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Synopsis. The reaction of allylic acetates with zinc in the
presence of a catalytic amount of hexacarbonylmolybde-
num(0) led to reductive coupling for the formation of a 1,5-
diene framework. Reductive coupling of nerolidyl acetate
provided squalene and its isomers in high yield.

Allylic halides have been generally employed in
reductive coupling for the formation of 1,5-diene
frameworks.! Recently, instead of the unstable allylic
halides, allylic acetates which are easier to prepare and
store than the halides have been applied in the
palladium-catalyzed reductive coupling via mr-allylpal-
ladium complex with zinc.?’ On the other hand, hexa-
carbonylmolybdenum(0), which is relatively inexpen-
sive and is stable against oxygen and moisture, reacts
with allylic acetates to form w-allylmolybdenum
complexes.? Hexacarbonylmolybdenum(0) is likely to
become a convenient catalyst for the reductive cou-
pling of allylic acetates with zinc.

The molybdenum-catalyzed reductive coupling of
cinnamy!l acetate was carried out under various reac-
tion conditions, as summarized in Table 1. The cou-
pling reaction did not occur in refluxing toluene,
which had been effective in hexacarbonylmolybdenum
(0)-catalyzed reactions of the allylic acetates with car-
bon nucleophiles, and did not also occur in refluxing
dioxane or in DMF at 110°C (Entries 1—3). Next, the
effect of ligands was investigated. The addition of 10
mol% of 2,2’-bipyridyl (bpy) accelerated the reaction in
refluxing dioxane and THF (Entries 4 and 5). Ligands
such as N,N,N’,N’-tetramethyl-1,2-ethanediamine,
N,N,N’,N’-tetramethyl-1,3-propanediamine, and tri-
phenylphosphine were not effective under the same
conditions. Accordingly, the reductive coupling of
various allylic acetates was carried out in refluxing
dioxane containing 10 mol% of bpy. The reaction of
3-acetoxy-1-octene produced 6,10-hexadecadiene (48%)%
and 9-vinyl-6-tetradecene (52%)? in 54% yield. The

reaction of (E)-3-acetoxy-1-phenyl-1-butene also pro-
vided (1E,5E)-3,4-dimethyl-1,6-diphenyl-1,5-hexadiene
(42%), 4,5-diphenyl-2,6-octadiene (8%),Y and 1,4-
diphenyl-3-methyl-1,5-heptadiene (50%)* in 37% yield.
However, 3-acetoxy-1-cyclohexene did not cause the
reductive coupling.

Reactivity and regio- and stereoselectivity were
investigated in the reductive coupling of terpenoid
allylic acetates such as linalyl, neryl, geranyl, nero-
lidyl, and farnesyl acetate. The results are summarized
in Table 2. Zn-Cu couple as a reducing agent, com-
pared with zinc powder, accelerated the reaction of
linalyl acetate (Entries 1 and 2). The difference in the
reactivity between linalyl acetate and neryl and geranyl
acetate may be due to the difference in the rate of the
formation of m-allylmolybdenum complexes (Entries
2—4).9 In every case (Entries 1—4), the ratios of
regioisomers (I/II) are similar, about 25/75. Being
distinct from palladium-catalyzed reductive coupling,?
stereoselectivities did not depend on the substrates
(a:b=ca. 30:70, c:d:e=ca. 10:50:40). Itis presumed
from the results that the reductive couplings proceed
after syn/anti isomerization of the m-allylmolybdenum
complexes occurs to reach the equilibrium,? in con-
trast with the -allylpalladium complexes which do
not cause the syn/anti isomerization.” Using this
method, nerolidyl acetate, which was more reactive
than farnesyl acetate, was reduced to give squalene and
its isomers as coupling products (Entries 5 and 6).

As mentioned above, hexacarbonylmolybdenum(0)
proved to be a good catalyst for the reductive coupling
of allylic acetates.

Experimental

General Procedure of Hexacarbonylmolybdenum(0)-Cata-
lyzed Reductive Coupling of Allylic Acetates. To a solu-
tion of allylic acetate (2 mmol), zinc powder (0.39 g, 6

Table I. Reductive Coupling of Cinnamyl Acetate

5mo1Z Mo(CO)g

PhaonrOAc —————— Phunnmp, +

Ph Ph
)OI 04
Ph Ph

b

Zn 6 mmol
2 mmol solvent 2 ml
reflux a ¢
. b)

Entry Solvent bpy/mol% Reaction time/h Yield®/% R.a;:o. c
1 toluene — 50 0 B
2 DMF? - 68 9 34 0 66
3 dioxane — 52 8 39 0 6l
4 dioxane 10 10 77 47 4 49
5 THF 10 20 79 47 5 48
6 benzene 10 70 13 49 7 44

a) Isolated yields. b) The isomer ratios were determined by GLPC [5% OV-17/Chromosorb W (AW-DMCS),
60—80 mesh, 2m, 230°C] and 200 MHz 'H NMR (Jeolco FX-200). ¢) Reaction temp 100°C.
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Table 2. Reductive Coupling of Terpenoid Allylic Acetates
RapaOhc 5 molZ Mo(C0)g N A R\F“KR
10 mol1% bpy R
or Ia Ib
R red?giggo?gent
0OAc dioxane (2 ml) M + ‘RP“’\“LR + RNR
2 mmol reflux 1Ic IId 1le
Ratio®”
Entry  Allylic acetate Reducing agent Reaction time/h  Yield®/% | R | |
(a:b)(c:d:e)
27 73
! SN Zn 27 55 (30:70) (11:49:40)
23 T
2 e Zn-Cu 8 8 (29:71) (10:48:42)
27 . 73
3 SN Zn-Cu 66 57 (31:69) (10:50:40)
OAc _ 27 73
4 r Zn-Cu 9% 15 (32:68) (12:50:38)
25 . 75
> et Zn 72 75 (31:69) (14:47:39)
I SR 00 acas Zn-Cu 115 20 20 8

(30:70) (10:48:42)

a) Isolated yields. b) The isomer ratios were determined by GLPC [5% OV-17/Chromosorb W (AW-DMCS),
60—80 mesh, 2m, He, 160°C (Entries 1—4), 200°C (Entries 5 and 6).

mmol), and bpy (31 mg, 0.2 mmol) in dioxane (2 ml) was
added hexacarbonylmolybdenum(0) (26 mg, 0.1 mmol). The
mixture was refluxed for 8—115 h under a nitrogen atmos-
phere. The reaction mixture was diluted with ether (50 ml),
washed with 10% HCI soln (20 ml) followed by water (2X20
ml), and dried over MgSO4. Evaporation of ether and
column chromatography on silica gel (Wakogel C-200)
using hexane or hexane/EtOAc as the eluent gave coupling
products. The structures and isomer ratios were determined
by comparison with GLPC and 'H NMR results of the sam-
ples prepared by the alternative method.?
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