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ABSTRACT

Three new alkaloids, hyrtimomines A�C (1�3), were isolated from an Okinawanmarine spongeHyrtios sp. The structures of 1�3 were elucidated
on the basis of spectroscopic analysis and application of a phenylglycine methyl ester (PGME) method. Hyrtimomines A (1) and B (2) are
heteroaromatic alkaloids possessing a fused hexacyclic 6/5/6/6/7/5 ring system, while hyrtimomine C (3) is an alkaloid consisting of hydroxyindole
and azepino-hydroxyindole moieties. Hyrtimomine A (1) exhibited cytotoxicity against KB and L1210 cells.

Marine sponges have been recognized as a rich source
of bioactive secondary metabolites with fascinating
chemical structures.1 Among them, sponges belong-
ing to the genus Hyrtios are known to be a source
of heteroaromatic alkaloids with various structures.2

Previously, we have reported the isolation of indole
alkaloids, hyrtiosins A and B,3 gesashidine A,4 and
hyrtinadine A5 from Hyrtios spp. We have also isolated

alkaloids having a furo[2,3-b]pyrazin-2(1H)-onemoiety,
hyrtioseragamines A and B, from Hyrtios sp.6 In our
continuing search for structurally unique metabolites
from Okinawan marine sponges, we investigated the
extracts of Hyrtios sp. (SS-163) and isolated three new
alkaloids, hyrtimomines A�C (1�3). In this Letter, we
describe the isolation and structure elucidation of 1�3.
The sponge Hyrtios sp. (SS-163, 3.3 kg, wet weight)

collected off Kerama Islands, Okinawa, was extracted
with MeOH, and the extracts were partitioned between
EtOAc and water. The EtOAc-soluble materials were
partitioned between n-hexane and 10%MeOHaq.,while
the water layer was extracted with n-BuOH. Combined
10% MeOH aq.-soluble materials and n-BuOH-soluble
materials were first fractionated by silica gel column
chromatography, followedby fractionation byC18 column
chromatography. Next, fractions were further purified
by MCI gel CHP-20P column chromatography, and
final purification was achieved by C18 HPLC or HILIC
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HPLCtoaffordhyrtimominesA (1, 0.00009%,wetweight),
B (2, 0.00023%), and C (3, 0.00012%).
Hyrtimomine A (1)7 was obtained as a dark-brown

amorphous solid. TheUVspectrumsuggested the presence
of a conjugated aromatic chromophore. The molecular
formula of 1, C19H11N3O2, was established by the HRE-
SIMS (m/z 314.09221 [M þ H]þ, Δ�0.19 mmu), corre-
sponding to 16 degrees of unsaturation. The 1H NMR
spectrum showed signals of three D2O-exchangeable, six
aromatic, and two olefinic protons, while the 13C NMR
spectrum displayed the resonances of 17 aromatic and two
olefinic carbons (Table 1). From these data, 1 was eluci-
dated to be a heteroaromatic alkaloid with a highly con-
densed structure.
The structures of two partial units (units A and B) in 1

were assigned as follows. In unit A (N-1, C-2�C-9, and
N-10), the presence of a 3,4-disubstituted-5-hydroxyindole
moietywas suggested by analysis of the 1H�1HCOSYand
HMBC spectra (Figure 1). 1H�1H COSY cross-peaks of
H-8/H-9 and H-9/10-NH and HMBC correlations for
H-8/C-2, H-8/C-3a, and H-9/C-3 disclosed that an ethen-
amine moiety (C-8 and C-9) was connected to C-3. The
geometry of the olefin was assigned as Z based on the
coupling constant for H-8/H-9 (J=9.5Hz). Similarly, the
structure of a 2,3-disubstituted-5-hydroxyindole moiety
(unit B, N-10�C-70a) was deduced. The presence of an
oxygen attached to C-20 was implied by the chemical shift
of C-20 (δC 157.0). Thus, the structures of units A and B
were assigned as shown in Figure 1.

In addition to the 2D NMR correlations shown in
Figure 1, an HMBC correlation for H-9 to an sp2 qua-
ternary carbon (δC 152.3, C-80) was observed, suggesting
the connectivity ofC-9 toC-80 viaN-10.Given the degree of
unsaturation of 1 and aROESYcross-peak of 10-NH/H-40,
the structure of hyrtimomineA (1) was elucidated as shown
in Figure 2.

Hyrtimomine B (2)8 was obtained as an optically active
yellow amorphous solid {[R]22D�276.8 (c 0.027,MeOH)}.
The HRESIMS revealed the molecular formula of 2 to be
C20H13N3O4 (m/z 360.09789 [M þ H]þ, Δ þ0.01 mmu).
The 1H and 13CNMR spectra of 2were similar to those of
1, and the signals due to one nitrogen bearing an sp3

methine (CH-9), one sp3 methylene (CH2-8), and one
carboxy group (C-11) in 2 were discerned in place of the
resonances of the Z-olefine (CH-8 and CH-9) in 1

(Table 1). The connectivity of C-8 to N-10 via C-9 was
confirmed by 1H�1H COSY cross-peaks of H2-8/H-9 and
H-9/10-NH, implying that the carboxy group (C-10) was
attached to C-9 (Figure 3). Thus, the gross structure of
hyrtimomine B (2) was elucidated as shown in Figure 3.

To assign the absolute configuration at C-9, hyrtimo-
mine B (2) was converted into the (S)- and (R)-PGME
(PGME=phenylglycine methyl ester) amides (2a and 2b,
respectively). TheΔδ values (Δδ=δS� δR) obtained from
the 1H NMR data for 2a and 2b indicated the absolute
configuration of C-9 in 2 to be S (Figure 4).9

HyrtimomineC (3)10 was isolated as a yellow amorphous
solid. The HRESIMS indicated the molecular formula of 3
tobeC19H13N3O3 (m/z332.10288 [MþH]þ,Δ�0.11mmu).

Figure 1. Selected 2D NMR correlations for units A and B in
hyrtimomine A (1).

Figure 2. Structure and key 2D NMR correlations of hyrtimo-
mine A (1).

Figure 3. Selected 2DNMR correlations for hyrtimomine B (2).

(8) Hyrtimomine B (2): yellow amorphous solid; [R]22D �276.8
(c 0.027, MeOH); UV (MeOH) λmax 219 (ε 11 780), 243 (6480 sh), 290
(5490), 327 (2750 sh), 343 (2980 sh), and 389 (4930) nm; IR (KBr) vmax

3383, 1645, 1592, 1572, and 1364 cm�1; 1H and 13C NMR (Table 1);
HRESIMS: m/z 360.09789 [M þ H]þ (calcd for C20H14N3O4,
360.09788).
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(10) Hyrtimomine C (3): yellow amorphous solid; UV (MeOH) λmax

215 (ε 24 980), 272 (7430), 295 (7360), 380 (6680), and 474 (3720) nm; IR
(KBr) vmax 3427, 2926, 1733�1604 (br), 1588, 1205, and 1138 cm�1; 1H
and 13CNMR (Table 1); HRESIMS:m/z 332.10288 [MþH]þ (calcd for
C19H14N3O3, 332.10297).
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The 1H and 13CNMR spectra revealed the presence of one
ketone carbonyl group, one sp2 quaternary carbon, and
one sp3 methylene adjacent to a nitrogen atom as well as
two 5-hydroxyindole moieties (Table 1).
The structuresof 3,4-disubstituted-5-hydroxyindole (N-1�

C-7a) and 3-monosubstituted-5-hydroxyindole (C-10�C-70a)

moieties in 3 were confirmed by analysis of the 2D NMR
spectra measured in DMSO-d6, whereas no correlation sug-
gesting the connectivity of CH2-9 to the other atoms was
observed because of its broadening proton signal. On the
other hand, the 1H NMR spectrum measured in CD3OD
gave the sharp resonance of H2-9 {δH 4.38 (2H, s)}. In
the HMBC spectrum in CD3OD, correlations for H2-9 to
C-3, C-8, and C-80 were observed (Figure 5), indicating the
connectivities of C-3 to the sp2 methylene (C-9) through a

Figure 4. Δδ values [Δδ (in ppm) = δS � δR] obtained for the
(S)- and (R)-PGME amides (2a and 2b) of hyrtimoimine B (2).

Table 1. 1H and 13C NMR Data for Hyrtimomines A�C (1�3) in DMSO-d6

1 2 3

position 13C 1H 13C 1H 13C 1H

1 � 11.40 (1H, brs) � 12.00 (1H, brs) � 13.15 (1H, brs)

2 125.2 6.97 (1H, brs) 126.3 7.67 (1H, brs) 134.3 8.38 (1H, s)

3 115.0 � 114.2 � 118.0 �
3a 125.7 � 122.6 � 127.1 �
4 108.7 � 106.2 � 107.1 �
5 146.1 � 148.7 � 161.4 �
6 113.1 7.10 (1H, d,

J = 8.8 Hz)

110.9 7.57 (1H, d,

J = 8.6 Hz)

113.9 7.03 (1H, d,

J = 8.6 Hz)

7 119.7 7.43 (1H, d,

J = 8.8 Hz)

119.5 7.99 (1H, d,

J = 8.6 Hz)

123.7 7.99 (1H, d,

J = 8.6 Hz)

7a 134.9 � 132.6 � 130.2 �
8 110.9 5.39 (1H, d,

J = 9.5 Hz)

30.4 3.63, 3.48

(1H each, brs)a
183.9 �

9 121.9 5.55 (1H, brd,

J = 9.5 Hz)

58.7 5.20 (1H, brs) 56.9 4.25 (2H, m)

10 � 8.27 (1H, brs) � 8.97 (1H, brs) � �
11 170.7 13.78 (1H, brs)

10 � � � � � 12.40 (1H, brs)

20 157.0 � 154.7b � 135.0 8.04 (1H, brs)

30 95.8 � 94.3 � 110.2 �
30a 119.7 � 120.4 � 126.5 �
40 108.1 7.87 (1H, s) 106.2 7.77 (1H, brs) 103.4 6.43 (1H, brs)

50 154.0 � 153.7 � 153.4 �
60 114.8 6.94 (1H, d,

J = 8.6 Hz)

114.2 6.99 (1H, brd,

J = 7.9 Hz)

113.4 6.72 (1H, dd,

J = 8.6, 1.9 Hz)

70 113.5 7.32 (1H, d,

J = 8.6 Hz)

113.7 7.45 (1H, d,

J = 7.9 Hz)

113.4 7.41 (1H, d,

J = 8.6 Hz)

70a 127.9 � 127.5 � 131.3 �
80 152.3 � 157.9b � 166.1 �
5-OH 11.18 (1H, brs)

50-OH 9.67 (1H, brs) 9.66 (1H, brs) 9.12 (1H, brs)

a Signals were overlapped with that of HOD. b Signals may be interchangeable.

Figure 5. Selected 2DNMR correlations for hyrtimomine C (3).
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ketone carbonyl group (C-8) and of C-9 to an sp2 quaternary
carbon (C-80) through a nitrogen atom (N-10). In addi-
tion, the connectivities among N-10, C-30, and C-4 via C-80

were disclosed by an HMBC cross-peak of H-20/C-80 and a
4JHMBC correlation for H-6/C-80. Therefore, the structure
of hyrtimomine C was elucidated to be 3.
Hyrtimomines A (1) and B (2) are structurally unique

heteroaromatic alkaloidswith a fusedhexacyclic 6/5/6/6/7/5

ring system.HyrtimomineC (3) is analkaloid consistingof a
hydroxyindole and azepino-hydroxyindole moieties. These
alkaloids have an azepino-indole moiety in common, while
some azepino-indole alkaloids, hyrtiazepine,2c hyrtioreticu-
lins C and D,2a and clavicipitic acid,11 have been reported
to date.
A possible biogenetic path of hyrtimomines A�C (1�3)

from hyrtiazepine is proposed as shown in Scheme 1.
Hyrtiazepine seems to be derived from 5-hydroxy-L-trypto-
phan and 5-hydroxyindole-3-aldehyde.3 Decarboxylation
and oxidation of hyrtiazepinemight give hyrtimomineC (3).
Hyrtimomine B (2) might be derived by intramolecular
cyclization of hyrtiazepine and followed by decarboxylation
to generate hyrtimoimine A (1). Although the absolute
stereochemistry of hyrtiazepine has not been reported,2c the
absolute configuration of C-9 in hyrtimomine B (2) was
coincident with that of 5-hydroxy-L-tryptophan.
Hyrtimomine A (1) showed cytotoxicity against human

epidermoid carcinoma KB cells (IC50 3.1 μg/mL) and
muline leukemia L1210 cells (IC50 4.2 μg/mL) in vitro,
while hyrtimomines B (2) and C (3) did not show such
cytotoxicity (IC50 >10 μg/mL).
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Scheme 1. Possible Biogenetic Path of Hyrtimomines A�C
(1�3)

(11) Robbers, J. E.; Otsuka, H.; Floss, H. G.; Arnold, E. V.; Clardy,
J. J. Org. Chem. 1980, 45, 1117–1121. The authors declare no competing financial interest.


