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Thiocyanation of aromatic compounds has been investigated using the combination of 1-chloro-1,2-
benziodoxol-3-(1H)-one (1) and (trimethylsilyl)isothiocyanate (TMSNCS). The reaction with electron rich 
aromatic compounds proceeded smoothly to provide the thiocyanated products in high yield, while electron 
deficient heteroaromatic compounds were not suitable for this reaction. In these reactions, the regioselectiv-
ity was generally high. Transformations of the products were also investigated to demonstrate the utility of 
the reaction. Based on NMR experiments, we propose that thiocyanogen chloride is generated in situ as an 
active species.
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Aromatic compounds having a thiocyanate unit have been 
used as a substructure of bioactive molecules and building 
blocks in organic synthesis.1) For example, phenols, anilides 
and heteroaromatic compounds with a thiocyanate group are 
known to show herbicidal acitivity,2) hypolipidemic activity,3) 
anti-cancer activity,4) antifungal activity,5) and antimicrobial 
activity.6,7) Aryl thiocyanate unit can be not only transformed 
to sulfide,8–10) disulfide,11) tetrazole,12) and thiocarbamate13,14) 
but also act as cyanate and/or thiolate sources in cross cou-
pling reactions and difunctionalization of alkyne deriva-
tives.15–20) In this context, several efficient methodologies for 
thiocyanation of aromatic compounds have been reported. 
The major strategy for the purpose is to use the combination 
of oxidant and inorganic thiocyanate salts, in which either the 
generation of electrophilic thiocyanium ion equivalent or oxi-
dation of aromatic compounds is the key step.1,21–46)

During the course of our reaction development with hy-
pervalent iodine reagents,47–51) we recently reported several 
difunctionalizations of alkenes using 1-chloro-1,2-benziodox-
ol-3-(1H)-one (1).52) Among them, the chlorothiocyanation 
of alkenes was achieved, in which thiocyanogen chloride 
(Cl–SCN) was proposed as an active species52) (Chart 1a). Al-
though Cl–SCN is considered to be a highly reactive thiocya-
nation reagent, there have been only a few reports regarding 
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Chart 1. Thiocyanation Using 1 and TMSNCS

Table 1. Screening of the Reaction Conditionsa)

Entry SCN source Solvent Yield of 3 [%]b)

1 TMSNCS CH2Cl2 92
2 TMSNCS Acetone 33
3 TMSNCS MeCN 36
4 TMSNCS MeOH 6
5 KSCN CH2Cl2 n.r.
6 KSCN Acetone 4
7 KSCN MeCN 6
8 KSCN MeOH 52
9 NH4SCN CH2Cl2 64

10 NH4SCN Acetone 41
11 NH4SCN MeCN 44
12 NH4SCN MeOH 48

a) The reactions were carried out with 1 (1 equiv.) and thiocyanate source 
(1 equiv.) on a 0.2 mmol scale at room temperature for 1 h. b) Isolated yield.

Fig. 1. 13C-NMR Analyses
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thiocyanation of aromatic compounds with Cl–SCN.53,54) This 
is probably because its preparation is technically unfavor-
able. In general, Cl–SCN can be prepared by using dangerous 
chlorine gas (Cl2). Another example employed iodobenzene 
dichloride (Ph–ICl2) and lead(II) thiocyanate (Pb(SCN)2).54,55) 
Although the reagent is generated under mild conditions, the 

use of lead compounds should be avoided due to their toxicity. 
Therefore, we envisioned that our previous method would be 
an alternative protocol for the reaction with Cl–SCN. In this 
report, the thiocyanation of aromatic and heteroaromatic com-
pounds using 1 and (trimethylsilyl) isothiocyanate (TMSNCS) 
is disclosed (Chart 1b).

Initially, the reaction conditions were screened with phenol 
2a as a test substrate (Table 1). To our delight, TMSNCS was 
found to be a good thiocyanate source. The reaction in CH2Cl2 
occurred at the para-position to give the corresponding prod-
uct 3a in 92% yield (entry 1). In contrast, low yields were 
observed in polar solvents (entries 2–4). Potassium thiocya-
nate could work only in MeOH, albeit in modest yield (entries 
5–8). Irrespective of the solvents, thiocyanation product 3a 
was obtained in modest yields when the reaction was carried 
out with ammonium thiocyanate (NH4SCN) (entries 9–12). 
These results suggest that the solubility of the thiocyanate 
source is important for this thiocyanation.

We next tried to confirm the in-situ generated reactive 
species under the reaction conditions. As seen in our previ-
ous report,52) 1H-NMR measurements suggested that Cl–SCN 
would be generated, because the formation of trimethyl-
silyl 2-iodobenzoate was observed upon treatment of 1 with 
1 equiv. of TMSNCS. In order to obtain more direct evidence, 
13C-NMR analysis was carried out56) (Fig. 1). When 1 was 
reacted with TMSNCS, the peak of TMSNCS disappeared 
and new peaks were observed at 109.1 ppm (Fig. 1b). The peak 
of 109.1 ppm was clearly different from thiocyanogen (NCS–
SCN, 106.8 ppm), which was prepared according to the litera-
ture.26,55) Coupled with the previous 1H-NMR analysis,52) these 
results strongly indicate that the peak of 109.1 ppm comes 
from the nitrile carbon of Cl–SCN. After addition of phenol to 
the mixture, the peak of 109.1 ppm disapperared,56) suggesting 
Cl–SCN was an active species.

Having established the optimized reaction conditions, the 
substrate scope was examined (Table 2). Other poly-substitut-
ed phenols were good substrates for this reaction and excel-
lent yields were obtained with high para-selectivity (3b–3f). 
When para-position was substituted by an alkyl group, other 
positions were thiocyanated. For example, the reaction of 
4-tert-butylphenol afforded ortho-thiocyanated product 3g 
in 69% yield. Interestingly, 3g was relatively unstable even 
after purification and was gradually converted to cyclized 
product 3g′.57) Anisole 2h was found to be a good substrate, 
suggesting that the hydroxyl group is not essential for this 
reaction. Subsequently, the thiocyanation of aniline deriva-
tives was investigated under the same reaction conditions. As 
expected, not only anilines but also anilides underwent the 
reaction smoothly (5a–5d). However, the yield of 5e was only 
7%, probably because of the reduced nucleophilicity of 4e. 
Electron-rich heteroaromatic compounds were also available. 
Indole gave 3-thiocyanato-1H-indole 7a in 73% yield. The 
reaction of 2-substituted pyrrole 6b provided 4-thiocyanated 
product 7b in 61% yield selectively. In contrast to electron-
rich aromatic rings, electron-poor aromatic compounds such 
as quinoline were not reactive at all. Tyrosine derivative 8 was 
also thiocyanated under the standard conditions. As expected, 
ortho-substitution of the phenol moiety occurred selectively 
as in the case of 3g, and the product 9 gradually underwent 
intramolecular cyclization to 9′.57)

To confirm the utility of this protocol, further transforma-

Table 2. Thiocyanation of Various Aromatic and Heteroaromatic Com-
poundsa)

a) The reactions were carried out with 1 (1 equiv.) and TMSNCS (1 equiv.) in 
CH2Cl2 for 1 h on a 0.2 mmol scale.
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tions of the thiocyanation products were demonstrated as 
shown in Chart 2. Although replacement of the solvent was 
necessary, the substitution of the cyanide group with a trifluo-
romethyl group could be carried out in one pot without dif-
ficulty.10,36) Another application was [2 + 3] cycloaddition with 
sodium azide.12) Thus, thiocyanation of 2c followed by [2 + 3] 
cycloaddition with sodium azide in the presence of ZnCl2

12) 
was conducted in one pot, furnishing the desired tetrazole 11 
in 37% yield (2 steps).

In summary, we have demonstrated the thiocyanation of 
aromatic and heteroaromatic compounds using the combina-
tion of 1-chloro-1,2-benziodoxol-3-(1H)-one (1) and TMSNCS 
under mild conditions. Various thiocyanated products were 
obtained in good to high yields, and the regioselectivity is 
generally high. The NMR analyses of the mixture of 1 and 
TMSNCS indicate that thiocyanogen chloride (Cl–SCN) 
would be the reactive intermediate. In addition, further trans-
formations of the thiocyanated products were successfully 
demonstrated in one pot. We believe that this protocol would 
be useful for mild thiocyanation of organic molecules. Further 
applications are underway in our laboratory.
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