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Abstract

A large-scale synthesis of N-Boc-4-Fluoro-L-Proline (1) from N-Boc-4-hydroxy-

L-Proline methyl ester (2) using Nosyl fluoride (13) as deoxyfluorinating agent has been 

developed. Eco-friendly and large scale feasible process using single solvent was 

developed to afford excellent purity >99% by HPLC with moderate yield. Key feature of 

the optimization included chromatography free purification and isolation on kilogram 

scale at pilot plant scale is described. 

Key words
Deoxyfluorination, Nosyl fluoride, N-Boc-4-Fluoro-L-Proline, N-Boc-cis-4-fluoro-L-

proline methyl ester, chromatography free 

Introduction

The fluorine substituted natural amino acids have been used as a powerful tool in 

medicinal chemistry. Naturally occurring bioactive Proline and its 4-substituted 

derivatives are important amino acids and have been extensively used in the 

pharmaceutical industry. 4-Fluoroproline is tool for protein design and engineering.1 N-

Boc-4-Fluoro-L-Proline (1) is useful intermediate in the synthesis of several drug 

molecules, such as Dipeptidyl peptidase IV inhibitors2a-d, Hepatitis C virus (HCV) 

inhibitors3, HIV-1 protease inhibitors4a,b, Anti-alzheimer agents5, Anti-tumor agents6, 

GABA uptake inhibitors7, Thrombin inhibitors8, Peptide deformylase (PDF) inhibitors9, 

TNF-α production inhibitors10, Pan-aurora kinase inhibitors11, Inhibitors of ROS1 and 

NTRK kinase12, GPR119 receptor agonists13, VLA-4 inhibitors14a,b, Fibroblast activation 

arotein (FAP) inhibitors.15 Unfortunately methods reported in literature for preparation of 

N-Boc-4-Fluoro-L-Proline (1) are extremely expensive and very difficult to synthesize on 
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large scale. Short, chromatography-free and scale up suitable process is not reported. 

Herein, we report an efficient and scalable process of N-Boc-4-Fluoro-L-Proline (1).

NN
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Results and Discussions

There are a number of drawbacks in the conventional synthesis of an optically 

active N-Boc-4-Fluoro-L-Proline (1). (Diethylamino)sulfur trifluoride {DAST}2a,e is 

most popular fluorinating agent utilized in small scale deoxyfluorination of N-Boc-4-

hydroxy-L-Proline methyl ester (2). However DAST is not suitable for large scale due to 

low temperature reaction conditions and thermally unstable/potentially explosive.16 Other 

deoxyfluorination agents such as Ishikawa reagent17, Diethylaminosulfur trifluoride & 

Morpholinoaminosulfurtrifluoride18a,b, Yarovenko reagent19, 2,2-difluoro-1,3-dimethyl 

imidazolidine20, Perfluoroalkanesulfonylfluoride/base21, Sulfuryl fluoride22 are expensive, 

highly reactive, involved complex work-up, racemisation and offer only marginal 

improvements in chemo-selectivity. Therefore, the use of conventional fluorinating 

agents in a large scale may result in severe handling (costs, time) and safety problems. 

Unfortunately, the majority of synthetic methods for fluorination have poor green 

chemistry metrics or lack practicality. Nucleophilic aliphatic substitution is more general 

method through the displacement of a leaving group with a simple fluoride source.23 The 

present study describes the use of inexpensive Nosyl fluoride as a fluorinating agent24a,b 

which is safe, stable and easy to handle.
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5

Conventional methods for synthesis of 1 suffer with substantial amount of 

elimination products. Hence the purification of optically active 1 from 4 (3,4 or 4,5-

dehydro impurities) is the major challenge in large scale. As outlined in Scheme-1, 

literature synthesis of 1 is as follows 

Scheme-1. Literature synthesis of 1
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Reagents: (a) Fluorinating agent; (b) Column chromatography; (c) NaOH; (d) TFA;(e) Pd/C; (f) recrystalization; (g) Boc-anhydride; (h)
cylcohexylamine & recrystalization; (i) HCl; (j) NaOCl
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a) Column chromatography purification of N-Boc-cis-4-fluoro-L-proline methyl 

ester (3) followed by hydrolysis. b) Boc deprotection and reduction of double bond with 

Pd/C of 3 & 4. Hydrolysis of 5 & 6 followed by hot ethanol/water treatment to get 4-

Fluoro-L-Proline (7)25 which on Boc protection affords 1. c) Hydrolysis of 3 & 4 to get 1 

& 9. Obtained acid derivatives were converted to corresponding cyclohexylamine salts. 

Pure 10 was obtained by recrystallization followed by acidification with HCl affords 1.26 

d) Hydrolysis of 3 & 4 to get 1 & 9 followed by oxidization affords 1.20 For the pilot-

plant campaign, major issues need to address were economic synthesis, simple process 

and most importantly isolation without chromatography.

We postulate that the polar diol derivatives can be easily removed by polar 

solvents. As shown in Scheme 2, our initial approach was to prepare easily removable 

polar derivatives of 4. Osmium tetroxide (OsO4) & Potassium permanganate (KMnO4) 
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6

were found to be best among different oxidizing agents investigated for oxidation of 

alkenes 4 to get corresponding diol 11. Multiple solvents and mixture of solvents were 

tested to eliminate diol derivatives 11 while keeping product intact in Toluene. 

Gratifyingly, 50% methanol in water was achieved complete elimination of 11 from 1.

Scheme-2. Initial approach for synthesis of 1
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(d) hot toluene
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However, these procedures were not taken forward for large scale as OsO4 is 

highly toxic27 and expensive whereas KMnO4 reaction involved tedious work-up. 

Therefore, we examined alternate suitable conditions for large scale synthesis. 

Development of the crystallization of 1 was a major focus prior to the pilot-plant 

campaign because this offered an excellent point in the synthesis sequence to purge 

impurities and ensure that the final product 1 would be obtained with consistent purity.

We decided to do hydrolysis of 3 to utilize an aqueous workup to remove 

impurities. The decision to isolate the carboxylic acid 1 was further supported by physical 

properties and solubility studies. Crystalline 1 could be obtained from hot Toluene. 

Serendipitously, simple hydrolysis of 3 & 4 using sodium hydroxide afforded 1 & 9, 

where pH and temperature played crucial role during isolation. Loss of yield has been 

observed in case of lower/higher pH with elevated temperature. A screening of solvents 

showed hot Toluene was the most effective solvent to isolate 1 selectively. Optimized 
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purification process was successfully applied to isolate 1 for popular reaction conditions 

using deoxyfluorination agents such as DAST and Triflic anhydride/TBAF (1M 

Tetrabutyl ammonium fluoride in THF).

We also developed large scale suitable economical process for Nosyl fluoride (13). 

Economical, easily recoverable and re-usable solvent such as Toluene was used instead 

of Tetrahydrofuran28, Acetonitrile29 and Acetone30. Time of reaction was reduced by 

elevated temperature to 55 oC from RT. It was observed that Toluene layer retain pure 

product 13 whereas simple water work-up able to remove of associated impurities. 

During lab scale reactions, 13 was obtained as a solid by concentration of Toluene 

solution to dryness. In view of safety during pilot batch, a solution of 13 in Toluene layer 

directly used for next reaction instead of solid isolation. Etching on glass assembly was 

observed during lab reaction, it is highly recommended to wear appropriate personal 

protective equipment (PPE) and adhere to the standard operating procedure (SOP) while 

performing reaction.31

Ultimately, for the pilot-plant campaign, we chose to implement an inherently 

safer process in which Toluene layer with 13 was obtained from inexpensive 

commercially available Nosyl chloride (12) by treatment of Potassium fluoride (KF) in 

biphasic media such as Toluene and water using 18-crown-6 as phase transfer catalyst at 

50-55oC. Aqueous layer separated and Toluene layer with 13 was utilized for 

deoxyfluorination of 2 to afford 3 & 4 using 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) 

as base. After treatment with KHSO4 solution and NaHCO3 solution, Toluene layer was 

hydrolysed by NaOH. Acid derivatives 1 & 9 were then isolated by acidification of 

aqueous layer with 50% HCl in water till pH ~3-4 at 0 oC. Obtained solid was treated 
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with Toluene at 80 oC. Pure 1 obtained by filtration (lab scale)/centrifugation (pilot scale) 

at RT as shown in Scheme-3 and Figure-1.

Scheme-3. Pilot-plant synthesis of 1
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Reagents: (a) KF, 18-crown-6, Toluene; (b) N-Boc-4-hydroxy-L-Proline methyl ester, DBU,
Toluene; (c) NaOH and hot Toluene
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Figure-1. Flow diagram of 1

Use of single solvent was major advantage of developed process in case of 

recovery and re-use of solvent. Current process established on pilot scale; however it can 

be scaled up on commercial scale.

Conclusion

An economical process had been developed for the large scale synthesis of pure 

N-Boc-4-Fluoro-L-Proline with moderate yield. The new process involved minimum 

steps using plant feasible/re-usable single solvent and overcame purification problems 

related to the synthesis of 1. In addition, cost-effective and safe process of Nosyl fluoride 

as deoxyfluorinating agent on large scale was identified. 
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Experimental Section

N-Boc-cis-4-fluoro-L-proline methyl ester (3). 

Method-a (using DAST): To a stirred solution of 2 (200g, 0.812 mol) in DCM (2L), 

DAST (129mL, 0.978mol) [Caution: highly toxic, extremely corrosive to skin and 

readily etches glass. Must be handled with appropriate precautions!] was added 

drop-wise at below -15 oC, during the addition, a slight exotherm was observed and 

stirred for 4h at RT. After completion of the reaction, the reaction mixture allowed to 

cool to 0 oC and quenched with 1.5L of saturated NaHCO3. Separated organic layer 

washed with 1L of brine. Organic layer concentrated under reduced pressure. The crude 

material (195g) dissolved in 4L acetone and water (1:1), MgSO4.7H2O (100g, 0.406 mol) 

followed by addition of KMnO4 (64.14g, 0.406mol) portion-wise at 10-20 C and stirred 

at RT for 2-3h. 100g of celite was added and stirred for 30min. The resulting light brown 

suspension was filtered, washed with acetone (800mL); filtrate was concentrated under 

reduced pressure and diluted with 800mL Toluene. Toluene layer washed with 3x200mL 

of methanol: water (1:1) and concentrated under reduced pressure to afford 3 as thick oil 

(133g, 66%). 

Method-b (using Nosyl Fluoride): To a stirred solution of 2 (1Kg, 4.08 mol) in Toluene 

(10 L), DBU (1.24Kg, 8.16mol) was added drop-wise and stirred for 30min at RT. Nosyl 

fluoride (1Kg, 4.89 mol) was added portion-wise and heated to 45 oC for 10h. After 

completion of the reaction, the reaction mixture allowed to cool to RT and washed with 

5% aq. KHSO4 solution (2L). Separated Toluene layer washed with saturated NaHCO3 

(2L) and concentrated under reduced pressure to get thick oily mass. The crude material 
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(1.1Kg) dissolved in 4L acetone and water (1:1), MgSO4.7H2O (500g, 2.04mol) followed 

by addition of KMnO4 (320g, 2.04 mol) portion-wise at 10-20 oC. Reaction mass allowed 

to warm to RT and stirred for 2-3h. After completion of reaction, 500g of celite was 

added and stirred for 10min. The resulting light brown suspension was filtered, washed 

with acetone (500mL); filtrate was concentrated under reduced pressure and diluted with 

4L of Toluene. Toluene layer washed with 3x1L of methanol:water (1:1) and 

concentrated under reduced pressure to afford 3 as thick oil (524.3g, 52%).  1H NMR (a 

mixture of rotamers, 400 MHz, CDCl3) δ 1.43-1.49 (s, 9H), 2.29-2.52 (m, 2H), 3.61-3.69 

(m, 1H), 3.75 (s, 3H), 3.79-3.86 (m, 1H), 4.42-4.44 (d, 0.5H), 4.54-4.56 (d, 0.5H), 5.15-

5.25 (br d, 1H); 13CNMR (125 MHz, CDCl3) δ 28.2, 28.4, 36.5, 36.7, 37.4, 37.5, 52.2, 

52.3, 52.8, 53.0, 53.1, 53.3, 57.2, 57.6, 60.4, 76.9, 77.1, 77.4, 80.4, 90.4, 91.5, 91.9, 92.9, 

153.6, 154.0, 171.9, 172.3; Mass: 248 as (M+1)+.

N-Boc-cis-4-fluoro-L-proline (1).

Method-a (using DAST): To a stirred solution of 2 (200g, 0.812 mol) in DCM (2L), 

DAST (129mL, 0.978mol) [Caution: highly toxic, extremely corrosive to skin and 

readily etches glass. Must be handled with appropriate precautions!] was added 

drop-wise at below -15 oC, during the addition, a slight exotherm was observed and 

stirred for 4h at RT. After completion of the reaction, the reaction mixture allowed to 

cool to 0 oC and quenched with 1.5L of saturated NaHCO3. Separated organic layer 

washed with 1L of brine. Solution of NaOH (65.3g, 1.63mol) in water (650mL) was 

added to organic layer and heated to 40oC for 3h. After completion of reaction, DCM 

layer was separated. Aqueous layer acidified with 50% HCl in water at 0oC till pH ~3-4. 

Obtained solid was filtered, suspended in Toluene (600mL) and heated to 80 oC for 2h. 
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11

Reaction mass allowed to cool to RT, filtered, washed with Toluene (200mL), dried to 

afford 1 as white solid (137g, 72%)

Method-b (using triflic anhydride/TBAF): To a stirred mixture of 2 (50g, 0.204 mol) 

and Triethyl amine (41.3g, 0.408 mol) in THF (500mL), triflic anhydride (70.52g, 

0.25mol) was added drop-wise at 0-5 oC and stirred for 4h at RT. After completion of 

reaction, 1M TBAF in THF (306mL) was added at 0-5 oC and stirred for 16h at RT. After 

completion of reaction, reaction mass diluted with ice-cold water and extracted with 

DCM. Solution of NaOH (16.2g, 2eq) in water (160mL) was added to DCM layer and 

heated to 40 oC for 3h. DCM layer was separated. Aqueous layer was acidified with 50% 

HCl in water at 0oC till pH ~3-4. Obtained solid was filtered, suspended in Toluene 

(150mL) and heated to 80 oC for 2h. Reaction mass allowed to cool to RT, filtered, 

washed with Toluene (50mL), dried to afford 1 as white solid (26.1g, 55%)

Method-c (using Nosyl fluoride): To a stirred solution of 4-nitrobenzene-1-sulfonyl 

chloride (11) (8.89Kg, 40.11 mol) in Toluene (35L), solution of KF (11.55Kg, 199.1mol) 

in water (35L) followed by 18-crown-6 (0.115kg, 0.44mol) were added and heated to 55 

oC for 6h. After completion of reaction, reaction mass cooled to RT, filtered through 

pressure nutsche filter (PNF) and washed with Toluene (5L). Separated Toluene layer 

was added to stirred mixture of 2 (7.0 Kg, 28.57mol) and DBU (8.7 Kg, 57.16mol) in 

Toluene (21L). Reaction mass heated to 50-55oC for 10h. After completion of reaction, 

reaction mixture allowed to cool to RT and washed by 5% aq. KHSO4 solution (21L). 

Separated Toluene layer was washed with saturated NaHCO3 (21L). Solution of NaOH 

(2.4Kg, 60mol) in water (17L) was added to Toluene layer and heated to 45oC for 3h. 

Toluene layer was separated and recovered. Aqueous layer acidified with 50% HCl (10L) 
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in water at 0 oC till pH ~3-4. Obtained solid was filtered, suspended in Toluene (21L) and 

heated to 80 oC for 2h. Reaction mass allowed to cool to RT, filtered, washed with 

Toluene (7L), dried to afford 1 as white solid (4.2Kg, 63%). 1H NMR (a mixture of 

rotamers, 400 MHz, DMSO-d6) δ 1.36 (s, 5H), 1.41 (s, 4H), 2.21-2.57 (m, 2H), 3.51-3.58 

(m, 2H), 4.25-4.30 (m, 1H), 5.19-5.31 (br d, 1H); 13C NMR (125 MHz, DMSO-d6) δ 27.9, 

28.1, 35.9, 36.0, 36.7, 36.8, 52.7, 52.9, 53.0, 53.1, 56.9, 57.2, 78.9, 79.0, 90.9, 92.0, 92.3, 

93.4, 153.1, 153.2, 172.6, 172.8; Mass: 232 as (M-1)+; HPLC: 99.29%; SOR [α] 22/D: 

−71.0 to -74.0 deg, c = 1 in chloroform; Melting point: 159-162 °C (D).

Supporting Information

Experimental procedures, copies of the NMR, Mass and HPLC spectra of all 

intermediates and the final product.
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