Facile Synthesis of Substituted 1,1-Difluoroallenes via Carbonyl Difluorovinylidenation

Ken Oh, Kohei Fuchibe, Misaki Yokota, Junji Ichikawa*

Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan Fax 81(29)8534237; E-mail: junji@chem.tsukuba.ac.jp Received 22 November 2011; revised 11 December 2011

Abstract: Two methods for the difluorovinylidenation of carbonyl compounds have been developed to synthesize 1,1-difluoroallenes bearing various substituents. The reaction of 1-bromo-2,2-difluorovinyllithium, generated from 1,1-dibromo-2,2-difluoroethylene and *n*-butyl-lithium, with aldehydes or ketones, and subsequent acetylation, gives 2-bromo-3,3-difluoroallylic acetates. Elimination of these acetates with *n*-butyllithium affords 1,1-difluoroallenes in high yield. 3,3-Difluoro-2-iodoallylic acetates are similarly prepared from aldehydes or ketones on treatment with 2,2-difluoro-1-iodovinyllithium, generated from 1,1,1-trifluoro-2-iodoethane and lithium diisopropylamide, followed by acetylation. These acetates readily undergo elimination with zinc metal to afford 1,1-difluoroallenes in high yield.

Key words: carbonyl compounds, metalation, difluorovinylidenation, 1,1-difluoroallenes

Scheme 1 Synthesis of 1,1-difluoroallenes by difluorovinylidenation of aldehydes or ketones

Introduction

1,1-Difluoroallenes are highly attractive synthetic intermediates because of their fluorine substituents and cumulative double bonds. In addition, 1,1-difluoroallenes can serve as promising pharmaceuticals, as some non-fluorinated allenes have been used for therapeutic purposes.¹ To date, however, the synthetic methodology for 1,1-difluo-

SYNTHESIS 2012, 44, 857–861 Advanced online publication: 16.01.2012 DOI: 10.1055/s-0031-1290157; Art ID: Z109011SS © Georg Thieme Verlag Stuttgart · New York roallenes bearing substituents has not been completely explored. $^{\rm 2-4}$

We have recently reported facile methods for the synthesis of substituted 1,1-difluoroallenes via difluorovinylidenation of carbonyl compounds (Scheme 1).⁵ A wide variety of 1,1-difluoroallenes were efficiently synthesized using these methods.

Our synthesis consists of two steps (Scheme 2): (i) The reaction of an aldehyde or ketone with a 2,2-difluoro-1-halovinyllithium 1 and subsequent acetylation to give the 3,3-difluoro-2-haloallylic acetate 2. (ii) Metalation of acetate **2** with an appropriate reducing agent which causes elimination of the halide ion (X^-) and the acetate ion to furnish the desired 1,1-difluoroallene **3**. Depending on the reagents used for the difluorovinylation (the first step) and the elimination (the second step), two methods are available; namely, method A and B (see Scheme 1). Method B should have wide application because it includes a readily available starting material and facilitates the synthesis of 1,1-difluoroallenes bearing functionalities that are sensitive to *n*-butyllithium.

Scheme 2 Difluorovinylation–elimination sequence in 1,1-difluoroallene synthesis

Method A: Synthesis of 1,1-Difluoroallenes from 1,1-Dibromo-2,2-difluoroethylene (First-Generation Synthesis)^{5a}

Initially, 1,1-dibromo-2,2-difluoroethylene ($CF_2=CBr_2$) was used as a difluorovinylation agent. 1,1-Dibromo-2,2difluoroethylene was lithiated with 1 equivalent of *n*-butyllithium at -100 °C. Aldehydes or ketones were treated with the resulting vinyllithium, and then with acetic anhydride or with isopropenyl acetate/*p*-toluenesulfonic acid, respectively. Next, the isolated 2-bromo-3,3-difluoroallylic acetates **2A** (X = Br) were lithiated with *n*-butyllithium in hexane; elimination of lithium acetate occurred to afford the 1,1-difluoroallenes **3**.

Note that control of the temperature in the vinylation with dibromodifluoroethylene is crucial. The first lithiation at a temperature higher than -100 °C led to undesired 1,2-elimination of lithium fluoride from the intermediate 1-bromo-2,2-difluorovinyllithium. The second lithiation of allylic acetates **2A** must be performed in hexane to realize the elimination in high yield.

The resulting 1,1-difluoroallenes were purified by standard column chromatography (silica gel). The isolated difluoroallenes can be stored in a refrigerator (0 $^{\circ}$ C) for at least one month.

Method B: Synthesis of 1,1-Difluoroallenes from 1,1,1-Trifluoro-2-iodoethane (Second-Generation Synthesis)^{5b}

1,1-Dibromo-2,2-difluoroethylene, used in our first-generation synthesis, is an expensive, potential ozone-depleting substance and is now difficult to purchase because of the ban on its industrial manufacture. In addition, highly reactive *n*-butyllithium is required in both metalation steps of the alkenyl bromides.

The second-generation synthesis of 1,1-difluoroallenes realized using 1,1,1-trifluoro-2-iodoethane was (CF₃CH₂I) as a difluorovinylation agent.⁶ This material is readily available because it is manufactured industrially for use as a refrigerant or fluorinated intermediate. 1,1,1-Trifluoro-2-iodoethane was treated with two equivalents of lithium diisopropylamide to generate 2,2-difluoro-1-iodovinyllithium. Aldehydes react with the iodovinyllithium, and then the formed alkoxides are trapped with acetic anhydride in a one-pot operation. In the case of ketones, the isolated allylic alcohols were acetylated with isopropenyl acetate and p-toluenesulfonic acid. The isolated 3,3difluoro-2-iodoallylic acetates 2B (X = I) were reduced with zinc metal (2 equiv). Elimination proceeds smoothly in N,N-dimethylformamide or tetrahydrofuran at room temperature, and the desired 1,1-difluoroallenes were obtained in high yield.

Reaction Scope

Yields of the synthesized acetates **2** and 1,1-difluoroallenes **3** using methods A and B are summarized in Table 1. A wide variety of monosubstituted 1,1-difluoroallenes were obtained from aldehydes, while the synthesis of disubstituted 1,1-difluoroallenes was accomplished by the difluorovinylidenation of ketones.

Although yields obtained in the two methods are nearly equal, method B is synthetically more favorable because it enables the synthesis of 1,1-difluoroallenes bearing functionalities that are sensitive to *n*-butyllithium. Aldehyde **4**, bearing an ester moiety, and aldehyde **5**, bearing a pyridine ring, were transformed to the corresponding 1,1-difluoroallenes **3n** and **3o** in 61% and 52% yield, respectively (Scheme 3).

Scheme 3 Synthesis of 1,1-difluoroallenes with an ester moiety and a pyridine ring

Summary

Difluorovinylation of aldehydes or ketones is readily realized with 1-bromo-2,2-difluorovinyllithium (method A) and 2,2-difluoro-1-iodovinyllithium (method B), which is followed by acetylation to give 2-bromo-3,3-difluoroallylic acetates and 3,3-difluoro-2-iodoallylic acetates, respectively. The formed allylic acetates undergo facile elimination on treatment with *n*-butyllithium (method A) or zinc metal (method B) to afford 1,1-difluoroallenes in

Yield (%) (method B)

 Table 1
 Synthesis of 1,1-Difluoroallenes from 1,1-Dibromo-2,2-difluoroethylene or 1,1,1-Trifluoro-2-iodoethane

				2A	3	2B	3
1 2	0=Ar	F ₂ C	Ar = Ph Ar = 1-Naph	93 (2Aa) 84 (2Ab)	87 (3a) 73 ^a (3b)	82 (2Ba) 83 (2Bb)	86 (3a) 82 (3b)
3	O CH ₂ (CH ₂) ₇ Me	F ₂ C CH ₂ (CH ₂) ₇ Me		n.a. ^b	n.a. ^b	84 (2Bc)	87 (3c)
4	O=Ph	F ₂ C Ph		83 (2Ad)	85 (3d)	81 (2Bd)	95 (3d)
5	0=	F ₂ C		86 (2Ae)	84 (3e)	87 (2Be)	92 (3e)
6	o=	F ₂ C		85 (2Af)	84 (3f)	n.a. ^b	n.a. ^b
7	0=Ph	F ₂ C		85 (2Ag)	83 (3g)	n.a. ^b	n.a. ^b
8 9 10		F ₂ C	R = H $R = Me$ $R = OMe$	n.a. ^b 87 (2Ai) 87 (2Aj)	n.a. ^b 82 (3i) 81 (3j)	83 (2Bh) n.a. ^b n.a. ^b	93 (3h) n.a. ^b n.a. ^b
11	O − n-Bu	F ₂ CPh <i>n</i> -Bu		80° (2Ak)	85 ^a (3 k)	n.a. ^b	n.a. ^b
12 13	O=√Ph R	F ₂ C	$R = (CH_2)_2 Ph$ $R = Me$	84 ^c (2Al) n.a. ^b	90 (3l) n.a. ^b	n.a. ^b 80° (2Bm)	n.a. ^b 86 (3m)

^{a 19}F NMR yield based on PhCF₃.

^b n.a. = reaction not attempted.

^c Acetylation was performed with isopropenyl acetate and *p*-TsOH.

high yield. Method B starts from the readily available 1,1,1-trifluoro-2-iodoethane, and allows the synthesis of 1,1-difluoroallenes bearing functionalities that are sensitive to *n*-butyllithium.

NMR spectra were recorded in CDCl₃ on a Bruker Avance 500 or Avance 400 spectrometer. Chemical shift values are given in ppm relative to internal TMS (for ¹H NMR: $\delta = 0.00$ ppm), CDCl₃ (for ¹³C NMR: $\delta = 77.0$ ppm), and C₆F₆ (for ¹⁹F NMR: $\delta = 0.0$ ppm). Mass spectra (EI–TOF or ESI–TOF) were measured on a JEOL JMS-T100GCV or JMS-T100CS mass spectrometer. IR spectra were recorded using the ATR (attenuated total reflectance) method on a Horiba FT-720 spectrophotometer. Column chromatography and preparative TLC were conducted on silica gel (Silica Gel 60 N, Kanto Chemical Co., Inc. for column chromatography and Wakogel B-5F, Wako Pure Chemical Industries for PTLC, respectively). All reactions were conducted under argon. THF, DMF, hexane, and Et₂O were dried by passage over a column of activated alumina followed by a column of Q-5 scavenger (Engelhard). Pentane was distilled from CaH₂.

2-Bromo-1,1-difluoro-5-phenylpent-1-en-3-yl Acetate (2Aa); Typical Procedure for Method A (from Aldehydes; Table 1, Entry 1)

To a soln of 1,1-dibromo-2,2-difluoroethylene (444 mg, 2.0 mmol) in Et₂O (16 mL) was added a Et₂O soln (2.0 mL) of *n*-BuLi (1.60 M in hexane; 1.28 mL, 2.0 mmol) at -100 °C under argon. The mixture was stirred for 15 min at that same temperature, then 3-phenylpropanal (0.28 mL, 2.0 mmol) was added. The mixture was stirred for an additional 15 min. After Ac₂O (0.19 mL, 2.0 mmol) was added, the mixture was allowed to warm to 0 °C over 2 h. The reaction was

quenched with sat. aq NH₄Cl (10 mL), and the products were extracted with Et₂O (3×15 mL). The combined organic layer was washed with brine (20 mL) and dried (Na₂SO₄). After the solvent was removed under reduced pressure, the residue was purified by column chromatography (hexane–EtOAc, 20:1) to give **2Aa** as a colorless liquid; yield: 593 mg (93%).

IR: 3028, 2949, 1747, 1731, 1282, 1221, 1026, 700 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 1.98–2.08 (m, 1 H, CH₂), 2.07 (s, 3 H, CH₃CO), 2.11–2.17 (m, 1 H, CH₂), 2.58–2.62 (m, 2 H, CH₂), 5.44 (dddd, J = 7.3, 7.3 Hz, $J_{\rm HF}$ = 2.1, 2.1 Hz, 1 H, CH), 7.17 (dd, J = 7.8, 0.8 Hz, 2 H, ArH), 7.21 (tt, J = 7.8, 0.8 Hz, 1 H, ArH), 7.29 (dd, J = 7.8, 7.8 Hz, 2 H, ArH).

¹³C NMR (126 MHz, CDCl₃): δ = 20.8, 31.1, 34.1, 68.3 (d, J_{CF} = 3 Hz), 81.0 (dd, J_{CF} = 35, 21 Hz), 126.3, 128.2, 128.6, 140.2, 154.2 (dd, J_{CF} = 294, 289 Hz), 169.7.

 ^{19}F NMR (470 MHz, CDCl₃): δ = 80.7 (br d, J_{FF} = 27 Hz, 1 F), 82.3 (br d, J_{FF} = 27 Hz, 1 F).

Anal. Calcd for $C_{13}H_{13}BrF_2O_2$: C, 48.92; H, 4.11. Found: C, 49.14; H, 4.34.

1,1-Difluoro-5-phenylpenta-1,2-diene (3a)

n-BuLi (1.60 M in hexane; 0.12 mL, 0.19 mmol) was added to a soln of acetate **2Aa** (60 mg, 0.19 mmol) in hexane (2.6 mL) at 0 °C under argon. The mixture was stirred for 1 min at that same temperature, then the reaction was quenched with aq NH₄Cl (3 mL), and the products were extracted with Et₂O (3 × 5 mL). The combined organic layer was washed with brine (10 mL) and dried (Na₂SO₄). After the solvent was removed under reduced pressure, the residue was purified by column chromatography (pentane) to give **3a** as a colorless liquid; yield: 29 mg (87%).

IR: 3030, 2927, 2856, 2011, 1462, 1192, 744, 698 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 2.53–2.61 (m, 2 H, CH₂), 2.81 (t, *J* = 7.5 Hz, 2 H, CH₂), 6.47 (tt, *J* = 6.1 Hz, *J*_{HF} = 2.4 Hz, 1 H, =CH), 7.17–7.22 (m, 3 H, ArH), 7.30 (dd, *J* = 7.3, 7.3 Hz, 2 H, ArH).

¹³C NMR (126 MHz, CDCl₃): δ = 33.8, 33.8, 121.4 (t, $J_{CF} = 6$ Hz), 126.2, 128.4, 128.5, 140.6, 152.8 (t, $J_{CF} = 261$ Hz), 170.1 (t, $J_{CF} = 36$ Hz).

¹⁹F NMR (470 MHz, CDCl₃): δ = 59.9 (td, J_{FH} = 5, 2 Hz).

Anal. Calcd for $C_{11}H_{10}F_2$: C, 73.32; H, 5.59. Found: C, 73.16; H, 5.77.

2-Bromo-1,1-difluoro-3-phenylhept-1-en-3-yl Acetate (2Ak); Typical Procedure for Method A (from Ketones; Table 1, Entry 11)

To a soln of 1,1-dibromo-2,2-difluoroethylene (442 mg, 2.0 mmol) in Et₂O (16 mL) was added a Et₂O soln (2.0 mL) of n-BuLi (1.60 M in hexane; 1.28 mL, 2.0 mmol) at -100 °C under argon. The mixture was stirred for 15 min at that same temperature, then 1-phenylpentan-1-one (0.30 mL, 2.0 mmol) in Et₂O (3 mL) was added. The mixture was stirred for an additional 1 h, and then allowed to warm to -40 °C over 1 h. The reaction was quenched with sat. aq NH₄Cl (10 mL), and the products were extracted with Et_2O (3 × 15 mL). The combined organic layer was washed with brine (20 mL) and dried (Na₂SO₄). After the solvent was removed under reduced pressure, the residue was purified by column chromatography (hexane-EtOAc, 10:1) to give 2-bromo-1,1-difluoro-3-phenylhept-1-en-3ol. To a soln of the alcohol in isopropenyl acetate (3 mL) was added p-TsOH·H₂O (5 mg, 0.03 mmol). The mixture was refluxed for 5 h, then the reaction was quenched with sat. aq NaHCO₃ (2 mL). The products were extracted with Et_2O (3 × 3 mL). The combined organic layer was washed with brine (3 mL) and dried (Na₂SO₄). After the solvent was removed under reduced pressure, the residue was purified by column chromatography (hexane–EtOAc, 30:1) to give **2Ak** as a colorless liquid; yield: 555 mg (80%, two steps).

IR: 2958, 2871, 1741, 1726, 1275, 1217, 962, 708 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 0.78 (t, *J* = 7.2 Hz, 3 H, CH₃), 0.81–0.91 (m, 1 H, CH₂), 1.04–1.29 (m, 3 H, CH₂), 2.11 (dddd, *J* = 14.0, 11.9, 4.4 Hz, *J*_{HF} = 4.4 Hz, 1 H, CH₂), 2.20 (s, 3 H, CH₃CO), 2.94 (dddd, *J* = 14.0, 12.2, 4.4 Hz, *J*_{HF} = 3.4 Hz, 1 H, CH₂), 7.28–7.41 (m, 5 H, ArH).

¹³C NMR (126 MHz, CDCl₃): δ = 13.8, 21.6, 22.5, 25.8 (d, $J_{CF} = 2$ Hz), 36.6 (d, $J_{CF} = 7$ Hz), 84.1 (dd, $J_{CF} = 4$, 2 Hz), 87.2 (dd, $J_{CF} = 29$, 23 Hz), 125.2, 127.7, 128.2, 141.4 (dd, $J_{CF} = 2$, 2 Hz), 153.4 (dd, $J_{CF} = 297$, 284 Hz), 168.6.

¹⁹F NMR (470 MHz, CDCl₃): δ = 83.7 (ddd, $J_{FF} = 34$ Hz, $J_{FH} = 4$, 3 Hz, 1 F), 87.0 (d, $J_{FF} = 34$ Hz, 1 F).

Anal. Calcd for $C_{15}H_{17}BrF_2O_2$: C, 51.87; H, 4.94. Found: C, 51.83; H, 4.99.

1,1-Difluoro-3-phenylhepta-1,2-diene (3k)

The acetate 2Ak was converted into the corresponding difluoroallene 3k by the same procedure as used for acetate 2Aa; yield: 85%.

IR: 2958, 2927, 1990, 1718, 1464, 1261, 1182, 769 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 0.95 (t, *J* = 7.4 Hz, 3 H, CH₃), 1.42 (tq, *J* = 7.5, 7.4 Hz, 2 H, CH₂), 1.59 (tt, *J* = 7.5, 7.5 Hz, 2 H, CH₂), 2.69 (tt, *J* = 7.5 Hz, *J*_{HF} = 5.7 Hz, 2 H, CH₂), 7.33–7.40 (m, 3 H, ArH), 7.50–7.53 (m, 2 H, ArH).

¹³C NMR (126 MHz, CDCl₃): δ = 14.0, 22.2, 29.7 (d, J_{CF} = 5 Hz), 33.0, 127.2, 128.5, 129.3, 134.8 (t, J_{CF} = 6 Hz), 135.7, 152.6 (t, J_{CF} = 259 Hz), 166.2 (t, J_{CF} = 36 Hz).

¹⁹F NMR (470 MHz, CDCl₃): δ = 60.0 (t, J_{FH} = 6 Hz).

HRMS–FAB: m/z [M + H]⁺ calcd for C₁₃H₁₅F₂: 209.1142; found: 209.1130.

1,1-Difluoro-2-iodo-5-phenylpent-1-en-3-yl Acetate (2Ba); Typical Procedure for Method B (from Aldehydes; Table 1, Entry 1)

To a soln of (i-Pr)2NH (2.8 mL, 20 mmol) in THF (10 mL) was added n-BuLi (1.67 M in hexane; 12.0 mL, 20.0 mmol) over 10 min at 0 °C under argon. The resulting solution was allowed to stir for an additional 15 min, and then cooled to -93 °C in a cold hexane bath. To the cold LDA soln was added a soln of CF₃CH₂I (2.10 g, 10.0 mmol) in THF (5 mL) over 10 min, keeping the temperature between -93 °C and -85 °C. After the mixture was stirred for 20 min at that same temperature, a soln of 3-phenylpropanal (1.34 g, 10.0 mmol) in THF (5 mL) was added over 5 min, while keeping the temperature between -93 °C and -85 °C. The mixture was stirred for an additional 30 min, then warmed to -30 °C over 90 min. After Ac₂O (1.23 g, 12.0 mmol) was added, the mixture was allowed to warm to 0 °C over 2 h. The reaction was quenched with sat. aq NH₄Cl (20 mL), and the products were extracted with Et₂O (3×20 mL). The combined organic layer was washed with brine (20 mL) and dried (Na₂SO₄). After the solvent was removed under reduced pressure, the residue was purified by column chromatography (hexane-EtOAc, 20:1). The acetate 2Ba was obtained as a colorless liquid; yield: 3.01 g (82%).

IR: 3028, 2954, 1743, 1716, 1267, 1219, 1024, 698 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 1.87–1.93 (m, 1 H, CH₂), 2.05–2.17 (m, 1 H, CH₂), 2.07 (s, 3 H, CH₃CO), 2.58 (t, *J* = 7.2 Hz, 2 H, CH₂), 4.98 (t, *J* = 7.2 Hz, 1 H, CH), 7.17–7.22 (m, 3 H, ArH), 7.29 (dd, *J* = 7.3, 7.6 Hz, 2 H, ArH).

¹³C NMR (126 MHz, CDCl₃): δ = 20.9, 30.9, 36.0, 53.8 (dd, $J_{CF} = 25$, 26 Hz), 68.9 (d, $J_{CF} = 3$ Hz), 126.2, 128.2, 128.5, 140.2, 154.0 (dd, $J_{CF} = 286$, 286 Hz), 169.6.

861

Downloaded by: NYU. Copyrighted material.

¹⁹F NMR (470 MHz, CDCl₃): δ = 89.2 (d, J_{FF} = 22 Hz, 1 F), 90.2 (d, $J_{\rm FF} = 22$ Hz, 1 F).

HRMS (ESI⁺): m/z [M + Na]⁺ calcd for C₁₃H₁₃F₂IO₂Na: 388.9826; found: 388.9830.

1,1-Difluoro-5-phenylpenta-1,2-diene (3a)

To a suspension of zinc powder (131 mg, 2.00 mmol) in DMF (3 mL) was added a soln of 2Ba (366 mg, 1.00 mmol) in DMF (2 mL) at r.t. under argon, and the mixture was stirred for 3 h. The resulting mixture was filtered to remove the excess zinc and then diluted with Et₂O (20 mL) and brine (15 mL). The products were extracted with Et_2O (3 × 15 mL). The combined organic layer was washed with brine (15 mL) and dried (Na₂SO₄). After the solvent was removed under reduced pressure, the residue was purified by column chromatography (pentane). Difluoroallene 3a was obtained as a colorless liquid; yield: 155 mg (86%).

1,1-Difluoro-2-iodo-3-methyl-5-phenylpent-1-en-3-yl Acetate (2Bm); Typical Procedure for Method B (from Ketones; Table 1, Entry 13)

To a soln of (i-Pr)₂NH (1.1 mL, 8.00 mmol) in THF (5 mL) was added n-BuLi (1.67 M in hexane; 4.8 mL, 8.0 mmol) over 10 min at 0 °C under argon. The resulting solution was allowed to stir for an additional 15 min, and then cooled to -93 °C in a cold hexane bath. To the cold LDA soln was added a soln of CF₃CH₂I (840 mg, 4.00 mmol) in THF (2 mL) over 10 min, keeping the temperature between -93 °C and -85 °C. After the mixture was stirred for 20 min at that same temperature, a soln of 4-phenylbutan-2-one (593 mg, 4.00 mmol) in THF (2 mL) was added over 5 min, while keeping the temperature between -93 °C and -85 °C. The mixture was stirred for an additional 30 min, then warmed to -30 °C over 90 min. The reaction was quenched with sat. aq NH₄Cl (15 mL), and the products were extracted with Et₂O (3×15 mL). The combined organic layer was washed with brine (15 mL) and dried (Na₂SO₄). After the solvent was removed under reduced pressure, the residue was purified by column chromatography (hexane-EtOAc, 10:1) to give 1,1difluoro-2-iodo-3-methyl-5-phenylpent-1-en-3-ol. To a soln of the alcohol in isopropenyl acetate (3 mL) was added p-TsOH·H₂O (5 mg, 0.03 mmol). The mixture was refluxed for 4 h, then the reaction was quenched with sat. aq NaHCO3 (15 mL). The products were extracted with Et₂O (3×15 mL). The combined organic layer was washed with brine (15 mL) and dried (Na₂SO₄). After the solvent was removed under reduced pressure, the residue was purified by column chromatography (hexane-EtOAc, 30:1) to give 2Bm as a colorless liquid; yield: 1.22 g (80%, two steps).

IR: 3028, 2931, 2862, 1790, 1741, 1712, 1496, 1454, 1369, 1238, 1196, 1068, 1020, 700 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): $\delta = 1.87$ (d, J = 4.6 Hz, 3 H, CH₃), 2.04 (s, 3 H, CH₃CO), 2.11–2.23 (m, 2 H, CH₂), 2.58 (t, J = 8.6 Hz, 2 H, CH₂), 7.18–7.20 (m, 3 H, ArH), 7.29 (dd, J = 7.0, 7.0 Hz, 2 H, ArH).

¹³C NMR (126 MHz, CDCl₃): δ = 21.8, 22.9 (d, J_{CF} = 7 Hz), 30.0, 42.8 (d, $J_{CF} = 2 \text{ Hz}$), 59.7 (dd, $J_{CF} = 26, 22 \text{ Hz}$), 80.6 (d, $J_{CF} = 3 \text{ Hz}$), 126.1, 128.3, 128.5, 140.8, 152.5 (dd, $J_{\rm CF}$ = 301, 281 Hz), 169.3.

¹⁹F NMR (470 MHz, CDCl₃): δ = 89.0 (dq, J_{FF} = 33 Hz, J_{FH} = 5 Hz, 1 F), 97.3 (d, $J_{\rm FF}$ = 33 Hz, 1 F).

HRMS (ESI⁺): m/z [M + Na]⁺ calcd for C₁₄H₁₅F₂IO₂Na: 402.9982; found: 402.9979.

1,1-Difluoro-3-methyl-5-phenylpenta-1,2-diene (3m)

The acetate 2Bm was converted into the corresponding difluoroallene 3m by the same procedure as used for acetate 2Ba; yield: 86%. IR: 3064, 2922, 2360, 2004, 1801, 1604, 1481, 1173, 1043, 995, 696 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): $\delta = 1.91$ (t, J = 5.0 Hz, 3 H, CH₃), 2.40-2.48 (m, 2 H, CH₂), 2.74 (t, J = 8.2 Hz, 2 H, CH₂), 7.13-7.18 (m, 3 H, ArH), 7.25 (t, J = 7.6 Hz, 2 H, ArH).

¹³C NMR (126 MHz, CDCl₃): δ = 22.8, 33.4, 38.6, 126.1, 128.3, 128.4, 132.3 (t, $J_{CF} = 6$ Hz), 141.0, 150.4 (t, $J_{CF} = 260$ Hz), 163.0 (t, $J_{\rm CF} = 35$ Hz).

¹⁹F NMR (470 MHz, CDCl₃): δ = 61.5 (tq, J_{FH} = 5, 5 Hz).

HRMS (EI): m/z [M]⁺ calcd for C₁₂H₁₂F₂: 194.0907; found: 194.0909.

Acknowledgment

This research was partly supported by a Grant-in-Aid for Exploratory Research from MEXT, Japan. We thank Tosoh F-Tech, Inc. for providing 1,1,1-trifluoro-2-iodoethane.

References

- (1) Krause, N.; Hoffmann-Röder, A. In Modern Allene Chemistry; Krause, N.; Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, 2004, 997.
- (2) For the synthesis of non-fluorinated allenes, see: Brummond, M.; DeForrest, J. E. Synthesis 2007, 795.
- For the synthesis of fluorinated allenes, see: (a) Dolbier, W. (3)R. Jr.; Burkholder, C. R.; Piedrahita, C. A. J. Fluorine Chem. 1982, 20, 637. (b) Shi, G.; Xu, Y. J. Fluorine Chem. 1989, 44, 161. (c) Wang, Z.; Hammond, G. B. J. Org. Chem. 2000, 65, 6547. (d) Mae, M.; Hong, J. A.; Xu, B.; Hammond, G. B. Org. Lett. 2006, 8, 479.
- (4) See also: (a) Zens, A. P.; Ellis, P. D.; Ditchfield, R. J. Am. Chem. Soc. 1974, 96, 1309. (b) Castelhano, A. L.; Krantz, A. J. Am. Chem. Soc. 1987, 109, 3491. (c) Lu, H.; Friedrich, H. B.; Burton, D. J. J. Fluorine Chem. 1995, 75, 83. (d) Xu, B.; Hammond, G. B. Angew. Chem. Int. Ed. 2008, 47, 689.
- (5) (a) Yokota, M.; Fujita, D.; Ichikawa, J. Org. Lett. 2007, 9, 4639. (b) Oh, K.; Fuchibe, K.; Ichikawa, J. Synthesis 2011, 881.
- Anilkumar, R.; Burton, D. J. J. Fluorine Chem. 2005, 126, (6)455.