Facile Direct Synthesis of Acetylenedicarboxamides

Dirk Heyl, Wolf-Dieter Fessner*

Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany Fax +49(6151)166636; E-mail: fessner@tu-darmstadt.de

Received: 13.01.2014; Accepted after revision: 11.02.2014

Abstract: A convenient, rapid and widely applicable one-pot procedure has been developed for the synthesis of acetylenedicarboxamides from various primary and secondary amines, including amino acid derivatives, protected carbohydrates, and fluorescent labels. By using DMTMM for amide coupling, acetylenedicarboxylic acid was directly converted into acetylenedicarboxamides in highly competitive overall yields (52–80%).

Key words: alkynes, amides, carboxylic acids, coupling, condensation

Acetylenedicarboxylic acid (ADA, 1) and its derivatives are widely used compounds in the synthesis of carbo- and heterocycles. In the case of acetylenedicarboxylic acid diesters the electron-deficient triple bond readily reacts as a dipolarophile or dienophile in thermal cycloadditions, and as a conjugate acceptor in Michael additions.¹ Often, both types of reaction pathways are involved in the synthesis of heterocyclic systems when using ADA derivatives.² As part of our ongoing research on the multidecoration of nanoscaffolds by 'click'-type conjugation reactions,³ in particular by using ADA diesters as both functionalizing and branching elements,^{3a} we were interested in acetylenedicarboxylic diamides (ADCAs) as chemically more stable analogues of diesters. However, the formation of amides of ADA 1 suffers from competing and/or subsequent Michael additions of the amine component because of the highly electrophilic nature of the conjugated triple bond. Only a few general protocols for the preparation of ADCAs have been described (Scheme 1) that are based on acid halides such as dibromofumaroyl dichloride $(2)^4$ or acetylenedicarbonyl difluoride (3).⁵ Reports on the use of acetylenedicarbonyl dichloride (4) remain controversial,⁶ with only few applications for the synthesis of ADCAs;⁷ mixed anhydrides of 1 tend to polymerize.⁸ All these protocols require several steps and involve sensitive reagents or intermediates. The widely applied standard technique for direct amide coupling using carbodiimides seems to be generally inefficient in the case of 1,⁹ and our attempts to prepare ADCAs via carbonyldiimidazole activation¹⁰ also resulted in no product formation.

On the assumption that ADA deprotonation should render the triple bond more electron rich¹¹ and hence more stable to conjugate nucleophilic attack by amines, we, therefore, searched for a coupling reagent that involves the incipient

SYNTHESIS 2014, 46, 1463–1468 Advanced online publication: 17.03.2014 DOI: 10.1055/s-0033-1341101; Art ID: SS-2014-T0039-OP © Georg Thieme Verlag Stuttgart · New York formation of an ionic ammonium arboxylate intermediate in the reaction mechanism.

Scheme 1 Common strategies for the synthesis of acetylenedicarboxamides: *Reagents and conditions*: (i) Br_2 ; (ii) PCl_5 ; (iii) R^1NHR^2 ; (iv) Zn; (v) SF_4 (X = F) or $SOCl_2$ (X = Cl).

From the broad range of peptide-coupling reagents¹² 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM, **5**),¹³ which is commercially available or can be readily prepared from cyanuric chloride in two steps,^{14,15} seemed to be a reagent that could fulfill this condition. Indeed, when using a slightly modified Kunishima protocol¹⁵ for a test reaction of **1** with 2phenylethylamine (**6a**) in tetrahydrofuran the desired N^1,N^4 -diphenethylbut-2-ynediamide (**7a**) was isolated in 59% yield.

However, the addition of amines to 1 dissolved in tetrahydrofuran or ethyl acetate¹⁶ often resulted in the formation of gummy gels, and the yields proved to be erratic. In the search for a better solvent, the latter needed to dissolve polar and/or ionic starting materials, intermediates, and products, but not decompose DMTMM 5. From test reactions [0.05 M 1, 6a (1.1 equiv), 5 (1.5 equiv), 20 °C, 5 h, workup A] with methanol,¹⁷ N,N-dimethylformamide,¹⁸ or *N*-methylpyrrolidin-2-one¹⁹ as the solvents, the use of methanol gave only low yields of 7a (16%) whereas N,Ndimethylformamide or N-methylpyrrolidin-2-one gave promising results (DMF, 48%; NMP, 52%). Aqueous (10%, v/v) solvent mixtures gave significantly lower vields than neat organic solvents, and no diamide product was isolated from reactions in pure water. N-Methylpyrrolidin-2-one was finally chosen as the solvent for all further investigations because isolated yields on average were slightly higher. Concentrations of 1 in N-methylpyrrolidin-2-one as high as 0.3 M were used to reduce the total volume, and reactions were conducted at 0 °C to avoid decomposition of dissolved **1** and to minimize the decomposition of reagent **5**.¹⁵ Under the improved conditions [0.3 M **1**, amine (1.1 equiv), **5** (1.5 equiv), 0 °C, 5 h] pure diamide **7a** was isolated in 73% yield (Scheme 2).

Scheme 2 Synthesis of diamide 7a by direct coupling of acetylenedicarboxylic acid (1) and 2-phenylethylamine (6a) promoted by the DMTMM reagent 5

Indeed, a variety of primary and secondary amines or their respective ammonium salts were also directly converted into the corresponding dicarboxamides (Table 1). Only sterically hindered amines [e.g., dicyclohexylamine (**6p**)] or amines with low nucleophilicity [e.g., 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosylamine (**6z**)] gave low yields of the corresponding ADCAs under such conditions.

The crude product often contained significant amounts of the byproduct 6-dimethoxy-1,3,5-triazin-2(1*H*)-one (8) despite extensive aqueous extraction, which can render purification challenging. In most cases it was found helpful to first remove most of 8 by crystallization from tetrahydrofuran, followed by product purification from the remaining crude mixture by chromatography and/or recrystallization. While screening reactions were usually performed on a 5-mmol scale, an exemplary 40-mmol preparative scale-up with amine **6a** proceeded without a decrease in the yield. Considering that the synthesis requires two successive coupling steps, overall yields of ADCAs **7a–y** are quite satisfactory.

The ADCAs are mostly solids (except for 7m and 7n) and crystallize as fine needles. Because of the partial doublebond character of the amide bond that causes diastereomer formation, nitrogen substituents can give up to four sets of signals in their ¹H and ¹³C NMR spectra. Monoalkylamides (e.g., **6a**) show one strong signal set corresponding to the predominating *cis/cis* conformer²⁰ and only minor other sets, while diamides of symmetrical dialkylamines (e.g., **7m**) display only two signal sets. Spectra of ADCAs from unsymmetrical dialkylamines (e.g., **7r**) show four sets of ¹H NMR signals with almost identical relative intensities.
 Table 1
 One-Pot Synthesis of Diamides 7 from Acetylenedicarboxylic Acid (1) and Various Amines Using DMTMM 5

0		°	
но	OH R ² NMP, 0 °C R ¹ -	-N R ² 7	N-R ¹
Entry	Amine R ¹ R ² NH	Product	Yield (%)
1	6a Ph(CH ₂) ₂ NH ₂	7a	73
2	6b PrNH ₂	7b ⁵	59
3	6c BuNH ₂	7c	63
4	6d Me(CH ₂) ₅ NH ₂	7d	67
5	6e allylNH ₂	7e ⁵	62
6	6f propargylNH ₂	7f	80
7	6g BnNH ₂	7g ⁵	72
8	6h piperonylamine	7h	62
9	6i CyNH ₂	7i ⁵	68
10	6j (R)-1-phenylethylamine	7j	70
11	6k PhNH ₂	7k	54
12	61 4-MeOC ₆ H ₄ NH ₂	71	61
13	6m Bu ₂ NH	7m ^{4,5}	67
14	6n (allyl) ₂ NH ₂	7n	52
15	60 Bn ₂ NH	70	69
16	6p Cy ₂ NH	7p	trace
17	6q pyrrolidine	7q ^{4,5}	58
18	6r BnNHMe	7r	63
19	6s H-Gly-OEt·HCl	7s	64
20	6t H-Leu-OMe·HCl	7t	71
21	6u H-Phe-OMe·HCl	7u	65
22	6v H-D-Phg-OMe·HCl	7v	69
23	6w L-(–)-ephedrine	$7\mathbf{w}$	65
24	6x dansylNH(CH ₂) ₃ NH ₂	7x	61
25	6y Ac ₅ -β-D-Gal <i>p</i> -O(CH ₂) ₂ NH ₂ ·TosOH	7y	59
26	6z Ac ₅ -β-D-Glc <i>p</i> -NH ₂	7z	trace

In conclusion, a mild and rather general one-pot procedure has been developed that allows the direct conversion of 1 with free amines or their ammonium salts into the corresponding ADCA in good overall yields by using DMT-MM 5 in *N*-methylpyrrolidin-2-one as the coupling reagent, with minimal loss of material from competing Michael reactivity. Starting materials and reagents were purchased from commercial suppliers and used without purification. Analytical TLC was performed on silica gel F_{254} (E. Merck, Darmstadt) with UV detection followed by charring with KMnO₄ or anisaldehyde stain. Column chromatography was performed using silica gel 60 (0.06–0.2 mm; Roth, Karlsruhe). Petroleum ether = PE. NMR spectra were recorded on Bruker DRX 500 or Bruker 300 MHz Avance II spectrometers at r.t. FT-IR spectra were measured by Perkin-Elmer Paragon 1000 PC. ESI-MS spectra were recorded using a Bruker-Franzen Esquire-LC mass spectrometer and EI-MS spectra with Varian MAT 212. Combustion analysis was performed on an Elementar Vario EL instrument. Melting points were measured on a Büchi SMP-20 apparatus and are uncorrected.

Reaction of 1 with Amines; General Procedure

To a stirred solution of acetylenedicarboxylic acid (1, 0.57 g, 5 mmol) in NMP (10 mL) at 0 °C a solution of the amine (12 mmol, 2.4 equiv) in NMP (5 mL) [for ammonium salts additionally NMM (2 mL) was used] was added dropwise. After 10 min DMTMM **5** (4.0 g, 14 mmol, 2.8 equiv) was added and the mixture was stirred for 5 h.

Workup A: The mixture was partitioned between EtOAc and H_2O (100 mL each), and the organic layer was washed successively with brine (100 mL), sat. NaHCO₃ (100 mL), 1 M HCl (100 mL), and brine (2 × 100 mL) [for compounds **7b**,**q**,**s**–**v**,**y** brine was used instead of H_2O , and the organic phase was washed with brine (4 × 100 mL) only]. The solution was dried (MgSO₄), the solvent was evaporated, and the residue was dissolved in a small amount of refluxing THF. The major portion of 6-dimethoxy-1,3,5-triazin-2(1*H*)-one (**8**) was crystallized at –20 °C, and the liquid phase containing the product was separated and evaporated. The remaining residue was further purified by column chromatography and/or recrystallization as appropriate.

Workup B: The mixture was poured into 1 M HCl (150 mL; for compounds **7h**, **x** H₂O was used instead) with stirring at 0 °C, and stirring was continued for 15 min. The resulting solid was collected by filtration, washed with H₂O, and dried under vacuum. The residue was dissolved in a small amount of refluxing THF and further purified as described above, except for compounds **7f**,**g**,**o**, which were simply washed with CHCl₃ (3 × 10 mL).

N^1 , N^4 -Diphenethylbut-2-ynediamide (7a)

Following the general procedure, workup B yielded 7a (1.17 g, 73%) as a colorless solid; mp 151 °C (CH_2Cl_2-PE).

IR (KBr): 3280, 3062, 2256, 1635, 1539 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.40–7.16 (m, 10 H), 6.31 (t, *J* = 6.8 Hz, 2 H), 3.59 (dt, *J* = 7.0, 6.8 Hz, 4 H), 2.86 (t, *J* = 7.0 Hz, 4 H).

¹³C NMR (125 MHz, CDCl₃): δ = 151.70, 138.15, 128.74, 128.68, 126.73, 76.69, 41.21, 34.93.

HRMS (EI): m/z [M]⁺ calcd for C₂₀H₂₀N₂O₂: 320.1525; found: 320.1527.

Anal. Calcd for $C_{20}H_{20}N_2O_2{:}$ C, 74.98; H, 6.29; N, 8.74. Found: C, 74.99; H, 6.24; N, 8.75.

N^1 , N^4 -Dipropylbut-2-ynediamide (7b)

Following the general procedure, workup A yielded **7b** (0.58 g, 59%) as a colorless solid; mp 149 °C (CH_2Cl_2 –PE) (Lit.⁵ 151–153 °C).

IR (KBr): 3296, 3059, 2971, 2874, 1636, 1548, 1319, 1288, 1153 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.37 (t, *J* = 5.4 Hz, 2 H), 3.25 (dt, *J* = 6.9, 5.4 Hz, 4 H), 1.58–1.54 (m, 4 H), 0.93 (t, *J* = 7.4 Hz, 6 H).

¹³C NMR (125 MHz, CDCl₃): δ = 151.94, 76.79, 41.78, 22.26, 11.27.

MS (EI): $m/z = 195.1 \text{ [M]}^+$.

© Georg Thieme Verlag Stuttgart · New York

Anal. Calcd for $C_{10}H_{16}N_2O_2{:}$ C, 61.20; H, 8.22; N, 14.27. Found: C, 60.93; H, 8.17; N, 14.12.

N^1 , N^4 -Dibutylbut-2-ynediamide (7c)

Following the general procedure, workup A yielded 7c (0.71 g, 63%) as a colorless solid; mp 142 °C (CH_2Cl_2-PE).

IR (KBr): 3285, 3059, 2960, 2868, 1638, 1544, 1291 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.28 (t, *J* = 5.5 Hz, 2 H), 3.29 (dt, *J* = 7.1, 5.5 Hz, 4 H), 1.61–1.47 (m, 4 H), 1.39–1.32 (m, 4 H), 0.92 (t, *J* = 7.4 Hz, 6 H).

¹³C NMR (125 MHz, CDCl₃): δ = 151.87, 76.75, 39.80, 30.97, 19.95, 13.58.

HRMS (EI): m/z [M]⁺ calcd for $C_{12}H_{20}N_2O_2$: 224.1525; found: 224.1501.

Anal. Calcd for $C_{12}H_{20}N_2O_2:$ C, 64.26; H, 8.99; N, 12.49. Found: C, 64.27; H, 8.99; N, 12.36.

N^1 , N^4 -Dihexylbut-2-ynediamide (7d)

Following the general procedure, workup A yielded **7d** (0.94 g, 67%) as a colorless solid; mp 140 °C (CH_2Cl_2-PE).

IR (KBr): 3295, 2960, 1628, 1309, 1276 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.15 (t, *J* = 5.7 Hz, 2 H), 3.36–3.24 (m, 4 H), 1.56–1.50 (m, 4 H), 1.36–1.27 (m, 12 H), 0.89 (t, *J* = 6.8 Hz, 6 H).

¹³C NMR (125 MHz, CDCl₃): δ = 151.80, 76.69, 40.13, 31.36, 28.94, 26.49, 22.50, 13.96.

HRMS (EI): m/z [M]⁺ calcd for $C_{16}H_{28}N_2O_2$: 280.2151; found: 280.2140.

Anal. Calcd for $C_{16}H_{28}N_2O_2$: C, 68.53; H, 10.06; N, 9.99. Found: C, 68.37; H, 9.83; N, 9.75.

N¹,N⁴-Diallylbut-2-ynediamide (7e)

Following the general procedure, workup A yielded 7e (0.60 g, 62%) as a colorless solid; mp 105 °C (CH₂Cl₂–PE) (Lit.⁵ 103–104 °C).

IR (KBr): 3274, 3054, 1636, 1538, 1282 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.44 (s, 2 H), 5.83–5.78 (m, 2 H), 5.24–5.15 (m, 4 H), 3.92– (m, 4 H).

¹³C NMR (126 MHz, CDCl₃): δ = 151.70, 132.55, 117.22, 76.82, 42.31.

MS (EI): $m/z = 192.1 \text{ [M]}^+$.

Anal. Calcd for $C_{10}H_{12}N_2O_2$: C, 62.49; H, 6.29; N, 14.57. Found: C, 62.21; H, 6.26; N, 14.52.

*N*¹,*N*⁴-Di(prop-2-ynyl)but-2-ynediamide (7f)

Following the general procedure, workup B yielded 7g (0.75 g, 80%) as a colorless solid; mp 151 °C (EtOH).

IR (KBr): 3288, 3043, 1633, 1528, 1280 cm⁻¹.

¹H NMR (500 MHz, DMSO- d_6): δ = 9.50 (d, J = 5.4 Hz, 2 H), 3.94 (dd, J = 5.4, 2.2 Hz, 4 H), 3.16 (t, J = 2.2 Hz, 2 H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 150.92, 80.19, 77.03, 73.99, 28.73.

MS (EI): $m/z = 188.1 \text{ [M]}^+$.

Anal. Calcd for $C_{10}H_8N_2O_2$: C, 63.82; H, 4.28; N, 14.89. Found: C, 63.47; H, 4.31; N, 14.60.

N^1 , N^4 -Dibenzylbut-2-ynediamide (7g)

Following the general procedure, workup B yielded 7g (1.05 g, 72%) as a colorless solid; mp 203 °C (EtOH) (Lit.⁵ 204–205 °C).

IR (KBr): 3219, 3055, 2932, 1634, 1558 cm⁻¹.

¹H NMR (500 MHz, DMSO-*d*₆): δ = 9.56 (t, *J* = 6.0 Hz, 2 H), 7.36–7-26 (m, 10 H), 4.35 (d, *J* = 6.0 Hz, 4 H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 151.32, 138.64, 128.86, 127.83, 127.57, 77.32, 42.9.

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₆N₂O₂: 292.1212; found: 292.1216.

Anal. Calcd for $C_{18}H_{16}N_2O_2$: C, 73.95; H, 5.52; N, 9.58. Found: C, 73.94; H, 5.46; N, 9.59.

N^1 , N^4 -Bis(1,3-benzodioxol-5-ylmethyl)but-2-ynediamide (7h) Following the general procedure, workup B yielded 7h (1.27 g, 67%) as a pale yellow solid; mp 223 °C (MEK).

IR (KBr): 3263, 3071, 2898, 2785, 1850, 1630, 1551, 1493, 1466 $\rm cm^{-1}.$

¹H NMR (500 MHz, DMSO- d_6): $\delta = 9.46$ (t, J = 6.0 Hz, 2 H), 6.86 (d, J = 7.9 Hz, 2 H), 6.82 (d, J = 1.4 Hz, 2 H), 6.74 (dd, J = 7.9, 1.4 Hz, 2 H), 5.99 (s, 4 H), 4.24 (d, J = 6.0 Hz, 4 H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 151.22, 147.74, 146.78, 132.46, 121.20, 108.54, 108.49, 101.37, 77.30, 42.75.

HRMS (EI): m/z [M]⁺ calcd for $C_{20}H_{16}N_2O_6$: 380.1008; found: 380.0996.

Anal. Calcd for $C_{20}H_{16}N_2O_6$: C, 63.16; H, 4.42; N, 7.37. Found: C, 62.93; H, 4.31; N, 7.36.

*N*¹,*N*⁴-Dicyclohexylbut-2-ynediamide (7i)

Following the general procedure, workup B yielded 7i (0.94 g, 68%) as a colorless solid; mp 235 °C dec. (CH_2Cl_2-PE) (Lit.⁵ 244–245 °C).

IR (KBr): 3300, 2936, 2858, 1636, 1524, 1321 cm⁻¹.

¹H NMR (500 MHz, DMSO- d_6): $\delta = 8.89$ (d, J = 7.9 Hz, 2 H), 3.71– 3.50 (m, 2 H), 1.83–1.62 (m, 8 H), 1.55 (dd, J = 9.3, 3.5 Hz, 2 H), 1.38–0.95 (m, 10 H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 150.40, 77.19, 48.70, 32.31, 25.47, 24.89.

MS (EI): $m/z = 276.2 [M]^+$.

Anal. Calcd for $C_{16}H_{24}N_2O_2$: C, 69.53; H, 8.75; N, 10.14. Found: C, 69.72; H, 8.59; N, 10.02.

N^1 , N^4 -Bis[(R)-1-phenylethyl]but-2-ynediamide (7j)

Following the general procedure, workup B yielded 7j (1.12 g, 70%) as a colorless solid, which was recrystallized (CH_2Cl_2-PE); mp 172 °C dec.

IR (KBr): 3297, 2937, 1640, 1527, 1270 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.66–7.12 (m, 12 H), 5.08 (m, 2 H), 1.49 (d, *J* = 6.9 Hz, 6 H).

¹³C NMR (125 MHz, CDCl₃): δ = 150.76, 141.96, 128.72, 127.64, 126.19, 76.80, 49.77, 21.47.

MS (EI): $m/z = 320.1 \text{ [M]}^+$.

Anal. Calcd for $C_{20}H_{20}N_2O_2$: C, 74.98; H, 6.29; N, 8.74. Found: C, 74.64; H, 6.28; N, 8.55.

*N*¹,*N*⁴-Diphenylbut-2-ynediamide (7k)

Following the general procedure, workup A yielded 7k (0.71 g, 54%) as a pale yellow solid; mp 185 °C dec. (MeOH).

IR (KBr): 3280, 1641, 1527, 1445, 1325, 1264 cm⁻¹.

¹H NMR (300 MHz, DMSO-*d*₆): δ = 11.21 (s, 2 H), 7.64 (d, *J* = 7.8 Hz, 4 H), 7.36 (dd, *J* = 7.8, 7.3 Hz, 4 H), 7.14 (d, *J* = 7.3 Hz, 2 H). ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 149.18, 138.37, 129.41, 125.14, 120.34, 77.89.

MS (EI): $m/z = 264.3 [M]^+$.

Anal. Calcd for C₁₆H₁₂N₂O₂: C, 72.72; H, 4.58; N, 10.60. Found: C, 72.47; H, 4.59; N, 10.52.

N^1 , N^4 -Bis(4-methoxyphenyl)but-2-ynediamide (7l)

Following the general procedure, workup B yielded **71** (0.99 g, 61%) as a greenish solid; mp 210 °C dec. (MeOH).

IR (KBr): 3271, 1640, 1598, 1510, 1244 cm⁻¹.

¹H NMR (300 MHz, DMSO- d_6): δ = 11.05 (s, 2 H), 7.55 (d, J = 8.9 Hz, 4 H), 6.92 (d, J = 8.9 Hz, 4 H), 3.73 (s, 6 H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ = 156.59, 148.79, 131.52, 121.83, 114.51, 77.91, 55.67.

MS (EI): $m/z = 324.3 \text{ [M]}^+$.

Anal. Calcd for $C_{18}H_{16}N_2O_4{:}$ C, 66.66; H, 4.97; N, 8.64. Found: C, 66.54; H, 4.95; N, 8.62.

*N*¹,*N*¹,*N*⁴,*N*⁴-Tetrabutylbut-2-ynediamide (7m)

Following the general procedure, workup Å yielded 7m (1.12 g, 67%) as a colorless oil.

IR (KBr): 3258, 2931, 2874, 1633 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 3.51 (t, *J* = 7.4 Hz, 2 H), 3.35 (t, *J* = 7.6 Hz, 2 H), 1.62–1.48 (m, 4 H), 1.39–1.26 (m, 4 H), 0.94 (t, *J* = 7.4 Hz, 3 H), 0.92 (t, *J* = 7.4 Hz, 3 H).

 ^{13}C NMR (125 MHz, CDCl₃): δ = 152.59, 80.86, 48.72, 44.51, 30.95, 29.32, 20.11, 19.84, 13.73, 13.72.

HRMS (EI): m/z [M]⁺ calcd for $C_{20}H_{36}N_2O_2$: 336.2777; found: 336.2734.

Anal. Calcd for $C_{20}H_{36}N_2O_2:$ C, 71.38; H, 10.78; N, 8.32. Found: C, 71.31; H, 10.61; N, 8.10.

N^1, N^1, N^4, N^4 -Tetrallylbut-2-ynediamide (7n)

Following the general procedure, workup A yielded 7n (0.712 g, 52%) as a colorless oil.

IR (KBr): 3084, 2985, 2926, 1634, 1416, 1247 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 5.97–5.58 (m, 4 H), 5.45–5.05 (m, 8 H), 4.13 (d, *J* = 5.6 Hz, 4 H), 4.01 (d, *J* = 6.0 Hz, 4 H).

¹³C NMR (125 MHz, CDCl₃): δ = 152.47, 132.18, 131.49, 118.51, 118.48, 80.43, 50.52, 46.55.

MS (EI): $m/z = 272.1 [M]^+$.

Anal. Calcd for $C_{16}H_{20}N_2O_2$: C, 70.56; H, 7.40; N, 10.29. Found: C, 70.24; H, 7.40; N, 10.15.

N^1, N^1, N^4, N^4 -Tetrabenzylbut-2-ynediamide (70)

Following the general procedure, workup B yielded **70** (1.63 g, 69%) as a colorless solid; mp 134 °C (EtOH).

IR (KBr): 3025, 2932, 1636, 1451, 1423 cm⁻¹.

¹H NMR (500 MHz, DMSO- d_6): δ = 7.41–7.25 (m, 12 H), 7.24–7.11 (m, 8 H), 4.59 (s, 4 H), 4.47 (s, 4 H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 152.81, 136.37, 136.30, 129.20, 129.05, 128.30, 128.19, 127.96, 127.58, 81.21, 51.80, 47.66.

HRMS (EI): m/z [M]⁺ calcd for $C_{32}H_{28}N_2O_2$: 472.2151; found: 472.2121.

Anal. Calcd for $C_{32}H_{28}N_2O_2;\,C,\,81.33;\,H,\,5.97;\,N,\,5.93.$ Found: C, 80.97; H, 5.93; N, 5.87.

1,4-Di(pyrrolidin-1-yl)but-2-yne-1,4-dione (7q)

Following the general procedure, workup A yielded 7q (0.64 g, 58%) as a colorless solid; mp 118 °C (CH₂Cl₂–PE) (Lit.⁵ 118–119 °C).

IR (KBr): 2956, 2884, 1624, 1457, 1427 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 3.65 (dd, *J* = 9.8, 3.7 Hz, 2 H), 3.47 (dd, *J* = 9.8, 3.7 Hz, 2 H), 1.95–1.90 (m, 4 H).

¹³C NMR (125 MHz, CDCl₃): δ = 150.73, 80.02, 48.07, 45.48, 25.27, 24.50.

MS (EI): $m/z = 220.2 [M]^+$.

Anal. Calcd for $C_{12}H_{16}N_2O_2$: C, 65.43; H, 7.32; N, 12.72. Found: C, 65.24; H, 7.28; N, 12.53.

*N*¹,*N*⁴-Dibenzyl-*N*¹,*N*⁴-dimethylbut-2-ynediamide (7r)

Following the general procedure, workup B yielded 7r (1.01 g, 63%) as a colorless solid; mp 127 °C (CH₂Cl₂–PE).

IR (KBr): 1634, 1404, 1239 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.40–7.15 (m, 10 H), 4.80, 4.73, 4.64 and 4.61 (4 s, 4 H), 3.16, 3.08, 2.93 and 2.91 (4 s, 6 H).

¹³C NMR (125 MHz, CDCl₃): δ = 152.90, 152.81, 152.77, 152.67, 135.58, 135.44, 135.33, 128.96, 128.93, 128.79, 128.26, 128.15, 128.09, 127.89, 127.37, 127.28, 81.39, 81.34, 81.02, 80.89, 54.80, 54.69, 50.02, 35.77, 35.62, 32.10, 32.06.

MS (EI): $m/z = 320.1 \text{ [M]}^+$.

Anal. Calcd for $C_{20}H_{20}N_2O_2;$ C, 74.98; H, 6.29; N, 8.74. Found: C, 74.73; H, 6.25; N, 8.65.

Diethyl 2,2'-[(But-2-ynedioyl)bis(azanediyl)]diacetate (7s)

Following the general procedure, workup A yielded 7s (0.91 g, 64%) as a colorless solid; mp 121 °C (CH₂Cl₂-PE).

IR (KBr): 3378, 3289, 2992, 1756, 1659, 1527 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.55 (s, 2 H), 4.24 (q, *J* = 7.1 Hz, 4 H), 4.11 (d, *J* = 5.6 Hz, 4 H), 1.30 (t, *J* = 7.1 Hz, 6 H).

¹³C NMR (125 MHz, CDCl₃): δ = 169.03, 151.74, 76.99, 61.92, 41.50, 14.07.

MS (ESI): $m/z = 307.2 [M + Na]^+$.

Anal. Calcd for $C_{12}H_{16}N_2O_6{:}$ C, 50.70; H, 5.67; N, 9.85. Found: C, 50.85; H, 5.64; N, 9.97.

Dimethyl 2,2'-[(But-2-ynedioyl)bis(azanediyl)]bis(4-methylpentanoate) (7t)

Following the general procedure, workup A yielded 7t (1.30 g, 71%) as a colorless solid; mp 88 °C (CH_2Cl_2 –PE).

IR (KBr): 3479, 3297, 2960, 1758, 1645, 1558 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.78 (d, *J* = 8.3 Hz, 2 H), 4.65 (dt, *J* = 8.3, 5.4 Hz, 2 H,), 3.76 (s, 6 H), 1.87–1.55 (m, 6 H), 0.95 (d, *J* = 6.4 Hz, 6 H), 0.94 (d, *J* = 6.4 Hz, 6 H).

¹³C NMR (125 MHz, CDCl₃): δ = 173.26, 151.90, 77.37, 52.69, 51.34, 40.86, 24.93, 22.85, 21.74.

MS (ESI): $m/z = 391.3 [M + Na]^+$.

Anal. Calcd for $C_{18}H_{28}N_2O_6{:}$ C, 58.68; H, 7.66; N, 7.60. Found: C, 58.39; H, 7.61; N, 7.51.

Dimethyl 2,2'-[(But-2-ynedioyl)bis(azanediyl)]bis(3-phenylpropanoate) (7u)

Following the general procedure, workup A yielded 7u (1.42 g, 65%) as a colorless solid; mp 142 °C (CH₂Cl₂–PE).

IR (KBr): 3301, 2953, 1740, 1652, 1538, 1439, 1285 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.38–7.22 (m, 8 H), 7.20–7.13 (m, 4 H), 4.90 (td, *J* = 7.3, 5.7 Hz, 2 H), 3.76 (s, 6 H), 3.17 (d, *J* = 14.0, 5.7 Hz, 2 H), 3.06 (d, *J* = 14.0, 7.3 Hz, 2 H)

¹³C NMR (125 MHz, CDCl₃): δ = 171.37, 151.21, 135.31, 129.17, 128.73, 127.34, 76.87, 53.91, 52.63, 37.52.

MS (ESI): $m/z = 459.3 [M + Na]^+$.

Anal. Calcd for $C_{24}H_{24}N_2O_6{:}$ C, 66.04; H, 5.54; N, 6.42. Found: C, 66.00; H, 5.51; N, 6.31.

Dimethyl 2,2'-[(but-2-ynedioyl)bis(azanediyl)]bis(2-phenylacetate) (7v)

Following the general procedure, workup B yielded 7v (1.51 g, 69%) as a colorless solid; mp 164 °C (CH_2Cl_2-PE).

IR (KBr): 3301, 3064, 2953, 1740, 1652, 1538, 1439, 1285 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.82 (d, *J* = 7.7 Hz, 2 H), 7.42– 7.33 (m, 10 H), 5.71 (d, *J* = 7.7 Hz, 2 H), 3.76 (s, 6 H).

¹³C NMR (125 MHz, CDCl₃): δ = 170.68, 150.67, 135.10, 129.11, 128.91, 127.37, 76.93, 56.65, 53.11.

HRMS (EI): m/z [M]⁺ calcd for $C_{22}H_{20}N_2O_6$: 408.1321; found: 408.1344.

Anal. Calcd for $C_{22}H_{20}N_2O_6{:}$ C, 64.70; H, 4.94; N, 6.86. Found: C, 64.64; H, 4.93; N, 6.71.

N^1 , N^4 -Bis[(1*S*,2*R*)-1-hydroxy-1-phenylpropan-2-yl]- N^1 , N^4 -dimethylbut-2-ynediamide (7w)

Following the general procedure, workup B yielded 7w (1.33 g, 65%) as a colorless solid; mp 82 °C (CH_2Cl_2 –PE).

IR (KBr): 3420, 2938, 1622, 1404 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.41–7.20 (m, 10 H), 4.94, 4.92, 4.73, and 4.77 (4 d, *J* = 8.0/8.0/7.9/6.3 Hz, resp., total 2 H), 4.61–4.45 (m, 2 H), 3.33 (br s, 2 H), 3.09, 3.03, 2.86, and 2.86 (4 s, 6 H), 1.32, 1.27, 1.22, and 1.20 (4 d, *J* = 6.8/6.8/7.1/7.1 Hz, resp., total 6 H).

 13 C NMR (125 MHz, CDCl₃): δ = 153.54, 152.93, 152.82, 141.45, 141.43, 141.15, 140.92, 128.51, 128.36, 128.11, 127.98, 127.75, 126.25, 126.06, 81.66, 81.51, 81.46, 81.38, 76.92, 76.61, 75.94, 59.96, 59.79, 56.90, 56.73, 34.05, 33.98, 28.75, 28.46, 13.53, 13.04, 11.03, 10.94.

MS (EI): $m/z = 408.2 [M]^+$.

Anal. Calcd for $C_{24}H_{28}N_2O_4{:}$ C, 70.57; H, 6.91; N, 6.86. Found: C, 70.37; H, 6.96; N, 6.68.

N^1 , N^4 -Bis{3-[5-(dimethylamino)naphthalene-1-sulfonamido]propyl}but-2-ynediamide (7x)

Following the general procedure, workup B yielded 7x (2.11 g, 61%) as a yellow solid; mp 97 °C (CH₂Cl₂-PE).

¹H NMR (500 MHz, DMSO- d_6): $\delta = 8.91$ (t, J = 5.7 Hz, 2 H), 8.48 (d, J = 8.5 Hz, 2 H), 8.32 (d, J = 8.5 Hz, 2 H), 8.12 (dd, J = 7.1, 1.2 Hz, 2 H), 7.90 (t, J = 5.7 Hz, 2 H), 7.65–7.61 (m, 4 H), 7.27 (d, J = 7.1 Hz, 2 H), 3.10–3.04 (m, 4 H), 2.84 (s, 12 H), 2.82–2.78 (m, 4 H), 1.58–1.51 (m, 4 H).

¹³C NMR (126 MHz, DMSO-*d*₆): δ = 151.86, 151.22, 136.44, 129.88, 129.58, 128.66, 128.30, 124.03, 119.53, 115.59, 76.97, 45.53, 40.76, 37.10, 29.47.

MS (EI): *m*/*z* = 692.3 [M]⁺.

Anal. Calcd for $C_{34}H_{40}N_6O_6S_2;\,C,\,58.94;\,H,\,5.82;\,N,\,12.13.$ Found: C, 59.12; H, 5.68; N, 11.79.

N^1, N^4 -Bis $(N-\{2-[(2,3,4,6-tetra-O-acetyl-\beta-D-galactopyrano-syl)oxy]ethyl<math>\}$ but-2-ynediamide (7y)

Following the general procedure, workup A yielded **7y** (2.54 g, 59%) as a colorless solid, which was recrystallized (CH_2Cl_2-PE); mp 105 °C.

IR (KBr): 3349, 2960, 1753, 1668, 1538, 1373, 1227 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): $\delta = 6.73$ (t, J = 5.7 Hz, 2 H), 5.40 (dd, J = 3.4, 1.0 Hz, 2 H), 5.22–5.15 (m, 2 H), 5.03 (dd, J = 10.3, 3.4 Hz, 2 H), 4.50 (d, J = 7.9 Hz, 2 H), 4.20 (dd, J = 11.3, 6.7 Hz, 2 H), 4.14 (dd, J = 11.3, 6.5 Hz, 2 H), 3.95 (dt, J = 6.6, 1.0 Hz, 2 H), 3.88 (ddd, J = 10.3, 6.3, 4.0 Hz, 2 H), 3.76 (ddd, J = 10.3, 6.3, 4.0 Hz, 2 H), 3.76 (ddd, J = 10.3, 6.3, 4.0 Hz, 2 H), 3.76 (s, 6 H), 2.09 (s, 6 H), 2.06 (s, 6 H), 1.99 (s, 6 H).

¹³C NMR (126 MHz, CDCl₃): δ = 170.46, 170.13, 169.99, 169.69, 151.19, 101.30, 76.43, 70.91, 70.72, 68.75, 68.09, 66.97, 61.37, 39.73, 20.77, 20.63, 20.60, 20.50.

MS (EI): $m/z = 860.4 [M]^+$.

Anal. Calcd for $C_{36}H_{48}N_2O_{22}$: C, 50.23; H, 5.62; N, 3.25. Found: C, 50.51; H, 5.95; N, 2.95.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.

References

- (a) Neochoritis, C. G.; Constantinos, G.; Zarganes-Tzitzikas, T.; Stephanidou-Stephanatou, J. Synthesis 2014, 46, 537. (b) Holmes, H. L. In Organic Reactions; Wiley: New York, 2004, 60–173. (c) Winterfeldt, E. Angew. Chem. Int. Ed. 1967, 6, 423. (d) Huisgen, R. Angew. Chem. Int. Ed. 1963, 2, 565.
- (2) For recent examples see: (a) Amanpour, T.; Mirzaei, P.; Bazgir, A. Synthesis 2012, 44, 235. (b) Villemin, E.; Marchand-Brynaert, J. Synthesis 2012, 44, 1923. (c) Wu, C.; Wang, Q.; Jingjing, Z.; Li, P.; Shi, F. Synthesis 2012, 44, 3033. (d) Bhunia, N.; Biswanath, D. Synthesis 2013, 45, 1045.
- (3) (a) Heyl, D.; Rikowski, E.; Hoffmann, R. C.; Schneider, J. J.; Fessner, W.-D. *Chem. Eur. J.* 2010, *16*, 5544. (b) Fabritz, S.; Heyl, D.; Bagutski, V.; Empting, M.; Rikowski, E.; Frauendorf, H.; Balog, I.; Fessner, W.-D.; Schneider, J. J.; Avrutina, O.; Kolmar, H. *Org. Biomol. Chem.* 2010, *8*, 2212.
- (4) (a) Schulte, K. E.; Reisch, J.; Coen, K. *Chim. Ther.* 1970, *5*, 72. (b) Hashmi, A. S. K.; Grundl, M. A.; Nass, A. R.; Naumann, F.; Bats, J. W.; Bolte, M. *Eur. J. Org. Chem.* 2001, 4705.
- (5) Herkes, F. E.; Simmons, H. E. J. Org. Chem. 1975, 40, 420.
- (6) (a) Diels, O.; Thiele, W. E. Ber. Dtsch. Chem. Ges. B 1938, 71, 1173. (b) McDonald, R. N.; Krueger, R. A. J. Org. Chem. 1963, 28, 2542. (c) Maier, G.; Jung, W. A. Chem. Ber. 1982, 115, 804.

- (7) (a) Das, S.; Das, U.; Varela-Ramirez, A.; Lema, V.; Aguillera, R. J.; Balzarini, J.; De Clercq, E.; Dimmock, S. G.; Gorecki, D. K. J.; Dimmock, J. R. *ChemMedChem* 2011, 10, 2011. (b) Das, S.; Das, U.; Sakagami, H.; Umemura, N.; Iwamoto, S.; Matsuta, T.; Kawase, M.; Molnar, J.; Serly, J.; Gorecki, D. K. J.; Dimmock, J. R. *Eur. Med. Chem.* 2012, 51, 193.
- (8) Maier, G.; Jung, G. A. Tetrahedron Lett. 1980, 21, 3875.
- (9) Alvaro, M.; Garcia, H.; Miranda, M. A.; Primo, J. *Tetrahedron* **1992**, *48*, 3437.
- (10) Paul, R.; Anderson, G. W. J. Am. Chem. Soc. 1960, 82, 4596.
- (11) Eichelberger, L. J. Am. Chem. Soc. 1926, 48, 1320.
- (12) (a) Han, S.-Y.; Kim, S.-Y. *Tetrahedron* 2004, *60*, 2447.
 (b) El-Faham, A.; Albericio, F. *Chem. Rev.* 2011, *111*, 6557.
 (c) Al-Warhi, T. I.; Al-Hazimi, H. M. A.; El-Faham, A. *J. Saudi Chem. Soc.* 2012, *16*, 97.
- (13) (a) Kaminski, Z. J.; Paneth, P.; Rudzinski, J. J. Org. Chem. **1998**, 63, 4248. (b) Kunishima, M.; Kawachi, C.; Iwasaki, F.; Terao, K.; Tani, S. Tetrahedron Lett. **1999**, 40, 5327.
- (14) Cronin, J. S.; Ginah, F. O.; Murray, A. R.; Copp, J. D. Synth. Commun. 1996, 26, 3491.
- (15) Kunishima, M.; Kawachi, C.; Monta, J.; Terao, K.; Iwasaki, F.; Tani, S. *Tetrahedron* 1999, 55, 13159.
- (16) Shieh, W.-C.; Chen, Z.; Xue, S.; McKenna, J.; Wang, R.-N.; Prasad, K.; Repic, O. *Tetrahedron Lett.* **2008**, *49*, 5359.
- (17) Kunishima, M.; Kawachi, C.; Hioki, K.; Terao, K.; Tani, S. *Tetrahedron* **2001**, *57*, 1551.
- (18) Kunishima, M.; Kitao, A.; Kawachi, C.; Watanabe, Y.; Iguchi, S.; Hioki, K.; Tani, S. *Chem. Pharm. Bull.* **2002**, *50*, 549.
- (19) Falchi, A.; Giacomeli, G.; Porcheddu, A.; Taddei, M. Synlett 2000, 275.
- (20) El Moncef, A.; Zaballos, E.; Zaragoza, R. J. *Tetrahedron* 2011, 67, 3677; we follow the suggested terminology as there is no other consistent naming of amide conformers.