GDCh

Photoelectrocatalysis

 How to cite:
 Angew. Chem. Int. Ed. 2021, 60, 9357–9361

 International Edition:
 doi.org/10.1002/anie.202101701

 German Edition:
 doi.org/10.1002/ange.202101701

Efficient Photoelectrochemical Conversion of Methane into Ethylene Glycol by WO₃ Nanobar Arrays

Jun Ma⁺, Keke Mao⁺, Jingxiang Low, Zihao Wang, Dawei Xi, Wenqing Zhang, Huanxin Ju, Zeming Qi, Ran Long,* Xiaojun Wu, Li Song, and Yujie Xiong*

Abstract: Photoelectrochemical (PEC) conversion of methane (CH₄) has been extensively explored for the production of value-added chemicals, yet remains a great challenge in high selectivity toward C_{2+} products. Herein, we report the optimization of the reactivity of hydroxyl radicals ('OH) on WO₃ via facet tuning to achieve efficient ethylene glycol production from PEC CH₄ conversion. A combination of materials simulation and radicals trapping test provides insight into the reactivity of 'OH on different facets of WO₃, showing the highest reactivity of surface-bound 'OH on {010} facets. As such, the WO₃ with the highest {010} facet ratio exhibits a superior PEC CH_4 conversion efficiency, reaching an ethylene glycol production rate of 0.47 μ mol cm⁻² h⁻¹. Based on in situ characterization, the methanol, which could be attacked by reactive 'OH to form hydroxymethyl radicals, is confirmed to be the main intermediate for the production of ethylene glycol. Our finding is expected to provide new insight for the design of active and selective catalysts toward PEC CH₄ conversion.

Methane conversion is a highly important process to the energy system optimization, as well as promotes the understanding of C–H bonds activation. The utilization of the CH_4 as a building block for the production of high-value chemicals such as ethane (C_2H_6), methanol (CH_3OH) and formic acid (HCOOH) is gaining traction from the scientific commuity.^[1–3] Currently, the industrial CH_4 conversion mainly focuses on H_2 or syngas production through CH_4 reforming, which is accomplished relying on harsh operating conditions such as high temperature and pressure due to the symmetrical tetrahedral structure and extremely stable C–H bonds.^[2,4] Therefore, the search for the CH₄ conversion technique that could be performed under ambient condition is of scientific and technological significance.^[4,5]

It is known that hydrogen peroxide (H_2O_2) or molecular O_2 has been widely used as oxidant in CH₄ conversion.^[6,7] For example, AuPd colloids have been demonstrated to activate CH_4 with H_2O_2 .^[6] However, the relatively high cost of H_2O_2 and molecular O₂ for CH₄ conversion hindered the development of economically chemical system. Here we report the photoelectrochemical (PEC) catalyzed CH₄ conversion under mild conditions, without additional oxidant. PEC catalysis, combining the advantages of photocatalysis and electrocatalysis, has recently been arisen as an extraordinary candidate for various chemical reactions. For CH₄ oxidation, PEC can produce reactive oxygen species, especially 'OH, through water oxidation by photoexcited holes for attacking and activating the stubborn C-H bonds, as well as reduce the oxidation barrier of the CH4 molecules by providing external potential for producing various value-added compounds.[8-10] We show that by the optimization of photo-generated radicals, a substantial improvement is achieved without any additional oxidant.

Over the past several decades, various semiconductors have been employed for constituting such a PEC system.^[11,12] Among them, tungsten oxide (WO_3) has been known as one of the most promising candidates because of its non-toxicity, high oxidation ability and suitable band gap.^[8,13] However, the present PEC methane conversion rates are still unsatisfactory with a high selectivity toward low-value $CO^{[11]}$ and $C_2H_6^{[12]}$ mainly due to the inappropriate active sites on the surface of catalyst. Herein, we take insight into the facet-dependent performance of WO₃ in CH₄ conversion with the goal of boosting the production of oxygenated derivatives, especially alcohol derivatives. The WO₃ photoanode with the highest {010} facet ratio among all the prepared samples achieves the greatest PEC CH₄ conversion performance, reaching an ethylene glycol (EG) generation rate of 0.47 μ mol cm⁻² h⁻¹ and 66% selectivity under a moderately positive applied potential (1.3 V vs. reversible hydrogen electrode (RHE)). More importantly, the optimized WO₃ photoanode shows high stability during PEC CH₄ oxidation for 12 h.

Based on the previous research, 'OH plays a key role in photocatalytic CH_4 activation.^[9,10] For this reason, density functional theory (DFT) is first employed to investigate 'OH adsorption behaviors on {010}, {100} and {001} facets of monoclinic WO₃ (Figure S1–S4). The lowest-energy adsorp-

^[*] J. Ma,^[+] Dr. J. Low, Z. Wang, D. Xi, W. Zhang, H. Ju, Prof. Z. Qi, Prof. R. Long, Prof. X. Wu, Prof. L. Song, Prof. Y. Xiong Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China Hefei, Anhui 230026 (China) E-mail: longran@ustc.edu.cn yjxiong@ustc.edu.cn Homepage: http://staff.ustc.edu.cn/~yjxiong/ J. Ma,^[+] Prof. Y. Xiong Institute of Energy, Hefei Comprehensive National Science Center 350 Shushanhu Rd., Hefei, Anhui 230031 (China) Dr. K. Mao^[+] School of Energy and Environment Science, Anhui University of Technology Maanshan, Anhui 243032 (China) [⁺] These authors contributed equally to this work. Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/anie.202101701.

Figure 1. The atomic structures of 'OH adsorption on twinning W atoms of a) {010} facet, b) {100} facet and c) {001} facet. The values at the bottom are their corresponding adsorption energy. The white and red spheres represent the hydrogen and oxygen atoms, respectively.

tion structures of 'OH on {010}, {100} and {001} facets are presented in Figure 1. The adsorption energy of two 'OH on $\{010\}$, $\{100\}$ and $\{001\}$ facets are -1.742, -1.826 and -1.935 eV, respectively, indicating that \cdot OH could be strongly adsorbed on twinning W atoms of all the three facets of WO₃. Notably, the adsorption behaviors of the 'OH bound on different facets are distinct. For {100} facet, two adsorbed 'OH are spatially close (1.872 Å) forming hydrogen bond on {100} facet, and spontaneously form H₂O and surface-bound O that are connected with hydrogen bond on {001} facet, both of which reduce their further reactivity. In contrast, hydrogen bond could hardly be formed between the surface-bound 'OH on $\{010\}$ facet because of the vast distance (3.342 Å) between two neighboring 'OH. Consequently, the strong reactivity of the surface-bound OH could be preserved on the {010} facets, allowing it to be more favorable for CH₄ oxidation.

To complement the above theoretical study, we seek to design WO₃ photoanode with different {010} facet ratios for PEC CH₄ oxidation. To this end, WO₃ nanobar arrays (WO₃NB), WO₃ nanoplate arrays (WO₃NP) and WO₃ nanoflake arrays (WO₃NF), which all have {010} facets on their side faces, are grown on fluorine-doped tin oxide (FTO) glass substrates by hydrothermal methods. The crystal phase on WO₃ photoanodes is attested by X-ray diffraction characterization (Figure S5), in which the diffraction patterns of all the prepared samples are well indexed to monoclinic WO₃ (PDF#43-1035), with three characteristic peaks of {002}, {020} and {200} facets at 23.1°, 23.6° and 24.4°, respectively. As revealed by scanning electron microscopy (SEM) images (Figure 2a-c and S6), all the nanostructures are uniformly distributed on FTO substrates. The thicknesses of WO₃NB, NP and NF are 250-400 nm, 80 nm and 25 nm, respectively. The nanostructures are further determined by high-resolution transmission electron microscopy (HRTEM, Figure S7), which turn out to have the orientations as shown in Figure 2d.^[14] Combined with the orientations, SEM images reveal that the $\{010\}$ facet ratios on the prepared WO₃ photoanodes change in the following sequence: WO₃NB > $WO_3NP > WO_3NF$. To further examine the band structures of WO₃ photoanodes, UV-vis diffuse reflectance spectroscopy

Figure 2. SEM images of a) WO_3NB , b) WO_3NP and c) WO_3NF . d) Schematic illustration for monoclinic WO_3 nanostructures with different {010} facet ratios on substrates.

and ultraviolet photoelectron spectroscopy are also collected (Figure S8–S11). It is apparent that valance band maximums for all these WO_3 are sufficiently high for water oxidation to produce 'OH.^[15,16]

To elucidate the facet effect on 'OH reactivity of WO₃, electron paramagnetic resonance (EPR) spectroscopy is carried out to detect 'OH produced on these prepared WO₃ photoanodes using 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin-trapping agent. Figure 3 a shows the EPR spectra of DMPO-'OH adduct for WO₃ samples, which contain typical quartet signals with an intensity ratio of 1:2:2:1.^[17] Obviously, the signal for DMPO-'OH produced on WO₃NB is stronger than that for WO₃NP and WO₃NF. It is straightforward to understand this feature because the highest ratio of {010} facets on WO₃NB has ensured the highest

Figure 3. a) EPR detection of 'OH using DMPO as a spin-trapping agent under 30 s illumination in the presence of WO₃NB, WO₃NP and WO₃NF. b) Current density-potential profiles of WO₃ photoanodes measured at a range of potentials under 100 mWcm⁻² illumination. c) Production rate and d) carbon selectivity of EG produced in PEC CH₄ conversion on WO₃ photoanodes with different {010} facet ratios at a range of potentials under 100 mWcm⁻² illumination.

reactivity of the surface-bound 'OH so that the produced 'OH can easily react with DMPO to form DMPO-'OH adduct. Note that superoxide radical cannot be produced given the conduction band minimum of WO_3 .^[18] Moreover, no H_2O_2 formation is observed in our experiments.

Upon recognizing the capability of tuning 'OH reactivity, we next appraise the performance of the WO₃ photoanodes for PEC CH₄ conversion. To suppress competing oxygen production reaction, PEC CH₄ conversion is performed in acidic medium of 0.1 M Na₂SO₄ electrolyte with pH adjusted to 2 using sulfuric acid.^[19] In the absence of CH₄, the photocurrent density is mostly resulted from water oxidation (Figure 3b). After flowing CH₄ gas into the reaction system for 30 min, the photocurrent density significantly increases, accompanied with obvious onset shift toward lower potentials for all the prepared samples (Figure S12), indicating that the CH₄ oxidation is more preferable than oxygen production on the WO₃. Furthermore, WO₃NB shows the most negative onset shift among all the prepared samples, implying that WO₃NB owns the strongest response to CH₄ molecules. Note that the turbulence of gas bubbles and the magnetic stirring (800 rpm) necessary for facilitating CH₄ mass transport in water cause noise in the photocurrent-potential profile.

Subsequently, the PEC CH₄ conversion is carried out at 0.7-1.5 V vs. RHE to analyze the products of CH₄ oxidation and their corresponding Faradaic efficiencies (FEs). The production of the liquid product (ethylene glycol and CH_3OH) and gas products (C_2H_6 , CO and trace CO_2) in the system is confirmed via ¹H nuclear magnetic resonance (NMR) spectroscopy and gas chromatography (Figures S13 and S14), respectively. The PEC CH₄ conversion performance on the prepared WO3 photoanodes is boosted with the increasing {010} facet ratio (Figure S15), affirming the key role of WO₃ {010} facets in optimizing 'OH reactivity. Additionally, as shown in Figure 3c and d, at applied potential of 1.3 V vs. RHE, the production rate of EG on WO₃NB reaches as high as 0.47 µmol cm⁻²h⁻¹ and its CH₄-to-EG conversion selectivity is up to 66%. Such a PEC methane conversion on WO₃NB achieves 0.10 and 0.12% solar-to-fuel efficiency (STF) at 1.1 and 1.3 V vs. RHE applied potential with >90% carbon balance (Table S2 and Figure S16), respectively. The increase of the anodic potential would promote the removal of photogenerated electrons from WO₃ photoanode surface and suppress the surface recombination of photogenerated carriers, which boosts the production of hydroxyl radicals on WO₃ surface.^[20-22] All three WO₃ photoanodes show higher EG production rate at higher bias because of more production of hydroxyl radicals. However, according to our DFT calculation, the 'OH bound on the {010} facets of WO₃ photoanodes shows much stronger reactivity than that on {100} and {001} facets due to the formation of hydrogen bond between spatially closed 'OH on {100} and {001} facets. Since WO₃NB possesses the highest {010} facet ratio, the performance for PEC CH₄ activation on WO₃NB would be further amplified at higher bias, which results in much higher EG production rate on WO₃NB than the other two. Moreover, both yield and selectivity of EG (Figure S17) are nearly linearly related with {010} facet ratio indicating the highest 'OH reactivity on {010} facets in PEC CH₄ conversion toward EG. Figure S18a shows FEs for EG produced by WO₃ photoanodes under various applied potentials. The FE for EG on the WO₃NB is 23.9 % (1.3 V vs. RHE), nearly 2.5 times higher than that on the WO₃NP. The FE for oxygen evolution, the main competition reaction, is also shown in Figure S18b. Although the FE for oxygen evolution is higher than that for EG production, 23.9 % FE for PEC CH₄ conversion (Table S3) toward EG is acceptable considering the outrageously low solubility of hydrophobic CH₄. Nevertheless, our work shows significant carbon selectivity for CH₄-to-EG conversion (66 %). In addition, no significant fluctuation arises in the average photocurrent density after 12 h of PEC CH₄ conversion (Figure S19) using WO₃NB, suggesting its superiority for long-term CH₄ conversion.

Notably, the PEC CH₄ conversion has a dependence on illumination power density. The photocurrent density of the WO₃NB at the range of 0.5–1.9 V is promoted with the increasing illumination power density (Figure S20). Specifically, as the light intensity increases, the response of WO₃NB to CH₄ becomes stronger at relatively lower applied potential range (0.7–1.2 V vs. RHE) and turns weaker at relatively higher applied potential range (1.3–1.9 V vs. RHE). This observation is an outcome of the enhanced competition of oxygen evolution under high applied potentials.^[23] The FEs for products of CH₄ conversion (Figure S21) are in good agreement with the photocurrent density results.

For the sake of future scalable production and practical application, the CH₄ conversion needs to be associated with economic viability, which is generally determined by market prices and production rate of the resultant products. Benefiting from the sublime reactivity of 'OH on {010} facet, the high-value EG can be obtained in an impressive production rate (the unit is converted into mmolh⁻¹g⁻¹ for comparison), substantially higher than many reported products from solar-energy-mediated CH₄ conversion under mild conditions (Figure S22 and Table S4).^[5,7,24-31] Such a result once again highlights the commercial-ready PEC CH₄ conversion performance of the optimized WO₃ photoanode.

To fundamentally elucidate the mechanism of PEC CH_4 conversion into EG on WO₃NB, in situ diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) is employed to monitor reaction intermediates.^[32] Four distinct DRIFTS peaks are gradually evolved during the PEC CH_4 conversion under an applied potential of 1.3 V vs. RHE and 365 nm LED light irradiation (Figures 4a and S23). The

Figure 4. a) In situ DRIFTS for PEC CH₄ conversion on WO₃NB. b) Schematic illustration of the proposed reaction mechanism for PEC CH₄ conversion into EG.

Angew. Chem. Int. Ed. 2021, 60, 9357-9361

prominent peaks at 2853 and 2924 cm⁻¹ exhibit an obvious dependence on PEC duration, which can be attributed to methylene (CH₂) symmetric C–H stretching and antisymmetric C–H stretching of EG,^[33,34] suggesting the stable production of EG with the PEC duration. In addition, the peaks around 2879 and 2957 cm⁻¹, which can be assigned to methyl (CH₃) symmetric C–H stretching and antisymmetric C–H stretching of CH₃OH,^[33,34] gradually increase at the initial PEC stage and become stable after 10 min of PEC. This suggests the transformation of the CH₃OH into EG during the PEC process. Clearly, the CH₃OH can be produced by the reaction between the highly reactive OH and methyl radicals ('CH₃) adsorbed on WO₃, and act as an intermediate for subsequent formation of EG.

Thus a working mechanism for the PEC CH₄ conversion on the WO₃NB can be proposed (Figure 4b). According to our DFT calculation results, the reactivity of the 'OH attached on {010} facets is optimized, which can abstract H atom from C-H bond of CH₄, forming CH₃.^[30, 35] Some of these produced ·CH₃ subsequently react with ·OH or ·CH₃ to produce CH₃OH or C₂H₆. Further, the produced CH₃OH can be further attacked by highly reactive 'OH forming hydroxymethyl radicals (Figure S24). Benefiting from the twinning characteristic of the W atoms on the {010} facets of WO₃NB, these hydroxymethyl radicals can easily couple to form C-C bonds, yielding high-value EG.^[25,36] When the surface-bound 'OH is not sufficiently active like the case of WO₃NF, the CH₃OH would be preserved as a product. In the meantime, other oxidative species (e.g., photogenerated holes) that often easily lead to over-oxidation of $CH_4^{[11,29,37]}$ would take the role in oxidizing CH4 to produce CO as observed for WO3NF and NP. Thus 'OH is the key to tuning the production and selectivity of EG.

In summary, we present an effective strategy for selective PEC CH₄ conversion into EG using monoclinic WO₃. Based on DFT simulation and radicals trapping test, we reveal that the OH bound on the {010} facets of WO₃ photoanodes shows much stronger reactivity, thereby providing highly efficient reactive oxygen species for CH₄ conversion under ambient condition. The in situ DRIFTS confirms that the methanol. which can be attacked by highly reactive 'OH on surface to form hydroxymethyl radicals, is the main intermediate for the production of EG on WO₃. Furthermore, the C-C coupling active sites provided by the twinning W atoms on {010} facets allow the formation of high-value C2+ oxygenated products. As a result, the prepared WO_3NB with an optimized $\{010\}$ facet ratio demonstrates a superior PEC CH₄ conversion performance (EG production rate of 0.47 μ mol cm⁻²h⁻¹) and EG selectivity of 66%. The insights gleaned in this work manifest the key role of reactive oxygen species to enhancing PEC CH₄ conversion efficiency and guide further development in catalyst design for PEC CH₄ conversion.

Acknowledgements

This work was financially supported in part by National Key R&D Program of China (2017YFA0207301), NSFC (21725102, U1832156, 91961106, 21803002), Anhui Provincial Natural Science Foundation (2008085J05), MOST (2018YFA0208603, 2016YFA0200602), Youth Innovation Promotion Association of CAS (2019444), and DNL Cooperation Fund, CAS (DNL201922). DRIFTS measurements were performed at BL01B in NSRL. We thank the support from USTC Center for Micro- and Nanoscale Research and Fabrication.

Conflict of interest

The authors declare no conflict of interest.

Keywords: ethylene glycol \cdot methane \cdot nanostructure \cdot photoelectrochemistry \cdot WO₃

- [1] P. Schwach, X. Pan, X. Bao, Chem. Rev. 2017, 117, 8497-8520.
- [2] K. Shimura, S. Kato, T. Yoshida, H. Itoh, T. Hattori, H. Yoshida, J. Phys. Chem. C 2010, 114, 3493–3503.
- [3] G. Chen, G. I. N. Waterhouse, R. Shi, J. Zhao, Z. Li, L.-Z. Wu, C.-H. Tung, T. Zhang, Angew. Chem. Int. Ed. 2019, 58, 17528– 17551; Angew. Chem. 2019, 131, 17690–17715.
- [4] P. Tang, Q. Zhu, Z. Wu, D. Ma, Energy Environ. Sci. 2014, 7, 2580–2591.
- [5] N. Li, Y. Li, R. Jiang, J. Zhou, M. Liu, Appl. Surf. Sci. 2019, 498, 143861.
- [6] N. Agarwal, S. J. Freakley, R. U. McVicker, S. M. Althahban, N. Dimitratos, Q. He, D. J. Morgan, R. L. Jenkins, D. J. Willock, S. H. Taylor, C. J. Kiely, G. J. Hutchings, *Science* 2017, 358, 223 227.
- [7] H. Song, X. Meng, S. Wang, W. Zhou, X. Wang, T. Kako, J. Ye, J. Am. Chem. Soc. 2019, 141, 20507–20515.
- [8] K. Villa, S. Murcia-López, T. Andreu, J. R. Morante, *Appl. Catal. B* 2015, 163, 150–155.
- [9] L. Yu, Y. Shao, D. Li, Appl. Catal. B 2017, 204, 216-223.
- [10] L. Li, G.-D. Li, C. Yan, X.-Y. Mu, X.-L. Pan, X.-X. Zou, K.-X. Wang, J.-S. Chen, *Angew. Chem. Int. Ed.* **2011**, *50*, 8299–8303; *Angew. Chem.* **2011**, *123*, 8449–8453.
- [11] W. Li, D. He, G. Hu, X. Li, G. Banerjee, J. Li, S. H. Lee, Q. Dong, T. Gao, G. W. Brudvig, M. M. Waegele, D.-e. Jiang, D. Wang, *ACS Cent. Sci.* **2018**, *4*, 631–637.
- [12] F. Amano, A. Shintani, K. Tsurui, H. Mukohara, T. Ohno, S. Takenaka, ACS Energy Lett. 2019, 4, 502–507.
- [13] M. Ma, K. Zhang, P. Li, M. S. Jung, M. J. Jeong, J. H. Park, Angew. Chem. Int. Ed. 2016, 55, 11819–11823; Angew. Chem. 2016, 128, 11998–12002.
- [14] S. S. Kalanur, Y. J. Hwang, S. Y. Chae, O. S. Joo, J. Mater. Chem. A 2013, 1, 3479–3488.
- [15] J. Low, J. Yu, M. Jaroniec, S. Wageh, A. A. Al-Ghamdi, *Adv. Mater.* 2017, 29, 1601694.
- [16] N. Zhang, A. Jalil, D. Wu, S. Chen, Y. Liu, C. Gao, W. Ye, Z. Qi, H. Ju, C. Wang, X. Wu, L. Song, J. Zhu, Y. Xiong, *J. Am. Chem. Soc.* **2018**, *140*, 9434–9443.
- [17] S. I. Dikalov, R. P. Mason, Free. Radical. Biol. Med. 1999, 27, 864–872.
- [18] P. M. Wood, Biochem. J. 1988, 253, 287-289.
- [19] D. Liu, J.-C. Liu, W. Cai, J. Ma, H. B. Yang, H. Xiao, J. Li, Y. Xiong, Y. Huang, B. Liu, *Nat. Commun.* **2019**, *10*, 1779.
- [20] Y. Nakabayashi, M. Nishikawa, N. Saito, C. Terashima, A. Fujishima, J. Phys. Chem. C 2017, 121, 25624–25631.
- [21] H. S. Park, K. C. Leonard, A. J. Bard, J. Phys. Chem. C 2013, 117, 12093–12102.

- [22] S. R. Pendlebury, M. Barroso, A. J. Cowan, K. Sivula, J. Tang, M. Grätzel, D. Klug, J. R. Durrant, *Chem. Commun.* 2011, 47, 716– 718.
- [23] Y. Liu, L. Liang, C. Xiao, X. Hua, Z. Li, B. Pan, Y. Xie, Adv. Energy Mater. 2016, 6, 1600437.
- [24] J. Du, W. Chen, G. Wu, Y. Song, X. Dong, G. Li, J. Fang, W. Wei, Y. Sun, *Catalysts* **2020**, *10*, 196–206.
- [25] Y. Zhou, L. Zhang, W. Wang, Nat. Commun. 2019, 10, 506.
- [26] S. Wu, X. Tan, J. Lei, H. Chen, L. Wang, J. Zhang, J. Am. Chem. Soc. 2019, 141, 6592–6600.
- [27] L. Meng, Z. Chen, Z. Ma, S. He, Y. Hou, H.-H. Li, R. Yuan, X.-H. Huang, X. Wang, X. Wang, J. Long, *Energy Environ. Sci.* 2018, *11*, 294–298.
- [28] S. Murcia-López, M. C. Bacariza, K. Villa, J. M. Lopes, C. Henriques, J. R. Morante, T. Andreu, *ACS Catal.* 2017, 7, 2878– 2885.
- [29] X. Yu, V. De Waele, A. Löfberg, V. Ordomsky, A. Y. Khodakov, *Nat. Commun.* **2019**, *10*, 700.
- [30] J. Xie, R. Jin, A. Li, Y. Bi, Q. Ruan, Y. Deng, Y. Zhang, S. Yao, G. Sankar, D. Ma, J. Tang, *Nat. Catal.* **2018**, *1*, 889–896.

- [31] B. Tahir, M. Tahir, N. A. S. Amin, Appl. Surf. Sci. 2019, 493, 18– 31.
- [32] C. S. Hu, X. Wang, Z. M. Qi, C. X. Li, *Infrared Phys. Technol.* 2020, 105, 103200.
- [33] J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, A. Boltasseva, ACS Photonics 2015, 2, 1224–1230.
- [34] G. Mahmodi, S. Sharifnia, M. Madani, V. Vatanpour, Sol. Energy 2013, 97, 186–194.
- [35] J. J. Margitan, F. Kaufman, J. G. Anderson, *Geophys. Res. Lett.* 1974, 1, 80–81.
- [36] S. Xie, Z. Shen, J. Deng, P. Guo, Q. Zhang, H. Zhang, C. Ma, Z. Jiang, J. Cheng, D. Deng, Y. Wang, *Nat. Commun.* 2018, 9, 1181.
- [37] X. Chen, Y. Li, X. Pan, D. Cortie, X. Huang, Z. Yi, Nat. Commun. 2016, 7, 12273.

Manuscript received: February 3, 2021

Accepted manuscript online: February 9, 2021

Version of record online: March 17, 2021