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High throughput screening using Automated Ligand Identification System (ALIS) resulted in the discovery
of a new series of S-adenosyl-L-homocysteine hydrolase inhibitors based on non-adenosine analogs. The
optimization campaign led to very potent and competitive compound 39 with a Ki value of 1.5 nM. Com-
pound 39 could be a promising lead compound for research to reduce elevated homocysteine levels.
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Homocysteine (Hcy) is a sulfur-containing amino acid, which is
an intermediate metabolite of an essential amino acid, methionine
(Met). Met is condensed with ATP to form S-adenosyl-L-methionine
(AdoMet), and AdoMet utilized as a methyl donor for methylation
reactions is converted to S-adenosyl-L-homocysteine (AdoHcy).
AdoHcy is hydrolyzed to Hcy and adenosine. There are two meta-
bolic pathways of Hcy: (i) remethylation through methionine syn-
thase into Met, and (ii) degradation to cysteine thorough
cystathionine beta-synthase. Intracellular Hcy is highly regulated
at low levels and redundant Hcy is released into the blood (see
Fig. 1).

About forty years ago, McCully reported that Hcy caused vascu-
lar pathology such as arteriosclerosis and myocardial infarction.1

Thereafter, clinical tests verified that patients having arteriosclero-
sis in the peripheral or cerebral vessel showed high Hcy levels.2 In
most clinical tests, a correlation between increased Hcy levels and
cerebral infarction has been reported.3–8 In a large-scale study, it
has been reported that when the blood Hcy levels increases by
25% (3 lM in absolute level), the risk of coronary artery disease
increases by 10%, and the risk of cerebral infarction increases by
20%;9 and it is now suggested that Hcy is an independent risk fac-
tor. Therefore, lowering the Hcy levels could be one of the possible
approaches to prevent and treat diseases such as coronary artery
disease or ischemic stroke.
One of the strategies to lower the Hcy levels10 is the inhibition
of the Hcy synthetic enzyme, S-adenosyl-L-homocysteine hydro-
lase (AdoHcyase; EC 3.3.1.1.).11 Almost all of the known AdoHcyase
inhibitors are adenosine analogs.12–14 Some of them inhibit the
enzyme irreversibly, and many of them lack selectivity against
related enzymes for producing adenosine, suggesting that there
could remain concerns about adverse side effects.12 A reversible
inhibitor 4 has only a weak potency for the enzyme (�10�6 M)
(see Fig. 2).12 We hypothesize that reversible, competitive AdoHcy-
ase inhibitors based on non-adenosine analogs can provide some
distinct advantages in terms of selectivity and toxicity.

To explore the ligands of AdoHcyase, high-throughput screen-
ing, utilizing Automated Ligand Identification System (ALIS),15 an
affinity-based system for rapidly screening disease-associated tar-
gets, was employed.16 ALIS screening technology based on size
exclusive chromatography identifies non-covalent chemical
ligands to protein targets from large combinatorial mixtures, sug-
gesting that the ligands acquired from the system could be revers-
ible inhibitors. Fortunately, we discovered a series of several lead
candidate molecules (5a–f) illustrated in Figure 3.

The structural features of the compounds are that they contain
two amides: a hydrophobic amide and a hydrophilic amide with an
amine group. We addressed the replacement of the two amide
moieties to improve the inhibitory activity. The general synthetic
routes are described in Scheme 1.

Reaction of 1,4-dichloro-2-nitrobenzene (6) with 4-chlorophe-
nol in the presence of NaH in DMF provided biphenylether 7.
Reduction of the nitro group of 7 to 8 was performed by using
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Figure 2. Known AdoHcyase inhibitors based on adenosine analogs.

Figure 1. Hcy, Met, AdoMet, and AdoHcy.

Figure 3. Representative compounds from ALIS screening and their IC50 values for AdoHcyase inhibition.

Scheme 1. Reagents and conditions: (a) 4-chlorophenol, NaH, DMF rt; (b) FeCl3, charcoal activated, NH2NH2�H2O, MeOH, 50 �C to reflux; (c) ethyl bromoacetate, N,N-
diisopropylethylamine, 140 �C; (d) 1 mol/l aq NaOH, MeOH, THF, rt; (e) EDC, DMF, rt; (f) amine A1-H, 0 �C; (g) EDC, HOBt, amine A2-H, 0 �C to rt.
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hydrazine hydrate as hydrogen sources with a catalytic amount of
FeCl3 and charcoal activated in MeOH under reflux conditions.
Dialkylation of 8 with ethyl bromoacetate in N,N-diisopropylethyl-
amine gave 9, and hydrolysis of 9 with aqueous NaOH in MeOH
Table 1
AdoHcyase inhibition assay data of the conversion of tertiary amides
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IC50 values for AdoHcyase inhibition were determined in triplicates.15
and THF produced 10. Compound 10 was converted to cyclic
anhydride 11 by using EDC as a dehydrating agent, followed by
amidation by addition of amines A1 provided 12. Final amidation
with amines A2 afforded target molecules 13. When amines A2

contained protecting groups, the deprotection was performed after
the amidation.

Firstly, we conducted the conversion of lipophilic amines.
Because the compounds with a tertiary amide such as 5a, 5b, 5c,
and 5d had more potent activities than the compounds with sec-
ondary amides such as 5e and 5f, we focused on the syntheses of
derivatives with a tertiary amide. Results are shown in Table 1.
Intramolecular cyclization of 5a and 5c to 14 and 15, respectively,
decreased potency, suggesting that cyclic tertiary amides are not
preferable for increasing potency. Replacement of the cyclohexyl
group in 5b with a phenyl group decreased its potency (16).
N-methylation of the secondary amide in 5f dramatically increased
the inhibitory activity against AdoHcyase (17). N-Methyl-1,2,3,4-
tetrahydronaphthalen-2-amine derivative 18 had a similar strong
inhibitory activity to 17. Introduction of a phenyl group into the
4-position of the cyclohexyl group in 5b slightly decreased its
potency (19). Replacement of the cyclohexyl group in 5b with
piperidine led to a significant decrease in potency (20), but intro-
duction of acetyl (21), methansulfonyl (22), and methoxycarbonyl
(23) groups regained the inhibitory activity.

Secondly, we performed the modification of N-Me derivatives to
methylhydrazine analogues (Table 2). Replacement of the indane
(17) with an isoindoline (24) led to a 4-fold increase in potency,
and conversion of piperidine moieties (22, 23) into piperazines
(26, 27) also improved the inhibitory activities. On the other hand,
replacement of the tetrahydronaphthalene (18) with a tetrahydro-
isoquinoline (25) gave a 2.5-fold loss in potency.
Table 2
The modification of N-Me derivatives to methylhydrazine analogues
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IC50 values for AdoHcyase inhibition were determined in triplicates.15



Figure 4. The structure and IC50 value of 39.17
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Next, we performed the conversion of hydrophilic amines with
the N-methylindan-2-amine fixed on the lipophilic parts (Table 3).
Elongation of the methylene linker to give 28 led to a 6-fold loss in
potency. Replacement of the pyrrolidine with a piperidine (29) and
a dimethylamine (30) showed 6 and 3 times losses in potency,
respectively. The introductions of N-monoalkylethylenediamines
such as 31, 32, and 34 showed comparable potency for AdoHcyase.
The cyclic secondary amine series compounds 34–38 showed
weaker inhibitory activities than 17. Compounds 36 and 38 were
more potent than 34, 35, and 37, suggesting that the cyclized posi-
tions on the linker carbons may play an important role in interac-
tions with AdoHcyase.

Combined with the information of SAR on the two amides parts,
we synthesized compound 39,18 which had the strongest
inhibitory activity against AdoHcyase, with an IC50 value of
0.0050 lM (Fig. 4).

In order to investigate the AdoHcyase inhibition pattern of this
series, the kinetic analysis of 39 was performed. Lineweaver–Burk
plot analysis showed that the inhibition mode of 39 was competi-
tive with AdoHcy with a Ki value of 1.5 nM (Fig. 5).

In summary, in order to explore inhibitors of S-adenosyl-L-
homocysteine hydrolase (AdoHcyase), high throughput screening
using Automated Ligand Identification System was conducted
Table 3
The conversion of hydrophilic amines

A2 IC50 (lM)

17 0.052

28 0.33

29 0.32
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3

3

0.13

31 3 0.070

32 3 0.060
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3

3

0.049

34 1.2
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(S)
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37
(R)

0.60

38 0.15

IC50 values for AdoHcyase inhibition were determined in triplicates.15
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Figure 5. Lineweaver–Burk plots of AdoHcyase inhibition by 39. Assays were
conducted by incubation of various concentrations of the substrate (AdoHcy) with
AdoHcyase in the absence (red circles) and presence of different concentrations
[1 nM (blue triangles), 3 nM (black squares), and 6 nM (green diamonds)] of 39. SAS
software, version 9.2 (SAS Institute Inc.) was used for statistical analyses.
and we discovered a series of several lead candidate molecules.
Our effort led to the discovery of the competitive inhibitor of
AdoHcyase based on non-adenosine analogs 39 with a Ki value of
1.5 nM. Compound 39 could be a promising lead compound for
research to reduce elevated homocysteine levels. Further lead opti-
mization is underway and will be reported in due course.
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