists are investigated as novel antitumor drugs, since some human tumor cell lines express a high amount of σ_1 and σ_2 receptors.^{7,8}

Since an X-ray crystal structure of the σ_1 receptor protein is not yet available, lead compounds and pharmacophore models^{9,10} of σ_1 ligands are used for the design of novel ligands. The σ_1 pharmacophore models developed by Glennon,¹¹⁻¹³ Langer¹⁴ and Pricl¹⁵ for different classes of compounds show similar features including a basic amino moiety surrounded by 2– 3 hydrophobic regions. The number and distances of the particular structural elements are defined, respectively.

The piperazine ring represents a privileged structural element for the development of potent σ_1 ligands, since both N-atoms can be used for the formation of ionic interactions depending on the *N*-substituents.^{16–18} High σ_1 affinities were reported for 1-butyl-4-(2-phenylethyl)piperazine¹⁹ and 1,4-dibenzylpiperazine

Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Hittorfstraße 58-62, D-48149 Münster, Germany. E-mail: wuensch@uni-muenster.de; Fax: +49-251-8332144; Tel: +49-251-833311

Fig. 1 Design of novel σ_1 ligands based on monocyclic and bicyclic piperazine scaffolds.

derivatives.²⁰ The bicyclic compound **1a** (\mathbf{R}^1 = benzyl) represents a potent σ_1 ligand ($K_i = 6.5$ nM) with restricted conformational flexibility of the piperazine ring (Fig. 1). The stereochemistry and substitution patterns (substituent \mathbf{R}^1) are responsible for the high σ_1 affinity.²¹ Disconnection of the C-2/C-3-bond of **1** leads to 2-hydroxymethyl substituted piperazines **2**. The *p*-methoxybenzyl (PMB) derivative **2a** ($\mathbf{R} = PMB$) interacts with high affinity with σ_1 receptors ($K_i = 12$ nM).²²

Herein we report the synthesis and pharmacological evaluation of piperazine-alcanols **3** and **4**. On the one hand the ethanols **3** (n = 1) and propanols **4** (n = 2) represent homologues of the methanols **2**. On the other hand they result from disconnection of the potent bicyclic compound **1** between C-1 and C-2 (Fig. 1).

2. Synthesis

For the synthesis of the piperazine-alcanols 3 and 4 enantiomerically pure amino acids of nature's chiral pool were used.

Scheme 1 Reagents and conditions: (a) 1. H₃COH, (H₃C)₃SiCl, rt, 16 h; 2. ClCH₂COCl, CH₂Cl₂, NaHCO₃, rt, 16 h; 3. *p*-Methoxybenzylamine (PMB–NH₂), H₃CCN, NEt₃, Bu₄NI, reflux, 48 h. (b) NaHMDS, THF, Bu₄NI, $-78 \degree$ C, 40 min, R–Br, $-78 \degree$ C, 1 h. (c) LiAlH₄, THF, reflux, 16 h. PMB = *p*-methoxybenzyl.

(S)-Aspartate served as a starting compound for the preparation of ethanol derivatives **3** (Scheme 1). The piperazinedione **5** with an acetic acid ester side chain was prepared in a three step procedure comprising esterification of aspartate, chloroacetylation and cyclization with *p*-methoxybenzylamine.²³ Deprotonation of **5** with NaHMDS and subsequent alkylation with different alkyl bromides provided the piperazinediones **7a–c** with various substituents at the N-atom. Finally LiAlH₄ reduction of **7a–c** led to the piperazine-ethanols **3a–c**.

The piperazine-propanol derivatives **4** were prepared in a similar manner starting with (S)-glutamate (Scheme 1). Esterification, chloroacetylation and reaction with *p*-methoxybenzylamine yielded the piperazinedione **6**.²⁴ After N-alkylation the

Table 1	σ_1 and	5 ₂ receptor	affinities	of pi	perazine	-alcanol	derivatives
---------	----------------	-------------------------	------------	-------	----------	----------	-------------

resulting piperazinediones 8a-c were reduced with LiAlH₄ to afford the piperazine-propanol derivatives 4a-c.

In both series of compounds the *p*-methoxybenzyl moiety was attached to the N-atom in 4-position of the piperazine ring, since this residue is the preferred substituent of the lead compounds **1** and **2**. The benzyl moiety at 1-position of **3a** and **4a** corresponds to the benzyl group at 6-position of **1a** and 1-position of **2**. Additionally the dimethylallyl residue, which is often found in σ_1 ligands, was introduced (**3b** and **4b**). According to our experience with bicyclic σ_1 ligands **1**, it was expected that the allyl group is too small to produce potent σ_1 ligands. Nevertheless, the allyl derivatives **3c** and **4c** were prepared in order to analyze the minimal size required for substituents at 1-position.

3. Receptor affinity

Competition experiments with radioligands were used to determine the σ_1 and σ_2 receptor affinities of the piperazine-alcanol derivatives **3** and **4**. In the σ_1 assay the test compounds competed with the radioligand [³H]-(+)-pentazocine for the σ_1 receptors of a standardized preparation from guinea pig brains. Homogenates of rat liver served as the source of σ_2 receptors in the σ_2 assay. Since the radioligand [³H]-1,3-di(*o*-tolyl)guanidine interacts with σ_1 and σ_2 receptors, an excess of non-tritiated (+)-pentazocine was added to mask the σ_1 receptors in the σ_2 assay.²⁵⁻²⁷

The σ receptor affinities of the homologous piperazine-ethanol and -propanol derivatives **3** and **4** are depicted in Table 1 and compared with the affinity data of the smaller homologue **2a** and the conformationally restricted bicyclic compound **1a**. Extension of the side chain from methanol (**2a**) to ethanol (**3a**) led to a slight reduction of σ_1 receptor affinity, but extension from ethanol (**3a**) to propanol (**4a**) led to significant reduction of σ_1 receptor

2-4	

		п	$K_{\rm i} \pm {\rm SEM} [{\rm nM}] (n=3)^a$		
Compound	R ¹		σ_1	σ_2	σ_1/σ_2 selectivity
1a (ref. 21)	CH ₂ C ₆ H ₅		6.5 ± 0.67	806	124
2a (ref. 22)	$CH_2C_6H_5$	0	12 ± 1.4	70 ± 10	6
3a	$CH_2C_6H_5$	1	20 ± 6.0	>1000	>50
3b	$CH_2CH = C(CH_3)_2$	1	18 ± 8.0	>1000	>55
3c	$CH_2CH=CH_2$	1	1080	>5000	>5
4a	$CH_2C_6H_5$	2	188 ± 61	>5000	>26
4b	$CH_2CH = C(CH_3)_2$	2	300 ± 21	>5000	>16
4c	CH ₂ CH=CH ₂	2	1870	>2000	~ 1
Haloperidol			3.9 ± 1.5	78 ± 2.0	20
Di-o-tolylguanidine		61 ± 18	42 ± 15	0.7	
(+)-Pentazocine			4.2 ± 1.1		

^{*a*} Triplicates were recorded only for high affinity compounds. The affinity of compounds, which did not reduce significantly the radioligand binding in the first assay, was recorded only once.

affinity. Piperazines **3b** and **4b** with the dimethylallyl moiety at N-1 show similar σ_1 receptor affinities as the corresponding benzyl derivatives **3a** and **4a**, respectively. However, the allyl moiety (**3c** and **4c**) appears to be too small to produce strong lipophilic interactions during binding at the σ_1 receptor protein. Generally the propanol derivatives **4** show considerably lower σ_1 affinities than the ethanol derivatives **3**.

The σ_2 affinity of the piperazine-ethanol and -propanol derivatives **3** and **4** is generally very low ($K_i > 1 \mu M$), which leads to high selectivity for the σ_1 receptor over the σ_2 receptor. The σ_1/σ_2 selectivity of the ethanol derivatives **3a** (>50-fold) and **3b** (>55-fold) is about 10-fold higher than the moderate σ_1/σ_2 selectivity of the methanol derivative **2a**.

4. Conclusion

The homologous piperazine-alcanols **3** and **4** were prepared by a five step synthesis starting with enantiomerically pure amino acids (S)-aspartate and (S)-glutamate. Homologization of the methanol side chain (**2a**) to the ethanol side chain (**3a**) retains σ_1 affinity but increases σ_1/σ_2 selectivity. A further extension to a propanol side chain (**4**) led to reduced σ_1 affinity indicating the ethanol side chain to be optimal for interaction with the σ_1 receptor protein. The substituent at N-1 should have a considerable size (*e.g.* benzyl, dimethylallyl), since the allyl derivative **3c** shows only very low σ_1 affinity. This observation is in good accordance with the pharmacophore models mentioned in the Introduction, which postulate at least two hydrophobic pockets at the σ_1 receptor protein accepting sterically demanding substituents.

5. Experimental, chemistry

5.1. General

Unless otherwise noted, moisture sensitive reactions were conducted under dry nitrogen. THF was dried with sodium/benzophenone and was freshly distilled before use. Thin layer chromatography (TLC): Silica gel 60 F254 plates (Merck). Flash chromatography (FC): Silica gel 60, 40–64 µm (Merck); parentheses include: diameter of the column, eluent, fraction size, $R_{\rm f}$ value. Melting point: Melting point apparatus SMP 3 (Stuart Scientific), uncorrected. Optical rotation: Polarimeter 341 (PerkinElmer); 1.0 dm tube; concentration *c* [g per 100 mL], the unit of $[\alpha]_{\rm D}^{20}$ [grad mL dm⁻¹ g⁻¹]. MS: MAT GCQ (Thermo-Finnigan); IR: IR spectrophotometer 480Plus FT-ATR-IR (Jasco). ¹H NMR (400 MHz), ¹³C NMR (100 MHz): Unity Mercury Plus 400 spectrometer (Varian); δ in ppm related to tetramethylsilane; coupling constants are given with 0.5 Hz resolution.

HPLC: method 1: Merck Hitachi Equipment; UV detector: L-7400; autosampler: L-7200; pump: L-7100; degasser: L-7614; column: LiChrospher® 60 RP-select B (5 µm); LiCroCART® 250-4 mm cartridge; flow rate: 1.000 mL min⁻¹; injection volume: 5.0 µL; detection at $\lambda = 210$ nm; solvents: A: water with 0.05% (v/v) trifluoroacetic acid; B: acetonitrile with 0.05% (v/v) trifluoroacetic acid; gradient elution: 0.0 min: 90.0% of A, 10.0% of B; 4.0 min: 90.0% of A, 10.0% of B; 29.0 min: 0.0% of A, 100.0% of B; 31.0 min: 0.0% of A, 100.0% of B; 31.5 min: 90.0% of A, 10.0% of B; 40.0 min: 90.0% of A, 10.0% of B. Method 2: equipment: pump: HPLC pump 64 (Knauer); UV-Detector: Variable Wavelength Monitor (Knauer); data acquisition: D-2500 Chromato-Integrator (Merck Hitachi); injection volume: 20.0 μ L; stop time: 2 × $t_{\rm R}$; (a) column: LiChroCART® 250-4 with Superspher® 100 RP-18; flow rate: 0.6 mL min⁻¹; detection: wavelength: 235 nm; solvent: methanol–water = 65 : 35 + 0.1% triethylamine; (b) column: LiChroCART® 250-4 with Superspher® 100 RP-18; flow rate: 0.6 mL min⁻¹; detection: wavelength: 235 nm; solvent: methanol–water = 50 : 50 + 0.1% triethylamine; (c) column: Hibar® RT 250-4 with LiChrospher® 100 RP-18 (5 μ m); flow rate: 1.0 mL min⁻¹; detection: wavelength: 254 nm; solvent: acetonitrile–water = 40 : 60 + 0.1% triethylamine; (d) column: Hibar® RT 250-4 with LiChrospher® 100 RP-18 (5 μ m); flow rate: 1.0 mL min⁻¹; detection: wavelength: 254 nm; solvent: acetonitrile–water = 25 : 75 + 0.1% triethylamine.

5.2. General procedures

5.2.1. General procedure A – alkylation of piperazinediones 5 and 6. Under N₂ atmosphere a solution of piperazinedione 5 or 6 (1 eq.) and tetrabutylammonium iodide (0.2 eq.) in THF was cooled to -78 °C. Then a 2.0 M solution of sodium hexamethyldisilazane in THF (1.1 eq.) was added dropwise. After stirring the mixture at -78 °C for 40 min, the alkyl bromide (5 eq.) was added. The mixture was stirred at -78 °C for 1 h and then allowed to warm to room temperature. After stirring the mixture at ambient temperature for 2 h, water was added and the mixture extracted with CH₂Cl₂ (3×). The combined organic layers were dried (Na₂SO₄), filtered, and the solvent was removed *in vacuo*. The residue was purified by FC.

5.2.2. General procedure **B** – LiAlH₄ reduction of piperazinediones 7 and 8. Under N₂ atmosphere LiAlH₄ (6 eq.) was added to an ice-cooled solution of piperazinedione 7 or 8 (1 eq.) in THF. The mixture was stirred at 0 °C for 10 min and then heated to reflux for 16 h. Then water was added under ice-cooling until H₂ formation was stopped. The mixture was stirred at 0 °C for 10 min and then heated to reflux for 30 min. After cooling to rt, the mixture was filtered, the solvent removed *in vacuo* and the residue purified by FC.

5.3. Synthesis of the compounds

5.3.1. (+)-(S)-2-[1-Benzyl-4-(4-methoxybenzyl)piperazin-2-yl] ethanol (3a). According to general procedure B piperazinedione 7a (163 mg, 0.41 mmol) was reacted with $LiAlH_4$ (94 mg, 2.47 mmol) in THF (50 mL) and the product was purified by FC (2 cm, h = 15 cm, CH₂Cl₂-methanol = 9.5/0.5, V = 10 mL, $R_{f} =$ 0.20). Yellow oil, yield 51 mg (36%). Purity by HPLC: method 2a: $t_{\rm R} = 15.1$ min, purity 95.1%; method 2c: $t_{\rm R} = 11.9$ min, purity 97.8%. $[\alpha]_{D}^{20} = +26.9 \ (c = 1.76; CH_2Cl_2). C_{21}H_{28}N_2O_2 \ (340.5).$ MS (EI): m/z [%] = 340 (M, 9), 295 (M – CH₂CH₂OH, 13), 219 (M - CH₂PhOCH₃, 5), 121 (CH₂PhOCH₃, 100). ¹H NMR $(CDCl_3): \delta$ [ppm] = 1.79–1.89 (m, 1H, CH₂CH₂OH), 1.98–2.08 (m, 1H, CH₂CH₂OH), 2.25–2.35 (m, 2H, piperazine-H), 2.41 (dd, J = 11.7/7.0 Hz, 1H, piperazine-H), 2.45–2.52 (m, 1H, piperazine-H), 2.62 (dd, J = 11.7/3.1 Hz, 1H, piperazine-H), 2.79-2.85 (m, 1H, piperazine-H), 2.87-2.94 (m, 1H, piperazine-H), $3.39 (d, J = 13.3 Hz, 1H, NCH_2Ph)$, 3.41 (d, J = 12.5 Hz, 1H, 1H)

NCH₂Ar), 3.45 (d, J = 12.5 Hz, 1H, NCH₂Ar), 3.71–3.77 (m, 1H, CH₂CH₂OH), 3.79 (s, 3H, ArOCH₃), 3.82–3.90 (m, 1H, CH₂CH₂OH), 4.14 (d, J = 13.3 Hz, 1H, NCH₂Ph), 6.85 (d, J = 8.6 Hz, 2H, 3'-H_{4-methoxybenzyl}, 5'-H_{4-methoxybenzyl}), 7.20–7.27 (m, 3H, 2'-H_{4-methoxybenzyl}, 6'-H_{4-methoxybenzyl}, NCH₂C₆H₅ (1H)), 7.28–7.34 (m, 4H, NCH₂C₆H₅). The signal for the proton of the OH group is not seen in the ¹H NMR spectrum. IR (neat): $\tilde{\nu}$ [cm⁻¹] = 3379 (m br, ν_{O-H}), 2931 (m, $\nu_{C-H aliph.}$), 1034 (m, ν_{C-O}), 812 (m, $\Gamma_{p-subst. arom.}$).

5.3.2. (+)-(S)-2-[4-(4-Methoxybenzyl)-1-(3-methylbut-2-en-1yl)piperazin-2-yllethanol (3b). According to general procedure B piperazinedione 7b (142 mg, 0.38 mmol) was reacted with LiAlH₄ (86 mg, 2.28 mmol) in THF (40 mL) and the product was purified by FC (2 cm, h = 15 cm, CH₂Cl₂-methanol = 9.5/ 0.5, V = 10 mL, $R_f = 0.13$). Yellow oil, yield 30 mg (25%). Purity by HPLC: method 2a: $t_{\rm R} = 14.7$ min, purity 99.3%; method 2c: $t_{\rm R} = 8.4$ min, purity 99.5%. $[\alpha]_{\rm D}^{20} = +16.4$ (c = 0.46; CH₂Cl₂). C₁₉H₃₀N₂O₂ (318.5). MS (EI): m/z [%] = 318 (M, 10), 197 (M - CH₂PhOCH₃, 38), 121 (CH₂PhOCH₃, 100). ¹H NMR (CDCl₃): δ [ppm] = 1.64 (s, 3H, NCH₂CH=C(CH₃)₂), 1.67-1.78 (m, 1H, CH₂CH₂OH), 1.72 (s, 3H, NCH₂CH= C(CH₃)₂), 1.91–2.01 (m, 1H, CH₂CH₂OH), 2.26–2.46 (m, 3H, piperazine-H), 2.51-2.63 (m, 2H, piperazine-H), 2.79-2.86 (m, 1H, piperazine-H), 2.97-3.13 (m, 2H. $NCH_2CH =$ C(CH₃)₂(1H), piperazine-H), 3.39–3.52 (m, 3H, NCH₂Ar, NCH₂CH=C(CH₃)₂(1H)), 3.67-3.74 (m, 1H, CH₂CH₂OH), 3.79 (s, 3H, ArOCH₃), 3.82–3.90 (m, 1H, CH₂CH₂OH), 5.18– 5.24 (m, 1H, NCH₂CH=C(CH₃)₂), 6.85 (d, J = 8.6 Hz, 2H, 3'-H_{4-methoxybenzyl}, 5'-H_{4-methoxybenzyl}), 7.22 (d, J = 8.6 Hz, 2H, 2'-H_{4-methoxybenzyl}, 6'-H_{4-methoxybenzyl}). A signal for the proton of the OH group is not seen in the ¹H NMR spectrum. IR (neat): $\tilde{\nu}$ [cm⁻¹] = 3379 (m br, ν_{O-H}), 2931 (m, $\nu_{C-H \text{ aliph.}}$), 1034 (m, $\nu_{\rm C-O}$), 812 (m, $\Gamma_{p-{\rm subst. arom.}}$).

5.3.3. (+)-(S)-2-[1-Allyl-4-(4-methoxybenzyl)piperazin-2-yl]ethanol (3c). According to general procedure B piperazinedione 7c (123 mg, 0.36 mmol) was reacted with LiAlH₄ (81 mg, 2.13 mmol) in THF (40 mL) and the product was purified by FC (2 cm, h = 15 cm, CH₂Cl₂-methanol = 9.5/0.5, V = 10 mL, $R_{\rm f} =$ 0.13). Yellow oil, yield 67 mg (65%). Purity by HPLC: method 2b: $t_{\rm R} = 22.9$ min, purity 96.9%; method 2d: $t_{\rm R} = 13.1$ min, purity 97.7%. $[\alpha]_{D}^{20} = +6.7 (c = 0.19; CH_2Cl_2). C_{17}H_{26}N_2O_2$ (290.4). MS (EI): m/z [%] = 290 (M, 6), 169 (M - CH₂PhOCH₃, 22), 121 $(CH_2PhOCH_3, 100)$. ¹H NMR $(CDCl_3)$: δ [ppm] = 1.67–1.78 (m, 1H, CH₂CH₂OH), 1.90–2.02 (m, 1H, CH₂CH₂OH), 2.26–2.43 (m, 3H, piperazine-H), 2.48-2.61 (m, 2H, piperazine-H), 2.75-2.82 (m, 1H, piperazine-H), 2.95-3.06 (m, 2H, NCH₂CH=CH₂ (1H), piperazine-H (1H)), 3.40 (d, J = 12.5 Hz, 1H, NCH₂Ar), 3.44 (d, J = 12.5 Hz, 1H, NCH₂Ar), 3.52 (dd, J = 14.1/5.5 Hz, 1H, NCH₂CH=CH₂), 3.69 (ddd, J = 11.7/6.3/4.7 Hz, 1H, CH_2CH_2OH), 3.79 (s, 3H, ArOC H_3), 3.84 (ddd, J = 11.7/7.8/4.7Hz, 1H, CH₂CH₂OH), 5.13–5.22 (m, 2H, NCH₂CH=CH₂), 5.77–5.88 (m, 1H, NCH₂CH=CH₂), 6.85 (d, J = 8.6 Hz, 2H, 3'-H_{4-methoxybenzyl}, 5'-H_{4-methoxybenzyl}), 7.22 (d, J = 8.6 Hz, 2H, 2'-H_{4-methoxybenzyl}, 6'-H_{4-methoxybenzyl}). The signal for the proton of the OH group is not seen in the ¹H NMR spectrum. IR (neat): $\tilde{\nu}$ [cm⁻¹] = 3377 (m br, ν_{O-H}), 2936 (m, $\nu_{C-H aliph.}$), 1033 (m, ν_{C-O}), 813 (w, Γ_{p-subst. arom.}).

5.3.4. (+)-(S)-3-[1-Benzyl-4-(4-methoxybenzyl)piperazin-2-yl] propan-1-ol (4a). According to general procedure B piperazinedione 8a (98 mg, 0.24 mmol) was reacted with LiAlH₄ (54 mg, 1.43 mmol) in THF (40 mL) and the product was purified by FC (2 cm, h = 15 cm, CH₂Cl₂-methanol = 9.5/0.5, V = 10 mL, $R_{\rm f} = 0.20$). Yellow oil, yield 57 mg (67%). Purity by HPLC: method 2a: $t_{\rm R} = 16.8$ min, purity 95.9%; method 2c: $t_{\rm R} = 14.9$ min, purity 97.6%. $[\alpha]_{D}^{20} = +49.9 (c = 1.95; CH_2Cl_2). C_{22}H_{30}N_2O_2$ (354.5). MS (EI): m/z [%] = 354 (M, 3), 295 (M -CH₂CH₂CH₂OH, 17), 121 (CH₂PhOCH₃). ¹H NMR (CDCl₃): δ [ppm] = 1.52–1.63 (m, 1H, CH₂CH₂CH₂OH), 1.67–1.94 (m, 3H, CH₂CH₂CH₂OH), 2.12–2.33 (m, 3H, piperazine-H), 2.49– 2.61 (m, 2H, piperazine-H), 2.62-2.67 (m, 1H, piperazine-H), 2.71–2.77 (m, 1H, piperazine-H), 3.20 (d, J = 12.5 Hz, 1H, NCH₂Ph), 3.39 (d, J = 12.5 Hz, 1H, NCH₂Ar), 3.44 (d, J = 12.5Hz, 1H, NCH₂Ar), 3.61–3.71 (m, 2H, CH₂CH₂CH₂OH), 3.79 (s, 3H, ArOCH₃), 4.17 (d, J = 12.5 Hz, 1H, NCH₂Ph), 6.84 (d, J = 8.6 Hz, 2H, 3'-H_{4-methoxybenzyl}, 5'-H_{4-methoxybenzyl}), 7.19-7.27 (m, 3H, 2'-H_{4-methoxybenzyl}, 6'-H_{4-methoxybenzyl}, NCH₂C₆ H_5 (1H)), 7.28–7.36 (m, 4H, NCH₂C₆ H_5). The signal for the proton of the OH group is not seen in the ¹H NMR spectrum. IR (neat): $\tilde{\nu}$ $[cm^{-1}] = 3362$ (m br, ν_{O-H}), 3028 (w, $\nu_{C-H arom.}$), 2938 (m, $\nu_{C-H aliph.}$), 1035 (m, ν_{C-O}), 815 (m, $\Gamma_{p-subst. arom.}$), 734 (m)/698 (m, $\Gamma_{\text{mono-subst. arom.}}$).

5.3.5. (+)-(S)-3-[4-(4-Methoxybenzyl)-1-(3-methylbut-2-en-1yl)piperazin-2-yl]propan-1-ol (4b). According to general procedure B piperazinedione 8b (169 mg, 0.44 mmol) was reacted with LiAlH₄ (99 mg, 2.61 mmol) in THF (50 mL) and the product was purified by FC (2 cm, h = 15 cm, CH₂Cl₂-methanol = 9.5/0.5, V = 10 mL, $R_{\rm f}$ = 0.16). Yellow oil, yield 46 mg (32%). Purity by HPLC: method 2a: $t_{\rm R} = 16.5$ min, purity 96.8%; method 2c: $t_{\rm R} =$ 10.4 min, purity 96.9%. $[\alpha]_{D}^{20} = +24.0$ (c = 1.42; CH₂Cl₂). $C_{20}H_{32}N_2O_2$ (332.5). MS (EI): m/z [%] = 332 (M, 6), 211 (M -CH₂PhOCH₃, 37), 121 (CH₂PhOCH₃, 100). ¹H NMR (CDCl₃): δ [ppm] = 1.47–1.56 (m, 1H, CH₂CH₂CH₂OH), 1.64 (s, 3H, NCH₂CH=C(CH₃)₂), 1.66–1.84 (m, 3H, $CH_2CH_2CH_2OH$), 1.73 (s, 3H, NCH₂CH=C(CH₃)₂), 2.19–2.30 (m, 2H, piperazine-H), 2.35-2.43 (m, 1H, piperazine-H), 2.51-2.58 (m, 1H, piperazine-H), 2.60-2.69 (m, 2H, piperazine-H), 2.93-3.04 (m, 2H, NCH₂CH=C(CH₃)₂(1H), piperazine-H), 3.37-3.46 (m, 3H, NCH₂Ar, NCH₂CH=C(CH₃)₂(1H)), 3.52-3.58 (m, 1H, CH₂CH₂CH₂OH), 3.60-3.67 (m, 1H, CH₂CH₂CH₂OH), 3.79 (s, 3H, ArOCH₃), 5.23-5.29 (m, 1H, NCH₂CH=C(CH₃)₂), 6.84 $(d, J = 8.6 \text{ Hz}, 2\text{H}, 3'-\text{H}_{4-\text{methoxybenzyl}}, 5'-\text{H}_{4-\text{methoxybenzyl}}), 7.21 (d, J = 8.6 \text{ Hz}, 2\text{H}, 3'-\text{H}_{4-\text{methoxybenzyl}}), 7.21 (d, J = 8.6 \text{ Hz}, 2\text{H}, 3'-\text{H}_{4-\text{methoxybenzyl}}), 7.21 (d, J = 8.6 \text{ Hz}, 2\text{H}, 3'-\text{H}_{4-\text{methoxybenzyl}}), 7.21 (d, J = 8.6 \text{ Hz}, 2\text{H}, 3'-\text{H}_{4-\text{methoxybenzyl}}), 7.21 (d, J = 8.6 \text{ Hz}, 2\text{H}, 3'-\text{H}_{4-\text{methoxybenzyl}}), 7.21 (d, J = 8.6 \text{ Hz}, 3'-\text{Hz}, 3'$ J = 8.6 Hz, 2H, 2'-H_{4-methoxybenzyl}, 6'-H_{4-methoxybenzyl}). The signal for the proton of the OH group is not seen in the ¹H NMR spectrum. IR (neat): $\tilde{\nu}$ [cm⁻¹] = 3342 (m br, ν_{O-H}), 2933 (m, ν_{C-H aliph.}), 1035 (m, ν_{C-O}), 814 (m, Γ_{p-subst. arom.}).

5.3.6. (+)-(*S*)-3-[1-Allyl-4-(4-methoxybenzyl)piperazin-2-yl] propan-1-ol (4c). According to general procedure B piperazinedione 8c (146 mg, 0.41 mmol) was reacted with LiAlH₄ (92 mg, 2.43 mmol) in THF (40 mL) and the product was purified by FC (2 cm, h = 15 cm, CH₂Cl₂-methanol = 9.5/0.5, V = 10 mL, $R_f = 0.10$). Yellow oil, yield 42 mg (34%). Purity by HPLC: method 2b: $t_R = 29.1$ min, purity 96.8%; method 2d: $t_R = 16.7$ min, purity 97.2%. [α]_D²⁰ = +8.0 (c = 0.38; CH₂Cl₂). C₁₈H₂₈N₂O₂ (304.4). MS (EI): m/z [%] = 304 (M, 6), 183 (M - CH₂PhOCH₃, 28), 121 (CH₂PhOCH₃, 100). ¹H NMR (CDCl₃): δ [ppm] = 1.48– 1.58 (m, 1H, CH₂CH₂CH₂OH), 1.64–1.79 (m, 3H, CH₂CH₂CH₂OH), 2.16–2.26 (m, 2H, piperazine-H), 2.33–2.41 (m, 1H, piperazine-H), 2.46–2.52 (m, 1H, piperazine-H), 2.58– 2.67 (m, 2H, piperazine-H), 2.87–2.96 (m, 2H, NCH₂CH=CH₂ (1H), piperazine-H (1H)), 3.39 (d, J = 13.3 Hz, 1H, NCH₂Ar), 3.43 (d, J = 13.3 Hz, 1H, NCH₂Ar), 3.49–3.59 (m, 2H, CH₂CH₂CH₂OH (1H), NCH₂CH=CH₂ (1H)), 3.60–3.66 (m, 1H, CH₂CH₂CH₂OH), 3.79 (s, 3H, ArOCH₃), 5.14–5.22 (m, 2H, NCH₂CH=CH₂), 5.82–5.94 (m, 1H, NCH₂CH=CH₂), 6.84 (d, J = 8.6 Hz, 2H, 3'-H_{4-methoxybenzyl}, 5'-H_{4-methoxybenzyl}). A signal for the proton of the OH group is not seen in the ¹H NMR spectrum. IR (neat): $\tilde{\nu}$ [cm⁻¹] = 3393 (m br, ν_{O-H}), 2935 (m, $\nu_{C-H aliph.}$), 1034 (m, ν_{C-O}), 815 (w, $\Gamma_{p-subst. arom.}$).

5.3.7. (+)-Methyl (S)-2-[1-benzyl-4-(4-methoxybenzyl)-3,6dioxopiperazin-2-yllacetate (7a). According to general procedure A piperazinedione 5 (306 mg, 1.00 mmol), tetrabutylammonium iodide (74 mg, 0.20 mmol), 2 M solution of sodium hexamethyldisilazane in THF (0.55 mL, 1.10 mmol) and benzyl bromide (0.6 mL, 854 mg, 4.99 mmol) were reacted in THF (50 mL). The product was purified by FC (3 cm, h = 15 cm, cyclohexane–ethyl acetate 1/1, 20 mL, $R_f = 0.30$). Colorless solid, m.p. 95 °C, yield 130 mg (33%). $[\alpha]_{D}^{20} = +71.9$ (c = 0.25; CH₂Cl₂). C₂₂H₂₄N₂O₅ (396.5). MS (EI): m/z [%] = 396 (M, 44), 305 (M - CH₂Ph, 7), 275 (M - CH₂PhOCH₃, 5), 121 (CH₂PhOCH₃, 100). ¹H NMR $(CDCl_3): \delta [ppm] = 2.81 (dd, J = 17.2/4.7 Hz, 1H, CH_2CO_2CH_3),$ 3.07 (dd, J = 17.2/3.1 Hz, 1H, $CH_2CO_2CH_3$), 3.55 (s, 3H, CO_2CH_3), 3.80 (s, 3H, ArOCH₃), 3.85 (d, J = 17.2 Hz, 1H, O= 4.09-4.15 (m, 2H, CCH_2N), $O = CCH_2N$ (1H). $CHCH_2CO_2CH_3$, 4.20 (d, J = 14.9 Hz, 1H, NC H_2Ph), 4.43 (d, J = 14.9 Hz, 1H, NC H_2 Ar), 4.65 (d, J = 14.9 Hz, 1H, NC H_2 Ar), 5.07 (d, J = 14.9 Hz, 1H, NCH₂Ph), 6.87 (d, J = 8.6 Hz, 2H, 3'-H_{4-methoxybenzyl}, 5'-H_{4-methoxybenzyl}), 7.19-7.24 (m, 4H, 2'-H_{4-methoxybenzyl}, 6'-H_{4-methoxybenzyl}, NCH₂C₆H₅ (2H)), 7.29-7.35 (m, 3H, NCH₂C₆H₅). IR (neat): $\tilde{\nu}$ [cm⁻¹] = 3003 (w, $\nu_{C-H \text{ arom.}}$), 2952 (w, $\nu_{C-H aliph.}$), 1734 (m, $\nu_{C=O ester}$), 1649 (s, $\nu_{C=O amide}$), 1030 (m, ν_{C-O}), 817 (m, Γ_{p-subst. arom.}), 731 (m, Γ_{mono-subst. arom.}).

5.3.8. (+)-Methyl (S)-2-[4-(4-methoxybenzyl)-1-(3-methylbut-2-en-1-vl)-3,6-dioxopiperazin-2-vllacetate (7b). According to general procedure A piperazinedione 5 (605 mg, 1.98 mmol), tetrabutylammonium iodide (146 mg, 0.40 mmol), 2 M solution of sodium hexamethyldisilazane in THF (1.1 mL, 2.17 mmol) and 1-bromo-3-methylbut-2-ene (1.16 mL, 1.47 mg, 9.88 mmol) were reacted in THF (70 mL). The product was purified by FC (4 cm, h = 15 cm, cyclohexane-ethyl acetate = 1/1, 30 mL, $R_{\rm f} = 0.30$). Yellow oil, yield 225 mg (30%). $[\alpha]_{\rm D}^{20} = +52.0$ (c = 0.57; CH₂Cl₂). C₂₀H₂₆N₂O₅ (374.4). MS (EI): m/z [%] = 374 $(M, 18), 253 (M - CH_2PhOCH_3, 87), 121 (CH_2PhOCH_3, 100).$ ¹H NMR (CDCl₃): δ [ppm] = 1.70 (s, 3H, NCH₂CH= $C(CH_3)_2$, 1.73 (s, 3H, NCH₂CH= $C(CH_3)_2$), 2.83 (dd, J =17.2/5.5 Hz, 1H, $CH_2CO_2CH_3$), 3.13 (dd, J = 17.2/3.1 Hz, 1H, $CH_2CO_2CH_3$), 3.59 (s, 3H, CO_2CH_3), 3.63 (dd, J = 14.9/7.8Hz, 1H, NCH₂CH=C(CH₃)₂), 3.75 (d, J = 17.2 Hz, 1H, O= CCH_2N), 3.80 (s, 3H, ArOCH₃), 4.00 (d, J = 17.2 Hz, 1H, O= CCH_2N), 4.22–4.26 (m, 1H, $CHCH_2CO_2CH_3$), 4.40 (dd, J =14.9/6.3 Hz, 1H, NCH₂CH=C(CH₃)₂), 4.47 (d, J = 14.1 Hz,

1H, NC*H*₂Ar), 4.61 (d, J = 14.1 Hz, 1H, NC*H*₂Ar), 5.04–5.10 (m, 1H, NCH₂C*H*=C(CH₃)₂), 6.86 (d, J = 8.6 Hz, 2H, 3'-H_{4-methoxybenzyl}, 5'-H_{4-methoxybenzyl}), 7.21 (d, J = 8.6 Hz, 2H, 2'-H_{4-methoxybenzyl}, 6'-H_{4-methoxybenzyl}). IR (neat): $\tilde{\nu}$ [cm⁻¹] = 2932 (m, ν_{C-H} aliph.), 1735 (m, $\nu_{C=O}$ ester), 1654 (s, $\nu_{C=O}$ amide), 1031 (m, ν_{C-O}), 811 (m, $\Gamma_{p-\text{subst. arom.}}$).

5.3.9. (+)-Methyl (S)-2-[1-allyl-4-(4-methoxybenzyl)-3,6dioxopiperazin-2-yl]acetate (7c).23 According to general procedure A piperazinedione 5 (6.24 g, 20.4 mmol), tetrabutylammonium iodide (1.50 g, 4.07 mmol), 2 M solution of sodium hexamethyldisilazane in THF (11.2 mL, 22.4 mmol) and allyl bromide (8.9 mL, 12.3 g, 102 mmol) were reacted in THF (150 mL). The product was purified by FC (8 cm, cyclohexaneethyl acetate = 1/2, 30 mL, $R_f = 0.20$). Colorless solid, m.p. 89 °C, yield 3.64 g (52%). Purity by HPLC: method 1: $t_{\rm R} = 17.3$ min, purity 98.2%. $[\alpha]_{D}^{20} = +57.1$ (c = 0.33; CH₂Cl₂). C₁₈H₂₂N₂O₅ (346.4). MS (EI): m/z [%] = 346 (M, 39), 225 (M – CH₂PhOCH₃, 10), 121 (CH₂PhOCH₃, 100). ¹H NMR (CDCl₃): δ [ppm] = 2.88 $(dd, J = 17.2/4.7 Hz, 1H, CH_2CO_2CH_3), 3.13 (dd, J = 17.2/3.1 Hz,$ 1H, $CH_2CO_2CH_3$), 3.60 (s, 3H, CO_2CH_3), 3.63 (dd, J = 15.7/7.0Hz, 1H, NCH₂CH=CH₂), 3.78 (d, J = 17.2 Hz, 1H, $O = CCH_2N$), 3.80 (s, 3H, ArOCH₃), 4.03 (d, J = 17.2 Hz, 1H, $O = CCH_2N$, 4.23–4.27 (m, 1H, CHCH₂CO₂CH₃), 4.43 (ddt, J = 15.7/5.5/1.6 Hz, 1H, NCH₂CH=CH₂), 4.50 (d, J = 14.9 Hz, 1H, NCH₂Ar), 4.59 (d, J = 14.9 Hz, 1H, NCH₂Ar), 5.20–5.27 (m, 2H, NCH₂CH=CH₂), 5.67-5.78 (m, 1H, NCH₂CH=CH₂), 6.86 (d, J = 8.6 Hz, 2H, 3'-H_{4-methoxybenzyl}, 5'-H_{4-methoxybenzyl}), 7.21 (d, J =8.6 Hz, 2H, 2'-H_{4-methoxybenzyl}, 6'-H_{4-methoxybenzyl}). IR (neat): $\tilde{\nu}$ $[cm^{-1}] = 3080$ (w, $\nu_{C-H arom.}$), 2924 (m, $\nu_{C-H aliph.}$), 1735 (m, $\nu_{C=O \text{ ester}}$), 1660 (s, $\nu_{C=O \text{ amide}}$).

5.3.10. (-)-Methyl (S)-3-[1-benzyl-4-(4-methoxybenzyl)-3,6dioxopiperazin-2-yllpropanoate (8a). According to general procedure A piperazinedione 6 (680 mg, 2.12 mmol), tetrabutylammonium iodide (157 mg, 0.42 mmol), 2 M solution of sodium hexamethyldisilazane in THF (1.2 mL, 2.33 mmol) and benzyl bromide (1.3 mL, 1.82 g, 10.6 mmol) were reacted in THF (70 mL). The product was purified by FC (4 cm, h = 15 cm, cyclohexane-ethyl acetate = 1/1, 30 mL, $R_f = 0.35$). Colorless oil, yield 98 mg (11%). $[\alpha]_{D}^{20} = -3.1$ (c = 1.09; CH₂Cl₂). C₂₃H₂₆N₂O₅ (410.5). MS (EI): m/z [%] = 410 (M, 46), 289 (M – CH₂PhOCH₃, 11), 121 (CH₂PhOCH₃, 100). ¹H NMR (CDCl₃): δ [ppm] = 1.99– 2.08 (m, 1H, CH₂CH₂CO₂CH₃), 2.17-2.27 (m, 1H, CH₂CH₂CO₂CH₃), 2.32–2.48 (m, 2H, CH₂CH₂CO₂CH₃), 3.67 (s, 3H, CO_2CH_3), 3.80 (s, 3H, ArOCH₃), 3.83 (d, J = 17.2 Hz, 1H, $O = CCH_2N$), 3.92–4.00 (m, 3H, $O = CCH_2N$ (1H), CHCH₂CH₂CO₂CH₃, NCH₂Ph (1H)), 4.34 (d, J = 14.1 Hz, 1H, NCH₂Ar), 4.65 (d, J = 14.1 Hz, 1H, NCH₂Ar), 5.26 (d, J = 14.9 Hz, 1H, NCH₂Ph), 6.87 (d, J = 8.6 Hz, 2H, 3'-H_{4-methoxybenzyl}, 5'-H_{4-methoxybenzyl}), 7.17 (d, J = 8.6 Hz, 2H, 2'-H_{4-methoxybenzyl}, 6'-H_{4-methoxybenzyl}), 7.23–7.35 (m, 5H, NCH₂C₆H₅). IR (neat): $\tilde{\nu}$ $[cm^{-1}] = 2952$ (m, $\nu_{C-H aliph.}$), 1733 (m, $\nu_{C=O ester}$), 1658 (s, $\nu_{\rm C=O \ amide}$), 1029 (m, $\nu_{\rm C-O}$), 821 (w, $\Gamma_{p-{\rm subst. \ arom.}}$), 730 (m)/700 (m, $\Gamma_{mono-subst. arom.}$).

5.3.11. (+)-Methyl (S)-3-[4-(4-methoxybenzyl)-1-(3-methylbut-2-en-1-yl)-3,6-dioxopiperazin-2-yl]propanoate (8b). According to general procedure A piperazinedione 6 (650 mg, 2.03 mmol), tetrabutylammonium iodide (150 mg, 0.41 mmol), 2 M solution of sodium hexamethyldisilazane in THF (1.1 mL, 2.23 mmol) and 1-bromo-3-methylbut-2-ene (1.19 mL, 1.51 mg, 10.1 mmol) were reacted in THF (70 mL). The product was purified by FC (4 cm, h = 15 cm, cyclohexane–ethyl acetate = 1/ 1, 30 mL, $R_{\rm f} = 0.33$). Yellow oil, yield 221 mg (28%). $[\alpha]_{\rm D}^{20} = +2.1$ $(c = 0.70; CH_2Cl_2)$. $C_{21}H_{28}N_2O_5$ (388.5). MS (EI): m/z [%] = 388 (M, 23), 267 (M - CH₂PhOCH₃, 34), 121 (CH₂PhOCH₃, 100). ¹H NMR (CDCl₃): δ [ppm] = 1.70 (s, 3H, NCH₂CH=C(CH₃)₂), 1.73 (s, 3H, NCH₂CH= $C(CH_3)_2$), 1.98–2.07 (m, 1H, CH₂CH₂CO₂CH₃), 2.22–2.31 (m, 1H, CH₂CH₂CO₂CH₃), 2.32– 2.45 (m, 2H, $CH_2CH_2CO_2CH_3$), 3.56 (dd, J = 14.9/8.6 Hz, 1H, NCH₂CH=C(CH₃)₂), 3.67 (s, 3H, CO₂CH₃), 3.76 (d, J = 17.2Hz, 1H, O=CCH₂N), 3.80 (s, 3H, ArOCH₃), 3.87 (d, J = 17.2Hz, 1H, $O = CCH_2N$), 4.02 (dd, J = 8.6/3.9 Hz, 1H, CHCH₂CH₂CO₂CH₃), 4.38 (d, J = 14.1 Hz, 1H, NCH₂Ar), 4.47 $(dd, J = 14.9/6.3 Hz, 1H, NCH_2CH = C(CH_3)_2), 4.61 (d, J = 14.1)$ Hz, 1H, NCH₂Ar), 5.07–5.13 (m, 1H, NCH₂CH=C(CH₃)₂), 6.86 (d, J = 8.6 Hz, 2H, 3'-H_{4-methoxybenzyl}, 5'-H_{4-methoxybenzyl}), 7.18 (d, J = 8.6 Hz, 2H, 2'-H_{4-methoxybenzyl}, 6'-H_{4-methoxybenzyl}). IR (neat): $\tilde{\nu}$ [cm⁻¹] = 2933 (m, $\nu_{C-H \text{ aliph.}}$), 1734 (m, $\nu_{C=O \text{ ester}}$), 1654 (s, $\nu_{C=O \text{ amide}}$), 1031 (m, ν_{C-O}), 821 (w, $\Gamma_{p\text{-subst. arom.}}$).

5.3.12. (+)-Methyl (S)-3-[1-allyl-4-(4-methoxybenzyl)-3,6dioxopiperazin-2-yl|propanoate (8c).²⁴ According to general procedure A piperazinedione 6 (2.80 g, 8.74 mmol), tetrabutylammonium iodide (0.65 g, 1.75 mmol), 2 M solution of sodium hexamethyldisilazane in THF (4.81 mL, 9.61 mmol) and allyl bromide (3.8 mL, 5.29 g, 43.7 mmol) were reacted in THF (80 mL). The product was purified by FC (8 cm, h = 15 cm, cyclohexane–ethyl acetate = 1/2, 30 mL, $R_f = 0.29$). Yellow oil, yield 1.67 g (53%). Purity by HPLC: method 1: $t_{\rm R} = 17.9$ min, purity 98.1%. $[\alpha]_{D}^{20} = +20.2$ (c = 11.3; CH₂Cl₂). C₁₉H₂₄N₂O₅ (360.4). MS (EI): m/z [%] = 360 (M, 65), 239 (M – CH₂PhOCH₃, 54), 121 (CH₂PhOCH₃, 100). ¹H NMR (CDCl₃): δ [ppm] = 1.97-2.07 (m, 1H, CH₂CH₂CO₂CH₃), 2.21-2.30 (m, 1H, CH₂CH₂CO₂CH₃), 2.34–2.50 (m, 2H, CH₂CH₂CO₂CH₃), 3.51 (dd, J = 15.7/7.8 Hz, 1H, NCH₂CH=CH₂), 3.68 (s, 3H, CO_2CH_3), 3.78 (d, J = 17.2 Hz, 1H, $O=CCH_2N$), 3.80 (s, 3H, ArOC H_3), 3.90 (d, J = 17.2 Hz, 1H, O=CC H_2 N), 4.03 (dd, J =8.6/3.9 Hz, 1H, CHCH₂CH₂CO₂CH₃), 4.42 (d, J = 14.9 Hz, 1H, NCH₂Ar), 4.52–4.61 (m, 2H, NCH₂Ar (1H), NCH₂CH=CH₂ (1H)), 5.21-5.27 (m, 2H, NCH₂CH=CH₂), 5.68-5.79 (m, 1H, NCH₂CH=CH₂), 6.86 (d, J = 8.6 Hz, 2H, 3'-H_{4-methoxybenzyl}, 5'-H_{4-methoxybenzyl}), 7.18 (d, J = 8.6 Hz, 2H, 2'-H_{4-methoxybenzyl}, 6'-H_{4-methoxybenzyl}). IR (neat): $\tilde{\nu}$ [cm⁻¹] = 2952 (w, $\nu_{C-H \text{ aliph.}})$, 1733 (m, v_{C=O} ester), 1658 (s, v_{C=O} amide), 1032 (m, v_{C-O}), 820 (w, $\Gamma_{p-\text{subst. arom.}}$).

6. Experimental, receptor binding studies

6.1. Materials and general procedures

Guinea pig brains and rat livers were commercially available (Harlan-Winkelmann, Germany). Homogenizer: Elvehjem Potter (B. Braun Biotech International). Centrifuge: High-speed cooling centrifuge model Sorvall RC-5C plus (Thermo Finnigan). Filter: Printed Filtermat Type A (PerkinElmer), presoaked in 0.5% aqueous polyethylenimine for 2 h at rt before use.

The filtration was carried out with a MicroBeta FilterMate-96 Harvester (PerkinElmer). The scintillation analysis was performed using Meltilex (Type A) solid scintillator (PerkinElmer). The radioactivity bound to the filter was measured using a MicroBeta Trilux scintillation analyzer (PerkinElmer). The overall counting efficiency was 20%.

6.2. Membrane preparation for the σ_1 assay^{25–27}

Five guinea pig brains were homogenized with the potter (500– 800 rpm, 10 up-and-down strokes) in 6 volumes of cold 0.32 M sucrose. The suspension was centrifuged at $1200 \times g$ for 10 min at 4 °C. The supernatant was separated and centrifuged at 23 500 × g for 20 min at 4 °C. The pellet was resuspended in 5–6 volumes of buffer (50 mM Tris, pH 7.4) and centrifuged again at 23 500 × g (20 min, 4 °C). This procedure was repeated twice. The final pellet was resuspended in 5–6 volumes of buffer, the protein concentration was determined according to the method of Bradford²⁸ using bovine serum albumin as standard, and subsequently the preparation was frozen (-80 °C) in 1.5 mL portions containing about 1.5 mg protein per mL.

6.3. Protocol of the $\sigma_1 assay^{25-27}$

The test was performed with the radioligand [³H]-(+)-pentazocine (42.5 Ci mmol⁻¹; PerkinElmer). The thawed membrane preparation (about 75 µg of the protein) was incubated with various concentrations of test compounds, 2 nM [³H]-(+)-pentazocine, and buffer (50 mM Tris, pH 7.4) in a total volume of 200 µL for 180 min at 37 °C. The incubation was terminated by rapid filtration through the presoaked filtermats by using the cell harvester. After washing each well five times with 300 µL of water, the filtermats were dried at 95 °C. Subsequently, the solid scintillator was put on the filtermat and melted at 95 °C. After 5 min, the solid scintillator was allowed to solidify at rt. The bound radioactivity trapped on the filters was counted in the scintillation analyzer. The non-specific binding was determined with 10 µM unlabeled (+)-pentazocine. The K_d -value of the radioligand [³H]-(+)-pentazocine is 2.9 nM.²⁹

6.4. Membrane preparation for the $\sigma_2 \operatorname{assay}^{25-27}$

Two rat livers were cut into small pieces and homogenized with a potter (500–800 rpm, 10 up-and-down strokes) in 6 volumes of cold 0.32 M sucrose. The suspension was centrifuged at $1200 \times g$ for 10 min at 4 °C. The supernatant was separated and centrifuged at 31 000 $\times g$ for 20 min at 4 °C. The pellet was resuspended in buffer (50 mM Tris, pH 8.0) and incubated at rt for 30 min. After the incubation, the suspension was centrifuged again at 31 000 $\times g$ for 20 min at 4 °C. The final pellet was resuspended in buffer, the protein concentration was determined according to the method of Bradford²⁸ using bovine serum albumin as standard, and subsequently the preparation was frozen (-80 °C) in 1.5 mL portions containing about 2 mg protein per mL.

6.5. Protocol of the σ_2 assay^{25–27}

The test was performed with the radioligand [3 H]-di-*o*-tolylguanidine (50 Ci mmol⁻¹; ARC). The thawed membrane preparation (about 100 µg of the protein) was incubated with various concentrations of test compounds, 3 nM [³H]-di-*o*-tolylguanidine, 500 nM (+)-pentazocine and buffer (50 mM Tris, pH 8.0) in a total volume of 200 μ L for 180 min at rt. The incubation was terminated by rapid filtration through the presoaked filtermats using a cell harvester. After washing each well five times with 300 μ L of water, the filtermats were dried at 95 °C. Subsequently, the solid scintillator was put on the filtermat and melted at 95 °C. After 5 min, the solid scintillator was allowed to solidify at rt. The bound radioactivity trapped on the filters was counted in the scintillation analyzer. The non-specific binding was determined with 10 μ M unlabeled ditolylguanidine. The K_d -value of the radioligand [³H]-ditolylguanidine is 17.9 nM.³⁰

6.6. Data analysis

Usually, all experiments were carried out in triplicates using standard 96-well-multiplates (Diagonal). The IC₅₀-values were determined in competition experiments with six concentrations of the test compounds and were calculated with the program GraphPad Prism® 3.0 (GraphPad Software) by non-linear regression analysis. The K_i -values were calculated according to Cheng and Prusoff.³¹ The K_i -values of potent compounds are given as mean values \pm SEM from three independent experiments.

Acknowledgements

This work was performed within the International Research Training Group "Complex Functional Systems in Chemistry: Design, Synthesis and Applications" in collaboration with the University of Nagoya. Financial support of this IRTG by the *Deutsche Forschungsgemeinschaft* is gratefully acknowledged.

References

- 1 T. Hayashi and T. P. Su, CNS Drugs, 2004, 18, 269-284.
- 2 E. J. Cobos, J. M. Entrena, F. R. Nieto, C. M. Cendan and E. DelPezo, *Curr. Pharmacol.*, 2008, **6**, 344–366.
- 3 T. Maurice and T. P. Su, Pharmacol. Ther., 2009, 124, 195-206.
- 4 M. Ishikawa and K. Hashimoto, J. Recept., Ligand Channel Res., 2010, 3, 25–36.
- 5 J. L. Diaz, D. Zamanillo, J. Corbera, J. M. Baeyens, R. Maldonado, M. A. Perica, J. M. Vela and A. Torrens, *Cent. Nerv. Syst. Agents Med. Chem.*, 2009, 9, 172–183.
- 6 H. D. Gilchrist, B. L. Allard and D. A. Simone, *Pain*, 1996, 67, 179– 188.

- 7 K. Hashimoto and K. Ishiwata, Curr. Pharm. Des., 2006, 12, 3857–3876.
- 8 J. Simony-Lafontaine, M. Esslomani, E. Bribes, S. Gougou, N. Lequeux, R. Lavail, J. Grenier, A. Kramar and P. Casellas, *Br. J. Cancer*, 2000, **82**, 1958–1966.
- 9 E. Rack, R. Fröhlich, D. Schepmann and B. Wünsch, *Bioorg. Med. Chem.*, 2011, **19**, 3141–3151.
- 10 B. Wünsch, Curr. Pharm. Des., 2012, 18, 930–937.
- 11 R. A. Glennon, Mini-Rev. Med. Chem., 2005, 5, 927-940.
- 12 R. A. Glennon, S. Y. Ablordeppey, A. M. Ismaiel, M. B. El-Ashmawy, J. B. Fischer and K. B. Howie, J. Med. Chem., 1994, 37, 1214–1219.
- 13 S. Y. Ablordeppey, J. B. Fischer, H. Law and R. A. Glennon, *Bioorg. Med. Chem.*, 2002, 10, 2759–2765.
- 14 C. Laggner, C. Schieferer, B. Fiechtner, G. Poles, R. D. Hoffmann, H. Glossmann, T. Langer and E. F. Moebius, J. Med. Chem., 2005, 48, 4754–4764.
- 15 D. Zampieri, M. G. Mamolo, E. Laurini, C. Florio, C. Zanette, M. Fermeglia, P. Posocco, M. S. Paneni, S. Pricl and L. Vio, J. Med. Chem., 2009, 52, 5380–5393.
- 16 R. Holl, D. Schepmann, R. Grünert, P. J. Bednarski and B. Wünsch, *Bioorg. Med. Chem.*, 2009, **17**, 777–793.
- 17 R. Holl, D. Schepmann, P. J. Bednarski, R. Grünert and B. Wünsch, *Bioorg. Med. Chem.*, 2009, **17**, 1445–1455.
- 18 R. Holl, D. Schepmann, R. Fröhlich, R. Grünert, P. J. Bednarski and B. Wünsch, J. Med. Chem., 2009, 52, 2126–2137.
- 19 B. R. deCosta, X.-S. He, J. T. M. Linders, C. Dominguez, Z. Q. Gu, W. Williams and W. D. Bowen, *J. Med. Chem.*, 1993, **36**, 2311– 2320.
- 20 A. Foster, H. Wu, W. Chen, W. Williams, W. D. Bowen, R. R. Matsumoto and A. Coop, *Bioorg. Med. Chem. Lett.*, 2003, 13, 749–751.
- 21 C. Geiger, C. Zelenka, M. Weigl, R. Fröhlich, B. Wibbeling, K. Lehmkuhl, D. Schepmann, R. Grünert, P. J. Bednarski and B. Wünsch, J. Med. Chem., 2007, 50, 6144–6153.
- 22 S. Bedürftig and B. Wünsch, Bioorg. Med. Chem., 2004, 12, 3299-3311.
- 23 R. Holl, M. Dykstra, M. Schneiders, R. Fröhlich, M. Kitamura, E.-U. Würthwein and B. Wünsch, Aust. J. Chem., 2008, 61, 914– 919.
- 24 B. Jung, W. Englberger and B. Wünsch, Arch. Pharm. Chem. Life Sci., 2005, 338, 281–290.
- 25 C. A. Maier and B. Wünsch, J. Med. Chem., 2002, 45, 438-448.
- 26 C. A. Maier and B. Wünsch, J. Med. Chem., 2002, 45, 4923-4930.
- 27 E. Große Maestrup, C. Wiese, D. Schepmann, A. Hiller, S. Fischer, M. Scheunemann, P. Brust and B. Wünsch, *Bioorg. Med. Chem.*, 2009, **17**, 3630–3641.
- 28 M. M. Bradford, Anal. Biochem., 1976, 72, 248-254.
- 29 D. L. De-Haven-Hudkins, L. C. Fleissner and F. Y. Ford-Rice, *Eur. J. Pharmacol.*, *Mol. Pharmacol. Sect.*, 1992, **227**, 371–378.
- 30 H. Mach, C. R. Smith and S. R. Childers, *Life Sci.*, 1995, **57**, PL57–PL62.
- 31 Y. Cheng and H. W. Prusoff, *Biochem. Pharmacol.*, 1973, 22, 3099– 3108.