ARTICLE IN PRESS

Tetrahedron Letters xxx (2015) xxx-xxx

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Enantiomeric discrimination of α -hydroxy acids and *N*-Ts- α -amino acids by ¹H NMR spectroscopy

Guangpeng Gao, Caixia Lv, Qiuju Li, Lin Ai*, Jiaxin Zhang*

College of Chemistry, Beijing Normal University, Beijing 100875, China

ARTICLE INFO

Article history: Received 11 September 2015 Revised 14 October 2015 Accepted 17 October 2015 Available online xxxx

Keywords:

Enantiomeric discrimination α -Hydroxy acids and *N*-Ts- α -amino acids ¹H NMR spectroscopy

ABSTRACT

A new kind of chiral compounds with multiple amino, amido and phenolic hydroxy groups has been synthesized from p-phenylalanine and p-phenylglycine, respectively. The enantiomeric discriminations of α hydroxy acids and *N*-Ts- α -amino acids have been finished in the presence of the above chiral compounds as chiral solvating agents by ¹H NMR spectroscopy. The results show that the chiral compounds are highly effective and practical chiral solvating agents towards α -hydroxy acids and *N*-Ts- α -amino acids. © 2015 Elsevier Ltd. All rights reserved.

Determination of enantiomers, assignment of absolute configuration and analysis of enantiomeric excess are significant, indispensable and basic data to a chiral compound in biology, pharmaceutical chemistry and asymmetric catalysis.¹ Therefore, many methods and techniques, such as HPLC,² NMR,³ UV/Vis⁴ and fluorescence spectroscopy,⁵ have been developed to meet these demands. Among them, NMR technology has some distinctive advantages and features, such as less sampling amount, less environmental pollution, convenient procedure and high accuracy.⁶ Thus, various chiral shift reagents (CSRs) and chiral solvating agents (CSAs), such as lanthanide complexes,⁷ cyclodextrins,⁸ crown ethers,⁹ porphyrins,¹⁰ calixarenes¹¹ and others,¹² have been designed and utilized for this purpose by NMR spectroscopy. In recent decades, design and synthesis of more effective chiral auxiliaries with the unique architecture have fascinated many chemists for chiral molecular recognition by ¹H NMR spectroscopy.¹³ Herein, we report the highly facile and effective synthesis for chiral compounds **1a-1h** with multiple amino, amide and phenolic hydroxyl groups as chiral solvating agents to discriminate enantiomers of α -hydroxy acids and N-Ts- α -amino acids by ¹H NMR spectroscopy.

Chiral compounds **1a–1h** with multiple binding sites have been synthesized from (15,25)-(+)-1,2-diaminocyclohexane and p-phenylalanine or p-phenylglycine as chiral sources for enantiomeric discrimination towards α -hydroxy acids and N-Ts- α amino acids. Their chemical structures are shown in Figure 1.

etrahedro

Figure 1. Chemical structures of chiral compounds 1a-1h.

As shown in Figure 1, molecular structures of **1a–1h** contain some polar functional groups, such as amino, amide and phenolic hydroxyl groups, which can easily form hydrogen-bonding interaction with some matched guests. These structural features of **1a–1h** will be helpful to improve capability to discriminate enantiomers of α -hydroxy acids and *N*-Ts- α -amino acids by ¹H NMR spectroscopy.

N-Boc-protected D-phenylalanine and D-phenylglycine were prepared based on the reported literature.¹⁴ The coupling reaction of **3** with (1S,2S)-(+)-1,2-diaminocyclohexane was carried out in the presence of *N*,*N*-dicyclohexylcarbodiimide (DCC) at ice-salt bath under nitrogen atmosphere. The crude products were purified by column chromatography on silica gel to afford pure compounds **4a** and **4b** (**4a**: R = Bn, **4b**: R = Ph) in 68% and 70% yields, respectively. Chiral diamines **5a** and **5b** (**5a**: R = Bn, **5b**: R = Ph) were obtained by deprotection of *N*-Boc-protected diamide **4** in trifluoroacetic acid (TFA).¹⁵ The crude product was used in the next step without further purification (Scheme 1).

^{*} Corresponding authors. Tel.: +86 10 58807843; fax: +86 10 58802075. *E-mail addresses: linaibnu@sina.com* (L. Ai), zhangjiaxin@bnu.edu.cn (J. Zhang).

http://dx.doi.org/10.1016/j.tetlet.2015.10.060 0040-4039/© 2015 Elsevier Ltd. All rights reserved.

G. Gao et al./Tetrahedron Letters xxx (2015) xxx-xxx

Scheme 1. Synthesis of chiral compounds **4** and **5**. Reagents and conditions: (i) $(Boc)_2O$, NaOH (1 M), isopropanol; (ii) (15,2S)-(+)-1,2-diamino-cyclohexane, DCC, EtOAc, ice-salt bath to rt, N₂; (iii) TFA, CH₂Cl₂, N₂.

Scheme 2. Synthesis of chiral compounds 1a-1h. Reagents and conditions: (i) salicylaldehyde or its derivatives, MeOH, reflux, N₂; (ii) NaBH₄, MeOH/PhMe.

Figure 2. Overlaid ¹H NMR spectra of free **1a** and **1d**, free (±)-**7**, (±)-**7** with **1a** and **1d**, respectively.

Condensation reactions of **5** with salicylaldehyde and its derivatives were performed to afford chiral diimines **6a–6h**, respectively.¹⁵ Chiral compounds **1a–1h** were obtained by reductive reaction in the presence of NaBH₄.¹⁶ They were purified by column chromatography on silica gel to afford **1a–1h** in 55–75% isolated yields (Scheme 2).

To explore enantiomeric discriminating capability of **1a–1h** as CSAs towards α -hydroxy acids and *N*-Ts- α -amino acids by ¹H NMR spectroscopy, (±)-mandelic acid **7** was first used as a guest in the presence of **1a** and **1d**, respectively. Their ¹H NMR spectra show that the single peak of α -H of (±)-**7** was split into two equalintensity peaks with well-resolved signals. The nonequivalent chemical shifts ($\Delta\Delta\delta$) of α -H of (±)-**7** were given to be 0.0540 and 0.0862 ppm, respectively. Then, the assignments of

Figure 3. Structures of α -hydroxy acids and *N*-Ts- α -amino acids.

(*R*)- and (*S*)-enantiomers of (±)-**7** were clearly determined by integral change of α -H signals of (*S*)-enantiomer when (*S*)-**7** was added to 1:1 mixture of (±)-**7** with **1a** and **1d**, respectively. Their overlaid ¹H NMR spectra are shown in Figure 2.

Based on the above results, in order to further examine enantiomeric discriminating capability of **1a–1h** as CSAs, the following α -hydroxy acids and *N*-Ts- α -amino acids were used as guests. Their chemical structures are shown in Figure 3.

First, ¹H NMR spectra of α -hydroxy acids (±)-7–10 were recorded in the presence of **1a–1h** as CSAs, respectively. Among them, enantiomers of most guests can be discriminated by **1a–1h** as CSAs. The nonequivalent chemical shifts ($\Delta\Delta\delta$) of α -H of (±)-7–10 and protons of OCH₃ group of (±)-10 were observed except (±)-7, (±)-9 and (±)-10 in the presence of **1b**, (±)-8 and (±)-9 in the presence of **1c** and **1f** and (±)-9 in the presence of **1d** and **1e**, respectively. After (*S*)- or (*R*)-enantiomer of (±)-7–10 was added to the above 1:1 mixture of the discriminated guest with the corresponding CSA, respectively, their ¹H NMR spectra were recorded again at the same condition. The assignment of the (*S*)- and (*R*)enantiomers was determined by the integral change of the corresponding proton signals. Their chemical shift nonequivalences ($\Delta\Delta\delta$, ppm) are summarized in Table 1.

To further explore enantiomeric discriminating capability of **1a–1h** as CSAs, ¹H NMR spectra of *N*-Ts- α -amino acids (±)-**11–18** were measured in the presence of **1a–1h**, respectively. The nonequivalent chemical shifts of the two enantiomers of most guests can be obviously observed by ¹H NMR signals by their corresponding protons. After adding the (*S*)- or (*R*)-enantiomer of (±)-**11–18** to the 1:1 mixture of the discriminated enantiomers with **1a–1h**, respectively, their ¹H NMR spectra were measured again under the same condition. The assignment of most (*S*)- and (*R*)-enantiomers was clearly determined by change of integration of the signals of the corresponding proton. These discriminating results indicate that **1a–1h** are effective chiral solvating agents towards the above guests. The chemical shift nonequivalences ($\Delta\Delta\delta$, ppm) are shown in Table 2.

A highly effective chiral solvating agent can not only discriminate a pair of enantiomers, but also have its practicalities in some ways, for example, determination of enantiomeric excess (ee%) of a chiral compound. Herein, to examine the practical applicability of CSAs **1a–1h**, all the samples of **7** with 90%, 70%, 50%, 30%, 10%, 0%, -10%, -30%, -50%, -70% and -90% ee were prepared in the presence of **1a** for evaluating their enantiomeric excesses by ¹H NMR spectroscopy. ¹H NMR spectra of all samples were recorded and their enantiomeric excesses were calculated based on the integration of ¹H NMR signals of α -H of (*R*)-**7** and (*S*)-**7**. The results are shown in Figure 4.

The above results indicate that the enantiomeric excesses of **7** with different optical compositions were determined in high accuracy in the presence of **1a** by ¹H NMR spectroscopy (y = 0.9996x - 0.1440, correction coefficient = 0.9999). The linear correction between the theoretical (x) and observed ee % (y) is shown in Figure 5.

2

ARTICLE IN PRESS

G. Gao et al./Tetrahedron Letters xxx (2015) xxx-xxx

Table 1

Measurements of chemical shift nonequivalences ($\Delta\Delta\delta$, ppm) of guests (±)-**7–10** (10 × 10⁻³ M) in the presence of **1a–1h** (10 × 10⁻³ M) as CSAs by¹H NMR spectroscopy (400 MHz) in CDCl₃ at room temperature, respectively^a

Entry	CSA	Guest	Proton	$\Delta\Delta\delta^{b}$	Entry	CSA	Guest	Proton	$\Delta\Delta\delta^{b}$
1	1a	7	α-Η	0.0540	13	1h	8	α-Η	0.0670
2	1c	7	α-Η	0.0056 ^c	14	1a	9	α-Η	0.0163
3	1d	7	α-Η	0.0862	15	1g	9	α-Η	0.0191 ^c
4	1e	7	α-Η	0.0297	16	1h	9	α-Η	0.0149
5	1f	7	α-Η	0.0139	17	1a	10	α-Η	0.0476
6	1g	7	α-Η	0.0132 ^c	18	1c	10	OCH_3	0.0075
7	1h	7	α-Η	0.0488	19	1d	10	α-Η	0.0721
8	1a	8	α-Η	0.0526	20	1e	10	α-Η	0.0242
9	1b	8	α-Η	0.0299	21	1f	10	OCH_3	0.0037
10	1d	8	α-Η	0.0796	22	1g	10	α-Η	0.0089 ^c
11	1e	8	α-Η	0.0482	23	1h	10	OCH_3	0.0139
12	1g	8	α-Η	0.0191 ^c				α-Η	0.0459

^a $\Delta\Delta\delta = \Delta\delta_R - \Delta\delta_S$; $\Delta\delta_R = \delta_R - \delta_{free}$; $\Delta\delta_S = \delta_S - \delta_{free}$

^b $\Delta\Delta\delta$ of the corresponding protons of guests (H:G = 1:1).

 $^{\rm c}$ Guest (5 \times 10 $^{-3}$ M), host (5 \times 10 $^{-3}$ M) CHCl₃/CD₃OD (5%).

Table 2

Measurements of chemical shift nonequivalences ($\Delta\Delta\delta$, ppm) of guests (±)-**11–18** (10 × 10⁻³ M) in the presence of **1a–1h** (10 × 10⁻³ M) as CSAs by ¹H NMR spectroscopy (400 MHz) in CDCl₃ at room temperature^a

Entry	CSA	Guest	Proton	$\Delta\Delta\delta^{\mathrm{b}}$	Entry	CSA	Guest	Proton	$\Delta\Delta\delta^{b}$
1	1a	11	PhCH ₃	0.0079				PhCH ₃	0.0082 ^d
2	1e	11	CH ₃	0.0456	20	1d	15	SCH_3	0.0191
3	1f	11	CH ₃	0.0303				PhCH ₃	0.0162 ^d
			PhCH ₃	0.0074	21	1e	15	SCH_3	0.0316
4	1g	11	CH ₃	0.0117 ^c	22	1f	15	SCH_3	0.0271
5	1h	11	CH ₃	0.0357	23	1a	16	α-Η	0.0521
			PhCH ₃	0.0073	24	1b	16	PhCH ₃	0.0075
6	1a	12	PhCH ₃	0.0170 ^d				α-Η	0.0067
7	1b	12	$PhCH_3$	0.0134 ^d	25	1c	16	$PhCH_3$	0.0071
8	1d	12	CH ₃	0.0569				α-Η	0.0283
			$PhCH_3$	0.0076	26	1d	16	α-Η	0.0195
			TsNH	0.1480	27	1e	16	$PhCH_3$	0.0161
9	1f	12	CH ₃	0.0180 ^d				α-Η	0.0870
			CH ₃	0.0284	28	1f	16	$PhCH_3$	0.0248
10	1c	13	PhCH ₃	0.0052				α-Η	0.1261
11	1d	13	CH ₃	0.0421	29	1g	16	$PhCH_3$	0.0165
			CH ₃	00285				α-Η	0.0497
			PhCH ₃	0.0102 ^d	30	1h	16	$PhCH_3$	0.0253
12	1e	13	CH ₃	0.0167				α-Η	0.1231
			CH ₃	0.0103	31	1a	17	$PhCH_3$	0.0071
13	1f	13	CH ₃	0.0074	32	1d	17	$PhCH_3$	0.0172
			CH ₃	0.0172	33	1e	17	PhCH ₃	0.0107
14	1g	13	CH_3	0.0061	34	1f	17	$PhCH_3$	0.0150
15	1h	13	CH_3	0.0168				α-Η	0.1194
			CH_3	0.0157	35	1g	17	$PhCH_3$	0.0095
16	1d	14	PhCH ₃	0.0225 ^c				α-Η	0.1164
17	1a	15	SCH_3	0.0154	36	1a	18	$PhCH_3$	0.0026
			PhCH ₃	0.0152 ^d				α-H	0.0292
18	1b	15	SCH ₃	0.0195	37	1b	18	α-H	0.0216
			PhCH ₃	0.0052	38	1d	18	PhCH ₃	0.0075
19	1c	15	SCH ₃	0.0126	39	1f	18	α-Η	0.0411

^a $\Delta\Delta\delta = \Delta\delta_R - \Delta\delta_S$; $\Delta\delta_R = \delta_R - \delta_{free}$; $\Delta\delta_S = \delta_S - \delta_{free}$.

^b $\Delta\Delta\delta$ of the corresponding protons of guests (H:G = 1:1).

^c Guest (5 × 10⁻³ M), host (5 × 10⁻³ M) CHCl₃/CD₃OD (5%).

^d Nonequivalent chemical shifts were given by adding (*S*)-enantiomer to the mixture of (±)-guest and host.

To study effect of concentration in the process of enantiomeric discrimination, ¹H NMR spectra of (±)-7 at various concentrations were recorded in the presence of **1a**. As the concentration increases, nonequivalent chemical shifts of α -H of (±)-7 were found to be increasing until a maximum value ($\Delta\Delta\delta$, 25.44 Hz) was observed at 30 mM. Then, nonequivalent chemical shifts of α -H of (±)-7 were observed to trend downward gradually. Based on general requirement for concentration in ¹H NMR spectroscopy and slight change of nonequivalent chemical shifts of α -H of (±)-7 between concentration of 10 and 30 mM, concentration of 10 mM was used for the enantiomeric discrimination. The overlaid ¹H NMR spectra of various concentrations of (±)-7 in the presence of **1a** are shown in Figure 6.

In order to investigate solvent effect on enantiomeric discrimination, ¹H NMR spectra of (±)-**7** were measured in the presence of **1a** in different deuterated solvents, such as free CDCl₃, CDCl₃ containing 10% benzene- d_6 , acetone- d_6 , methanol- d_4 and DMSO- d_6 , respectively. The results indicate that deuterated solvents with strong polar functional group may participate more actively in the process of enantiomeric discrimination so as to result in weakening or losing of discriminating capability of **1a**. Obviously, chloroform-d is more suitable for the enantiomeric discrimination by ¹H NMR spectroscopy. The detailed results are shown in Table 3.

Moreover, upon addition of CSA **1a**, nonequivalent chemical shifts $(\Delta\Delta\delta)$ of α -H of (\pm) -**7** were found to be increasing gradually from 12.32 to 21.96 Hz. But, with the continued addition of **1a**,

ARTICLE IN PRESS

G. Gao et al./Tetrahedron Letters xxx (2015) xxx-xxx

nonequivalent chemical shifts of α -H of (±)-7 were given a small change (2.56 Hz) from 1:1 (19.40 Hz) to 3:1 (21.96 Hz) molar ratio of **1a** with (±)-7. The 1:1 molar ratio of host with guest was used

Figure 5. Linear correlation between theoretical ee values (X) and observed ee values (Y) of **7** in the presence of equal amounts of **1a**.

Figure 6. Overlaid ¹H NMR spectra of various concentrations of (\pm) -7 in the presence of **1a**. The mole ratio of **1a** and (\pm) -7 is 1:1, unchangeable.

Table 3

Measurements of chemical shift nonequivalences ($\Delta\Delta\delta$, Hz) of α -H of (±)-7 in the presence of **1a** by ¹H NMR spectroscopy in different deuterated solvents at room temperature^a

Entry	Solvent	$\Delta\Delta\delta$ (Hz)
1	CDCl ₃	21.60
2	CDCl ₃ /C ₆ D ₆ (10%)	20.28
3	CDCl ₃ /CD ₃ COCD ₃ (10%)	6.68
4	CDCl ₃ /CD ₃ OD (10%)	0.00
5	$CDCl_3/DMSO-d_6$ (10%)	0.00

 a The concentration of 1a and (±)-7 is 10 mM (1:1) in 0.5 mL of various deuterated solvents in NMR tubes, respectively.

for enantiomeric discrimination. The overlaid ¹H NMR spectra of (\pm) -**7** and **1a** with the different molar ratio are shown in Figure 7.

Finally, Job plots of (\pm) -**7** were performed in the presence of **1a** with a total concentration of 10 mM. A maximum of $X \cdot \Delta \delta$ of (\pm) -**7** was observed at X = 0.5 when molar ratio of (\pm) -**7** versus **1a** was 1:1. The result indicates that CSA **1a** can bind two enantiomers of (\pm) -**7** to form a complex with 1:1 molar ratio. In theory, three

Please cite this article in press as: Gao, G.; et al. Tetrahedron Lett. (2015), http://dx.doi.org/10.1016/j.tetlet.2015.10.060

G. Gao et al./Tetrahedron Letters xxx (2015) xxx-xxx

Figure 7. Overlaid ¹H NMR spectra of the various molar ratios of (\pm) -**7** with **1a**. The concentration of (\pm) -**7** is 5 mM in CDCl₃, unchangeable.

Figure 8. Job plots for complexation of (*R*)- and (*S*)-**7** with **1a**. $\Delta\delta$ standing for chemical shift change of α -H of (*R*)- and (*S*)-**7** in the presence of **1a**. *X* standing for the mole fraction of (±)-**7**, (*X* = [(±)-**7**]/([(±)-**7**] + [**1a**])).

kinds of complexes (R)/(R)-, (S)/(S)- and (R)/(S)-**7** with **1a** should be generated based on the Job plots. However, only two sets of ¹H NMR signals of α -H of (R)/(R)- and (S)/(S)-7 were obtained in the presence of **1a**. The results may be due to a faster exchange over NMR timescale among the free guest, host and their complexes.¹⁴ The Job plot of (R)- and (S)-**7** in the presence of **1a** is shown in Figure 8.

In conclusion, chiral compounds **1a–1h** with multiple binding sites have been efficiently synthesized for enantiomeric discrimination as chiral solvent agents. Their enantiomeric discriminating capability was examined towards α -hydroxy acids and *N*-Ts- α amino acids by ¹H NMR spectroscopy. The results show that chiral compounds **1a–1h** are highly effective and practical chiral solvating agents towards the above guests.

Acknowledgment

This work was supported by Beijing Municipal Commission of Education, China.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2015.10. 060.

References and notes

- (a) Bladon, C. Pharmaceutical Chemistry: Therapeutic Aspects of Biomacromolecules; Wiley: Chichester, England, 2002; (b) Patric, G. L. An Introduction to Medicinal Chemistry; Oxford University Press: New York, 2005; (c) Parker, D. Chem. Res. 1991, 91, 1441–1457; (d) Seco, J. M.; Quiñoá, E.; Riguera, R. Chem. Rev. 2004, 104, 17–117; (e) Reetz, M. T. Angew. Chem., Int. Ed. 2002, 41, 1335–1338; (f) Machida, Y.; Kagawa, M.; Nishi, H. J. Pharm. Biomed. Anal. 2003, 30, 1929–1942; (g) Ema, T.; Tanida, D.; Hamada, K.; Sakai, T. J. Org. Chem. 2008, 73, 9129–9132.
- (a) Pirkle, W. H.; Pochapsky, T. C. Chem. Res. **1989**, 89, 347–362; (b) Mei, Y. J.; Dissanayake, P.; Allen, M. J. J. Am. Chem. Soc. **2010**, 132, 12871–12873; (c) Paradowska, J.; Pasternak, M.; Gut, B.; Gryzło, B.; Mlynarski, J. J. Org. Chem. **2012**, 77, 173–187; (d) Sutar, R. L.; Joshi, N. N. Tetrahedron: Asymmetry **2013**, 24, 43–49.
- (a) Zhang, X. X.; Bradshaw, J. S.; Izatt, R. M. Chem. Res. 1997, 97, 3313–3361; (b) Sheshenev, A. E.; Boltukhina, E. V.; Grishina, A. A.; Cisařova, I.; Lyapkalo, I. M.; Kuok (Mimi) Hii, K. Chem. Eur. J. 2013, 19, 8136–8143; (c) Bian, G. L.; Fan, H. J.; Yang, S. W.; Yue, H. F.; Huang, H. Y.; Zong, H.; Song, L. J. Org. Chem. 2013, 78, 9137–9142; (d) Couffin, A.; Thillaye du Boullay, O.; Vedrenne, M.; Navarro, C.; Martin-Vaca, B.; Bourissou, D. Chem. Commun. 2014, 5997–6000.
- (a) Sessler, O. L.; Andrievsky, A.; Vrál, V.; Lynch, V. J. Am. Chem. Soc. 1997, 119, 9385–9392; (b) Lee, C. S.; Teng, P. F.; Wong, W. L.; Kwong, H. L.; Chan, A. S. C. Tetrahedron 2005, 61, 7924–7930; (c) Tsubaki, K.; Tanima, D.; Nuruzzaman, M.; Kusumoto, T.; Fuji, K.; Kawabata, T. J. Org. Chem. 2005, 70, 4609–4616; (d) Demirtas, H. N.; Bozkurt, S.; Durmaz, M.; Yilmaz, M.; Sirit, A. Tetrahedron 2009, 65, 3014–3018.
- (a) Qing, G. Y.; He, Y. B.; Wang, F.; Qin, H. J.; Hu, C. G.; Yang, X. Eur. J. Org. Chem. 2007, 1768–1778; (b) Zheng, Y. S.; Hu, Y. J. J. Org. Chem. 2009, 74, 5660–5663; (c) Liu, H. L.; Hou, X. L.; Pu, L. Angew. Chem., Int. Ed. 2009, 48, 382–385; (d) He, X.; Zhang, Q.; Wang, W. T.; Lin, L. L.; Liu, X. H.; Feng, X. M. Org. Lett. 2011, 13, 804–807; (e) Tanaka, K.; Tsuchitani, T.; Fukuda, N.; Masumoto, A.; Arakawa, R. Tetrahedron: Asymmetry 2012, 23, 205–208.
- (a) Weisman, G. R. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: New York, 1983. Vol. 1; (b) Fraser, R. R. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: New York, 1983. Vol. 1; (c) Wenzel, T. J.; Wilcox, J. D. Chirality 2003, 15, 256–270; (d) Kurosu, M.; Li, K. Org. Lett. 2009, 11, 911–914; (e) Quinn, T. P.; Atwood, P. D.; Tanski, J. M.; Moore, T. F.; Folmer-Anderson, J. F. J. Org. Chem. 2011, 76, 10020–10030.
- (a) Inamoto, A.; Ogasawara, K.; Omata, K.; Kabuto, K.; Sasaki, Y. Org. Lett. 2000, 2, 3543–3545; (b) Wenzel, T. J.; Freeman, B. E.; Sek, D. C.; Zopf, J. J.; Nakamura, T.; Yongzhu, J.; Hirose, K.; Tobe, Y. Anal. Bioanal. Chem. 2004, 378, 1536–1547; (c) Omata, K.; Fujioka, M.; Kabuto, K.; Sasaki, Y. Chem. Commun. 2008, 4903–4905.
- Wenzel, T. J.; Amonoo, E. P.; Shariff, S. S.; Aniagyei, S. E. Tetrahedron: Asymmetry 2003, 14, 3099–3104.
- (a) Lovely, A. E.; Wenzel, T. J. J. Org. Chem. 2006, 71, 9178–9182; (b) Wenzel, T. J.; Bourne, C. E.; Clark, R. L. Tetrahedron: Asymmetry 2009, 20, 2052–2060; (c) Şeker, S.; Barış, D.; Arslan, N.; Turgut, Y.; Pirinççioğlu, N.; Toğrul, M. Tetrahedron: Asymmetry 2014, 25, 411–417.
- (a) Claeys-Bruno, M.; Toronto, D.; Pécaut, J.; Bardet, M.; Marchon, J.-C. J. Am. Chem. Soc. 2001, 123, 11067–11068; (b) Ema, T.; Ouchi, N.; Doi, T.; Korenaga, T.; Sakai, T. Org. Lett. 2005, 7, 3985–3988; (c) Nandipati, V.; Akinapelli, K.; Koya, L.; Starnes, S. D. Tetrahedron Lett. 2014, 55, 985–991.
- (a) Ito, K.; Noike, M.; Kida, A.; Ohba, Y. J. Org. Chem. 2002, 67, 7519–7522; (b) Zheng, Y. S.; Zhang, C. Org. Lett. 2004, 6, 1189–1192; (c) Mutihac, L.; Lee, J. H.; Kim, J. S.; Vicens, J. Chem. Soc. Rev. 2011, 40, 2777–2796; (d) Yang, K.; Li, S. Z.; Wang, Y. H.; Zhang, W. Z.; Xu, Z. H.; Zhou, X. Y.; Zhu, R. X.; Luo, J.; Wan, Q. RSC Adv. 2014, 4, 6517–6526.
- (a) Cuevas, F.; Ballester, P.; Pericàs, M. A. Org. Lett. 2005, 7, 5485–5487; (b) Iwaniuk, D. P.; Wolf, C. J. Org. Chem. 2010, 75, 6724–6727; (c) Ma, F. N.; Ai, L.; Shen, X. M.; Zhang, C. Org. Lett. 2007, 9, 125–127; (d) Guo, S. N.; Wang, G.; Ai, L. Tetrahedron: Asymmetry 2013, 24, 480–491; (e) Jain, N.; Mandal, M. B.; Bedekar, A. V. Tetrahedron 2014, 70, 4343–4354.
- (a) Yuan, Q.; Fu, E. Q.; Wu, X. J.; Fang, M. H.; Xue, P.; Wu, C. T.; Chen, J. H. *Tetrahedron Lett.* **2002**, *43*, 3935–3937; (b) Gibson, S. E.; Lecci, C. Angew. Chem., *Int. Ed.* **2006**, *45*, 1364–1377; (c) Tripathi, A.; Kumar, A.; Pandey, P. S. *Tetrahedron Lett.* **2012**, *53*, 5745–5748; (d) Chaudhary, A. R.; Yadav, P.; Bedekar, A. V. Tetrahedron: Asymmetry **2014**, *25*, 767–774; (e) Al-Azemi, T. F.; Mohamod, A. A.; Vinodh, M. Tetrahedron **2015**, *71*, 1523–1528.
- 14. Dahiya, R. Pak. J. Pharm. Sci. 2007, 20, 317-323.
- Curini, M.; Epifano, F.; Maltese, F.; Marcotullio, M. C. Tetrahedron Lett. 2002, 43, 3821–3823.
- (a) Equey, O.; Alexakis, A. *Tetrahedron: Asymmetry* **2004**, *15*, 1069–1072; (b) Ai, L.; Xiao, J. C.; Wang, G.; Shen, X. M.; Zhang, C. Synth. Commun. **2006**, *36*, 2859– 2875.