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SUMMARY

Oxidative phosphorylation (OXPHOS) and glycolysis
are the two main pathways that control energy
metabolism of a cell. The Warburg effect, in which
glycolysis remains active even under aerobic condi-
tions, is considered a key driver for cancer cell prolif-
eration, malignancy, metastasis, and therapeutic
resistance. To target aerobic glycolysis, we exploited
the complementary roles of OXPHOS and glycolysis
in ATP synthesis as the basis for a chemical genetic
screen, enabling rapid identification of novel small-
molecule inhibitors of facilitative glucose transport.
Blocking mitochondrial electron transport with anti-
mycin A or leucascandrolide A had little effect on
highly glycolytic A549 lung carcinoma cells, but add-
ing known glycolytic inhibitors 2-deoxy-D-glucose,
iodoacetate or cytochalasin B, rapidly depleted intra-
cellular ATP, displaying chemical synthetic lethality.
Based on this principle, we exposed antimycin
A-treated A549 cells to a newly synthesized 955
member diverse scaffold small-molecule library,
screening for compounds that rapidly depleted ATP
levels. Two compounds potently suppressed ATP
synthesis, induced G1 cell-cycle arrest and inhibited
lactate production. Pathway analysis revealed that
these novel probes inhibited GLUT family of facilita-
tive transmembrane transporters but, unlike cyto-
chalasin B, had no effect on the actin cytoskeleton.
Our work illustrated the utility of a pairwise chemical
genetic screen for discovery of novel chemical
probes, which would be useful not only to study the
system-level organization of energy metabolism but
could also facilitate development of drugs targeting
upregulation of aerobic glycolysis in cancer.

INTRODUCTION

In chemical genetics, small-molecule probes rather than muta-

tions are used to modulate cellular phenotypes, thereby offering

access to biological insights that may not be obtained by

conventional genetics (Stockwell, 2000; Lehar et al., 2008).
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Most recently, the advent of high-throughput screening has

accelerated chemical probe discovery (Bredel and Jacoby,

2004). However, while significant progress toward identification

of compounds perturbing many key pathways has been made,

developing highly specific chemical probes remains challenging.

A particularly powerful approach has been to exploit synthetic

lethality, where a defined genetic defect sensitizes the cell to

small molecules that target compensatory pathways (Hartwell

et al., 1997). By analogy with classical genetic analysis of inter-

acting genes (Tong et al., 2001, 2004), only via combining the

mutation with the proper small molecule can one observe the

phenotype, as either perturbation alone is insufficient. This

approach is limited, however, by the availability of mutant cell

lines and RNAi may not offer a satisfactory alternative. Alterna-

tively, a chemical probe can substitute for the mutation, and

the compensatory response of the system might then be tar-

geted by a second small molecule, which can be selected from

a chemical library. Here, the pairwise chemical perturbation

can result in a unique phenotype and enable the discovery of

new chemical probes. Particularly where prior genetic analysis

has identified the compensatory cellular pathway, linking the

small molecules to their targets is highly feasible.

Oxidative phosphorylation (OXPHOS) and glycolysis are the

two main pathways that control energy metabolism in the cell.

The interdependence of the two metabolic pathways has been

known since Pasteur’s pioneering work, which demonstrated

that yeast consumed more glucose anaerobically than

aerobically (Racker, 1974). Recent systematic analysis of all

single and double knockouts of 890 metabolic genes in

Saccharomyces cerevisiae demonstrated that genetic perturba-

tions of OXPHOS aggravated disruption of glycolysis, because

either fermentation or respiratory function were needed for

ATP synthesis (Segrè et al., 2005). Pairwise chemical perturba-

tion of OXPHOS and glycolysis has also been explored in human

cancer cell lines. The combination of small-molecule inhibitors of

mitochondrial electron transport chain and glucose catabolism

synergistically suppressed ATP production and impaired cellular

viability (Ulanovskaya et al., 2008; Liu, et al., 2001). However, the

ability to carry out chemical genetic studies of energy metabo-

lism is currently limited by the availability of potent, specific,

and stable chemical inhibitors of glycolysis (Pelicano et al.,

2006). Such compounds would be useful not only to study the

systems-level organization of metabolism in real time, but could

also open new directions for discovery of drugs targeting the up-

regulation of aerobic glycolysis in cancer discovered byWarburg

(Warburg, 1956; Vander Heiden et al., 2009; Tennant et al., 2010;
vier Ltd All rights reserved
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Figure 1. Synergistic Suppression of ATP Synthesis

(A) Schematic representation of the contribution of OXPHOS and glycolysis to

ATP production and structures of known small-molecule inhibitors of the two

energy-producing pathways, including a synthetic analog of leucascandrolide

A (1), antimycin A (2), 2-deoxy-D-glucose (3), sodium iodoacetate (4), and cyto-

chalasin B (5).

(B) Suppression of ATP synthesis by 3 in the absence and presence of 1.

(C) Suppression of ATP synthesis by 3 in the absence and presence of 2.

(D) Suppression of ATP synthesis by 4 in the absence and presence of 2.

(E) Suppression of ATP synthesis by 5 in the absence and presence of 2.

All values are presented as percentage of vehicle treated sample. Each value is

mean ± SEM of duplicate values from a representative experiment. This figure

is supported by Figure S1.
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Gatenby and Gillies, 2004; DeBerardinis et al., 2008; Gohil et al.,

2010).

Here, we exploited dual contribution of the two main energy-

producing cellular pathways to production of ATP for the devel-

opment of a practical chemical genetic screen, which enabled

rapid identification of new small-molecule inhibitors of facilitative

glucose transport. This approach was based on the initial

suppression of OXPHOS in A549 cells with a potent and specific

small-molecule inhibitor of complex III. This treatment alone did

not result in any observable defects in cellular viability or ATP

production within the first 30 min of drug incubation. Subse-

quently, a second chemical perturbation of the system with

a small-molecule inhibitor of glycolysis or glucose transport re-

sulted in synergistic, rapid depletion of intracellular ATP levels.

Having validated this synthetic effect using a series of known

inhibitors, we subjected antimycin A-treated A549 cells to

a newly synthesized 955 member small-molecule library and

measured effects of each library member on ATP production.

The screen identified two new compounds that potently sup-

pressed ATP synthesis only in the presence of a mitochondrial

inhibitor, induced G1 cell-cycle arrest and inhibited lactate

production, which is highly indicative of blocking glycolytic

pathway. We further demonstrated that the two newly identified

chemical agents potently inhibited glucose cellular uptake,

which is mediated by the GLUT family of facilitative transmem-

brane transporters. Our investigation demonstrated the utility

of a pairwise chemical genetic screen for the discovery of novel

chemical probes, and identified two previously unknown chemo-

types that enable effective suppression of facilitative glucose

transport in mammalian cells.

RESULTS

Synergistic Suppression of ATP Synthesis
Glycolysis is a series of metabolic reactions that convert each

glucose to two pyruvic acids and two equivalents of ATP (Fig-

ure 1A). OXPHOS produces up to 36 additional equivalents of

ATP by coupling reduction of molecular oxygen to oxidation of

NADH and FADH2. We have previously observed (Ulanovskaya,

et al., 2008) that combining small-molecule inhibitors of OX-

PHOS and glycolysis resulted in rapid depletion of cellular ATP

while the action of a mitochondrial inhibitor alone did not

substantially impact the ATP level under the same conditions

(see Figure S1 available online). Based on this observation, we

profiled several pairwise combinations of known small-molecule

inhibitors of OXPHOS and glycolysis to establish the generality of

synthetic suppression of ATP production in mammalian cells.

2-Deoxy-D-glucose (3) is an established inhibitor of glycolysis

that acts by blocking the activity of phosphoglucose isomerase

following its initial phosphorylation by hexokinase (Brown,

1962). Treatment of A549 cells with variable concentrations of

3 resulted in partial suppression of ATP levels (Figure 1B) within

the first 30 min of incubation with the drug. This effect was

substantially enhanced (Figures 1B and 1C) in the presence of

a chemical inhibitor of complex III – either the synthetic analog

of leucascandrolide A (1) developed in our laboratory (Ulanov-

skaya, et al., 2008) or antimycin A (2) (Ohnishi, and Trumpower,

1980). Similarly, a more effective suppression of ATP synthesis

was observed using a combination of antimycin A and sodium io-
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doacetate (4) (Figure 1D), which irreversibly inhibits glyceroalde-

hydephosphate dehydrogenase (Sabri and Ochs, 1971). The

most pronounced effect on synergistic suppression of ATP

synthesis was observed in the case of cytochalasin B (5),
–230, February 25, 2011 ª2011 Elsevier Ltd All rights reserved 223



Figure 2. Synthesis of 955 Member Chemical Library

The assembly process entailed a four-step synthetic sequence shown using 5 ketoesters (I), 16 amines II, which were employed during the first diversification

step, and 12 amines (V), which were used for the final amidation. For each 96-compound set, 12 randomly selected compounds were analyzed by 500 MHz 1H

NMR to determine chemical purity and yield as described in Experimental Procedures. Also shown are the structures of five representative library members 6–10,

which were randomly selected and fully characterized by 1H NMR, 13C NMR and MS. This figure is supported by Figure S2.
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a known inhibitor of facilitative glucose transport (Deves and

Krupka, 1978). While treatment of A549 cells with 5 did not

substantially impact the ATP level within the first 30 min of incu-

bation, the addition of a mitochondrial inhibitor 2 resulted in

highly effective blockage of ATP synthesis at low concentrations

of both 2 and 5 (Figure 1E).

These results confirmed that inhibition of mitochondrial respi-

ration could enhance the suppression of ATP synthesis by glyco-

lytic inhibitors independently of their mechanism of action. The

detailed pattern of ATP suppression, however, appeared to be

uniquely associated with a specific mode of action of each

glycolytic inhibitor tested, providing a unique phenotypic

readout for each compound. These data establish the potential

for discovery of new glycolytic inhibitors by screening chemical

libraries for small molecules that would act in concert with amito-

chondrial inhibitor to block ATP synthesis, as well as identifica-

tion of their cellular targets within the glycolytic pathway by

examining the pattern of inhibition for each agent.

Chemical Library Synthesis
High-throughput organic synthesis enables construction of

biogenic, structurally diverse small-molecule libraries for broad

biological screening (Tan, 2005). We selected a five-membered

pyrrolidinone subunit as a structural element for rapid introduc-

tion of molecular diversity due to the prevalence of this chemo-

type in various biologically active compounds, i.e., doxapram

and lactacystin (Yost, 2006; Omura et al., 1991). Selection of

such bioactive privileged structures for library design is attrac-

tive to yield collections of compounds with favorable physico-

chemical properties in order to enable new lead discovery (Cui

et al., 2010; Lee et al., 2010). The tandem reaction sequence

for library synthesis entailed intermolecular Michael addition of
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vinylogous amides III to a cyclic anhydride (Figure 2), followed

by intramolecular amidation to give highly substituted five-

membered lactams IV, which could be further diversified by acti-

vation of carboxylic acid and coupling with amines V en route to

the target small-molecule library VI. The use of cyclic vinylogous

amides III with varied connectivity between R1 and R2 groups

would result in scaffold diversification and production of the final

library with the increased level of structural diversity.

The assembly process began with condensation of 5 ketoest-

ers I with 16 primary amines II, which readily occurred at 70�C in

CHCl3 and afforded the desired 80 vinylogous amides III in 60%–

90% yield after chromatographic purification (Figure 2).

Construction of pyrrolidinones was achieved by treatment of vi-

nylogous amides III with maleic anhydride (Cavé et al., 1997) in

CHCl3 at 20
�C, followed by conversion of the resulting carboxylic

acids into the corresponding N-hydroxysuccinimide esters IV

using resin-bound carbodiimide to facilitate chromatographic

purification of activated esters. Each of the esters IV was

produced as a single diasteromer. The relative stereochemical

relationship of the newly created stereogenic centers was veri-

fied by X-ray crystallography. The final stage of the synthesis en-

tailed condensation of 12 amines V with 80 activated esters IV.

The resulting library VI was prepared in solution on 2.5 mmol

scale (1.0–1.5 mg of final products) and was rapidly purified by

parallel preparative thin layer chromatography. Chromato-

graphic analysis of all final compounds (see Supplemental

Experimental Procedures) established that 955 out of 960

compounds were produced successfully. In addition, NMR

spectroscopy was employed to validate high chemical purity

and quantify chemical yields of 120 randomly selected library

members. Structures of five fully characterized library members

6–10 (Figure 2) are representative of the notable skeletal
vier Ltd All rights reserved



Figure 3. Effects of 11 and 12 on ATP Synthesis,

Cell Proliferation, and Lactate Production

(A) Chemical structure of 11.

(B) Chemical structure of 12.

(C) Inhibition of intracellular ATP production upon treat-

ment of A549 and CHO-K1 cells with 11 in the presence

or absence of 10 nM antimycin A.

(D) Inhibition of intracellular ATP production upon treat-

ment of A549 and CHO-K1 cells with 12 in the presence

or absence of 10 nM antimycin A.

(E) Effect of 11 on growth of A549 and CHO-K1 cells.

(F) Effect of 12 on growth of A549 and CHO-K1 cells.

(G) Inhibition of lactate production in CHO-K1 cells upon

treatment with 11.

(H) Inhibition of lactate production in CHO-K1 cells upon

treatment with 12.

All values are presented as percentage of vehicle treated

sample. Each value is mean ± SEM of duplicate values

from a representative experiment. This figure is supported

by Figure S3.
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diversity, which was enabled by the selection of our unique

synthetic strategy. Favorable physicochemical properties of all

newly produced compounds were further confirmed by desired

molecular weight and lipophilicty distributions (Figure S2).

Pairwise High-Throughput Chemical Genetic Screen
In order to identify new inhibitors of glycolysis, we subjected anti-

mycin A-treated A549 cells to each member of the 955 member

small-molecule library and measured the effects of each

compound on ATP production after 30 min of drug incubation.

We anticipated that synergistic suppression of ATP synthesis

under such conditions could be achieved only by compounds

that inhibited either glucose metabolism or its transport into

the cells. The primary screen was performedwith 10 nM concen-

tration of antimycin A and a 20 mMaverage concentration of each

individual library member. In order to identify the most potent

small molecules, the initial set of active compounds was sub-

jected for a follow-up dose-dependent analysis of suppression

of ATP synthesis in the presence and absence of antimycin A.

Structures of the two most potent compounds 11 and 12 are

shown in Figures 3A and 3B. Each was resynthesized on prepar-

ative scale, purified by conventional silica gel chromatography
Chemistry & Biology 18, 222–230, February 2
and subjected to a series of detailed cell-based

and biochemical studies. Initial structure-activity

analysis (Figures S3A and S3B) revealed that the

naphthyl moiety in 11 and 12 can be replaced

with other aromatic groups without a substantial

decrease in activity. However, replacement of

the N-acyl piperazine with other groups in 11

could not be tolerated. Similarly, the dimethoxy-

phenylethyl subunit proved to be uniquely

responsible for the activity of 12 within the initial

collection of compounds tested.

Suppression of ATP Synthesis, Cell
Growth, and Lactate Production
Dose-dependent inhibition of ATP production by

11 and 12 was next evaluated in several

mammalian cell lines in the absence and pres-
ence of a mitochondrial inhibitor, such as antimycin A. We found

that each of the two compounds did not substantially alter the

level of ATP in A549 cells with normal mitochondrial activity.

However, in the presence of antimycin A, the amount of ATP

was depleted in A549 cells within 30 min of incubation with 11

or 12 with IC50 of 10 and 3 mM, respectively (Figures 3C and

3D). Notably, ATP levels in Chinese hamster ovary cells (CHO-

K1) were highly sensitive to both compounds 11 and 12 with

IC50 values of 2 and 1 mM, respectively (Figures 3C and 3D).

The same profile of synergistic ATP suppression was observed

in PC3 (prostate) and U373 (glioma) cell lines (Figures S3C–

S3F). In addition, the synergistic effect of compounds 11 and

12 on suppression of ATP synthesis in the presence of antimycin

A was similar to that observed by replacing glucose with pyru-

vate (Figure S3G). Importantly, the ATP suppression activity

patterns elicited by 11 and 12 were almost identical to that

observed for cytochalasin B (5) including both recapitulating

the negligible effect on ATP production under normal respiration

in A549 (Figure 1E), as well as the enhanced sensitivity of CHO-

K1 to 5 (Figure S3H). These results suggested that the two newly

identified compounds might similarly act by inhibiting glucose

uptake into mammalian cells. Considering the supersensitivity
5, 2011 ª2011 Elsevier Ltd All rights reserved 225



Figure 4. Inhibition of Glucose Transport by

11 and 12
(A) Inhibition of 3-O-methylglucose uptake in CHO-K1

cells by 11.

(B) Inhibition of 2-deoxy-D-glucose uptake in CHO-K1

cells by 11.

(C) Inhibition of D-glucose uptake in erythrocyte ghosts by

11.

(D) Inhibition of D-glucose uptake in erythrocyte ghosts by

12.

(E) Kinetics of the inhibition of D-glucose uptake in eryth-

rocyte membranes by 11. Kinetic parameters: Vm =

0.052 ± 0.004 mM/min, Km = 0.19 ± 0.04 mM, Vm(app) =

0.028 ± 0.002 mM/min, Km(app) = 0.14 ± 0.03 mM.

(F) Kinetics of the inhibition of D-glucose uptake in erythro-

cyte membranes by 12. Kinetic parameters: Vm = 0.068 ±

0.005 mM/min, Km = 0.28 ± 0.05 mM, Vm(app) = 0.030 ±

0.005 mM/min, Km(app) = 0.45 ± 0.16 mM.

Figure 4 is supported by Figure S4. Each value is mean ±

SEM of duplicate values from a representative experi-

ment.
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of CHO-K1 cells to 11 and 12 and its history of use as an in vitro

model for investigation of facilitative glucose transport (Faik

et al., 1989), we selected this cell line for further study.

We next examined the effects of 11 and 12 on cell growth and

viability. As expected for inhibitors of energy metabolism, both

compounds inhibited growth of A549 and CHO-K1 cell lines

(Figures 3E and 3F). The potency of 11 and 12 in growth inhibitory

assays and cell-line sensitivity correlated well with the initially

observed effects of the two compounds on ATP synthesis.

Furthermore, the effects of 11 and 12 on cell viability appeared

to be cytostatic at a range of concentrations tested. We also

evaluated the effect of the two compounds on cell-cycle regula-

tion. Treatment of A549 cells with 11 or 12 for 24 hr resulted in

a notable increase in G1 subpopulation to 71% and 73%,

respectively, compared with 62% of the G1 peak in the negative

control (Figure S3K). This result was again in agreement with the

impairment of energy metabolism in cells exposed to 11 or 12.

The level of excreted lactate provides a validated measure of

the efficiency of glycolytic flux of mammalian cells. Indeed, effi-

cient inhibition of lactate production was observed in CHO-K1

cells treated for 4 hr (Eichner et al., 2010) with either 2-deoxy-

D-glucose or cytochalasin B compared with negative controls

using either DMSO or dihydrocytochalasin B (Figure S3I). Sub-

jecting CHO-K1 cells to either 11 or 12 under the same condi-

tions resulted in dose-dependent inhibition of cellular lactate
226 Chemistry & Biology 18, 222–230, February 25, 2011 ª2011 Elsevier Ltd All rights
production with IC50 values of 3 and 1.5 mM,

respectively (Figures 3G and 3H). Similar effect

was observed in PC3 cells (Figure S3J).

Inhibition of facilitative Glucose
Transport
The similarity of the ATP suppression patterns of

11 and 12 to that observed for cytochalasin B (5)

in two representative cell lines, as well as the

absence of major glycolytic metabolites

observed upon treatment of cells with 11 or 12

strongly suggested that the two compounds eli-

cited their activities by blocking transport of
glucose into the cells. Expression of the GLUT1 facilitative

glucose transporter in A549 and CHO-K1 cell lines was verified

by western blot (Figure S3L). Direct drug action on mammalian

glucose transporters was measured by monitoring rapid uptake

of 3H-labeled 3-O-methylglucose, a radiotracer that is efficiently

taken up via glucose transporters but not metabolized further,

allowing the assessment of initial rate of sugar uptake. Under

such conditions, 11 inhibited uptake of this labeled glucose

analog by 50% at concentration of 2 mM (Figure 4A). The uptake

of 3H-labeled 2-deoxy-D-glucose, a glucose analog that can be

phosphorylated by hexokinase, was blocked by 11 with similar

potency (Figure 4B). Similar effects were observed in highly

sensitive U373 glioma cell line (Figure S4A).

We next evaluated the effects of 11 and 12 on uptake of

D-glucose in purified sealed erythrocyte membranes (Figures

4C and 4D), which exclusively express GLUT1 (Carruthers

et al., 2009). We employed cytochalasin B (5), a noncompetitive

inhibitor of glucose uptake (Deves and Krupka, 1978), and gen-

istein, a competitive inhibitor of glucose uptake (Vera et al.,

1996), as positive controls. Each elicited the expected poten-

cies and kinetic profiles (Figure S4B and S4C). The effects of

11 and 12 on facilitative glucose transport by the erythrocyte

membranes were consistent with a noncompetitive mode of

inhibition with Ki values of 1.2 and 0.8 mM, respectively (Figures

4E and 4F).
reserved
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Cytochalasin B (5) is known to depolymerize F-actin (Bonder

and Mooseker, 1986) at concentrations similar to those used

to inhibit glucose transport (Figure S4E). While this compound

has been used extensively for biochemical characterization of

glucose transport, the existence of alternative cellular targets

of cytochalasin B substantially limits its applications of this agent

in cell-based and in vivo studies of glucose transport. We exam-

ined depolymerization of the actin cytoskeleton in A549 cells and

found that neither 11 nor 12 altered F-actin distribution even at

the highest concentrations tested (Figures S4F and S4G). While

other off-target effects of 11 and 12 cannot be ruled out at this

point, the absence of cytoskeletal effects of the two compounds

uniquely distinguishes them from cytochalasin-based inhibitors

of facilitative glucose transport.

DISCUSSION

Glucose is an essential metabolic energy source for all living

organisms and a structural precursor for cellular biosynthesis

of proteins, lipids, and nucleic acids. A common feature of

cancer cells is a dramatic increase in glucose uptake associated

with the Warburg effect, providing a basis tumor imaging based

on the accumulation of the PET tracer 18fluorodeoxyglucose by

many tumors (Gambhir, 2004). Most vertebrate cells must trans-

port glucose across the cell membrane, which is mediated by

active and passive glucose transporters. While active glucose

transport is sodium-dependent and relies on an electrochemical

gradient, passive glucose transport is controlled by facilitative

glucose transporters (GLUTs), which respond to the gradient of

glucose concentration across the cell membrane (Manolescu

et al., 2007). Among 13members of themammalian GLUT family,

individual isoforms are characterized by their unique tissue

distributions and distinct affinities for various substrates that

they transport. In addition to variable capacity to transport of

D-pentoses and D-hexoses, GLUTs have also been shown to

transport the oxidized form of vitamin C, dehydroascorbic acid

(Vera et al., 1993).

Overexpression of glucose transporters and other glycolytic

enzymes is one of the key alterations associated with the high

glycolytic rate of malignant cells. GLUT1 is particularly highly ex-

pressed in several cancers including breast, brain, renal, colon,

ovarian, and cervical carcinoma (Yamamoto et al., 1990; Nish-

ioka et al., 1992; Brown andWahl, 1993; Haber, et al., 1998; Can-

tuaria et al., 2001; Rudlowski et al., 2003). Several studies have

demonstrated a link between GLUT1 expression and chemore-

sistance, tumor aggressiveness, and poor survival (Hatanaka,

1974; Evans et al., 2008). Therefore, inhibition of GLUT1 function

may be a promising therapeutic strategy for sensitization of

highly glycolytic cancer cells to chemotherapeutic agents and

for direct targeting of cancer cells. However, progress has re-

mained limited by the currently available small-molecule inhibi-

tors, which lack potency and/or exhibit substantial off-target

effects. Thus, there is a significant need for the development of

new inhibitors of glucose transport that can potently modulate

this process in vitro and in vivo.

We have described a practical and general strategy for

discovery of new inhibitors of glycolysis and glucose transport,

which can be rapidly identified by their ability to deplete cellular

ATP in cells with suppressed mitochondrial function. This
Chemistry & Biology 18, 222
pathway-based screen was designed to target multiple proteins

involved in cellular glucose consumption and metabolism.

Having initially validated the synthetic suppression of ATP

synthesis by a combination of small-molecule inhibitors of

OXPHOS and glycolysis or glucose transport, we screened

a newly constructed diverse chemical library for small molecules

that would act in concert with antimycin A to suppress cellular

ATP production. This effort resulted in identification of two

chemotypes 11 and 12 that potently inhibited ATP synthesis in

A549 cells with chemically suppressed mitochondrial function.

As expected, inhibition of lactate production by the two newly

identified compounds was highly indicative of substantial reduc-

tion of glycolytic flux. The pattern of ATP synthesis suppression

and differential cellular sensitivity strongly suggested that 11 and

12 blocked glucose transport in mammalian cell lines. Detailed

examination of this effect revealed that both compounds in-

hibited uptake of 3-O-methylglucose and 2-deoxy-D-glucose

in CHO-K1 cells. Furthermore, 11 and 12 suppressed uptake

of labeled D-glucose in sealed erythrocyte membranes. The

kinetic studies suggested a noncompetitive inhibition of facilita-

tive glucose transport through erythrocyte membranes with low

micromolar inhibitory constants. Such potent inhibition of facili-

tative glucose transport was fully consistent with the ability of

11 and 12 to synthetically suppress ATP production, reduce

glycolytic flux and inhibit mammalian cell growth at similarly

low concentrations. It is noteworthy that the two newly identified

chemotypes do not share significant structural similarity with

known inhibitors of cellular glucose transport and can be effi-

ciently accessed by short, efficient and fully diastereoselective

synthetic sequences. This new class of glucose transport inhib-

itors provides a foundation for subsequent development of

highly potent compounds that can modulate cellular glucose

uptake in a selective manner, as might be necessary to target

aerobic glycolysis in cancer.

SIGNIFICANCE

The Warburg effect, in which glycolysis remains active even

under aerobic conditions, is considered a key driver for

cancer cell proliferation, malignancy, metastasis, and thera-

peutic resistance. Currently, there is a limited arsenal of

small molecules that can target aerobic glycolysis with

high potency and specificity. We developed a new approach

for rapid discovery and subsequent target identification of

glycolytic inhibitors from structurally diverse chemical

libraries. Such compounds are identified by their ability to

synergistically suppress ATP production in cancer cells in

the presence of a mitochondrial inhibitor. We initially vali-

dated this synthetic effect by evaluating a number of known

inhibitors of glycolysis and oxidative phosphorylation. We

then synthesized a chemical library and analyzed effects of

each library member on ATP production in the presence of

a mitochondrial inhibitor. This effort identified two new

compounds that potently suppressed ATP synthesis by in-

hibiting GLUT family of facilitative transmembrane trans-

porters. Such compounds would be useful not only to study

the system-level organization of energy metabolism but

could also facilitate development of drugs targeting upregu-

lation of aerobic glycolysis in cancer.
–230, February 25, 2011 ª2011 Elsevier Ltd All rights reserved 227
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EXPERIMENTAL PROCEDURES

Chemical Library Synthesis

The following procedure represents the synthesis of the first set of 96

compounds. Eight 1.5 ml polypropylene centrifuge tubes were charged with

CHCl3 (0.8 ml each), methyl acetoacetate (0.5 mmol each), and treated individ-

ually with eight primary amines (II, 0.5 mmol) at 70�C in a sand bath. The vinyl-

ogous amides III were purified by preparative TLC (ethyl acetate: hexanes =

1:5 to 1:1), dissolved in CHCl3 (0.8 ml), and treated with maleic anhydride

(0.3–0.5 mmol) at 20�C. Upon completion of each reaction, the mixtures

were diluted with CHCl3 (1.6 ml) and THF (4.8 ml), followed by treatment

with N-hydroxysuccinimide (0.38–0.63 mmol) and PS-carbodiimide resin

(1.1 mmol/g, 345–573 mg). The reaction mixtures were stirred for 2–4 hr at

20�C, filtered, concentrated, and purified by preparative TLC (ethyl acetate:

hexanes = 2:1) to give the eight corresponding succinimide esters IV, which

were diluted with CH2Cl2 to final concentrations of 0.1 M. Aliquots (25 ml) of

each resulting stock solutions were transferred into a polypropylene 96-well

PCR plate and treated with 12 amines V (4 mmol per well) and CH2Cl2 (30 ml

per well) using the plate maps shown in Supplemental Experimental Proce-

dures. Upon completion, the reaction mixtures were transferred onto prepar-

ative TLC plates using amultichannel pipettor with adjustable gaps. The plates

were developed in ethyl acetate/hexanes (3:2). The products VIwere detected

under UV light and removed from TLC plates as circular silica gel pellets. Each

compound was eluted from silica gel with ethyl acetate (0.6 ml). Following

removal of the solvent in vacuo, 12 randomly selected compounds were dis-

solved in CD3OD (0.5 ml) and analyzed by 1H NMR. The amount of material

in each sample was determined by integration using residual MeOH as a pre-

calibrated internal standard. This protocol was used next to prepare all the re-

maining library members.

Cell Culture

A549, CHO-K1, PC3, U373, and U87 cell lines were purchased from ATCC and

were maintained in either F12-K or DMEM medium supplemented with 10%

FBS and 1% penicillin-streptomycin-glutamine solution.

Quantification of Cellular ATP Levels

Cells were seeded in 96-well plates at a density of 2500 cells/well. The next

day, cells were treated with either medium or medium containing antymicin

A (final concentration = 10 nM) followed immediately by addition of graded

concentrations of small molecules and incubated for 30min. The ATPlite assay

kit (PerkinElmer) was used to measure ATP levels. All assays were performed

using two replicate wells for each small-molecule concentration tested.

High-Throughput Library Screen

The effects of small molecules on ATP levels in A549 cells in the presence of

10 nM antimycin A were measured as described above. Each compound

was tested at a single concentration of 20 mM. Concentration of DMSO did

not exceed 1% of the total assay volume.

Cellular Growth Inhibition

Cells were seeded in 6-well plates at a density of 100,000 cells/well and were

allowed to attach to plate surface. Then cells were washed with PBS and

treated with fresh medium containing graded concentrations of small mole-

cules. After 48 hr of incubation, cells were trypsinized, stained with trypan

blue, and counted using Countess automated cell counter from Invitrogen.

All assays were performed using two replicate wells for each small molecule

concentration test.

Lactate Production

CHO-K1 or PC3 cells were seeded in 6-well plates at a concentration of

400,000 cells/well and incubated overnight. Old medium was removed; cells

were washed with PBS, and then treated with 1 ml of medium containing

different concentrations of compounds. After 4 hr of incubation, an aliquot of

the cell culture medium was removed from each well and kept at �80�C until

processed. The amount of lactate excreted into the cell culture medium was

measured using the Lactate assay kit from Biovision. All samples were done

in duplicate.
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Cellular uptake of Radiolabeled Glucose Analogs

CHO-K1 cells (2 3 106) were washed in PBS and incubated for 15 min at

37�C in glucose uptake buffer (8.1 mM Na2HPO4, 1.4 mM KH2PO4, 0.5 mM

MgCl2, 2.6 mM KCl, 136 mM NaCl, and 0.9 mM CaCl2 [pH 7.4]). Twenty-

five microliters of a 20% perchloric acid/ 8% sucrose solution was added

to the bottom of a 0.5 ml microfuge tube. 1-Bromododecane (200 ml) was

overlaid above the perchloric acid/sucrose solution. Fifty microliters of triti-

ated sugar (25 mCi/ml) was overlaid above the 1-bromododecane layer. After

the 37�C incubation, 100 ml of cells were added to the sugar layer and pulsed

with 3-O-methylglucose and 2-deoxy-D-glucose for 30 and 120 s, respec-

tively. The reaction was stopped by centrifugation at 14,000 rpm for

10 min. Tubes were then snap-frozen in an ethanol/dry ice bath. The tips of

the tubes were cut just above the perchloric acid/sucrose/bromododecane

interface and transferred into scintillation vials containing 100 ml of 1% Triton

X-100. Optiphase Supermix (PerkinElmer) was added to each vial and

counted using an LS6500 scintillation counter (Beckman Coulter). Each

sample was measured in triplicate. Nonspecific uptake was assessed by

treatment of cells with 5–50 mM cytochalasin B and was excluded from all

samples. All values are presented as percentage of vehicle treated sample.

Each value is mean ± SEM of at least duplicate values from a representative

experiment.
Isolation of Pink Ghosts from Red Blood Cells

Outdated red cells were obtained from blood bank. Cells were washed once in

KCl buffer (10 mM Tris-HCl, 150 mM KCl, 5 mMMgCl2, 4 mM EGTA [pH 7.4]),

and membranes were prepared by dispersing 1 volume of cells in 24 ml ice-

cold lysis buffer (10 mM Tris-HCl, 1 mM EGTA [pH 7.4]). After 10 min of incu-

bation on ice, membranes were collected at 22,000 3 g/10 min. Red cell

membranes were resealed by gently resuspending the pellet in 20 volumes

of KCl medium followed by a 1 hr incubation at 37�C. The resulting ghosts

were collected by centrifugation at 22,000 3 g/20 min, resuspended in KCl

medium, and placed on ice until use.
D-Glucose Uptake in Erythrocyte Ghosts

All samples were done in duplicate and at ice temperature. Ghosts were

diluted in KCl medium to 0.4 mg/ml, treated with small molecules and

exposed to D-glucose (100 mM + 10 mCi/ml). Initial rates of glucose uptake

were measured after 30 s of incubation, where uptake was linear with time

and did not exceed 17% of equilibrium uptake assessed by exposing

membranes to sugar for 1 hr at room temperature. Then, 10 volumes (rela-

tive to assay volume) of stopper solution (KCl medium containing 10 mM

cytochalasin B and 100 mM phloretin) were added to the assay mixture fol-

lowed by centrifugation at 14,000 g/1 min and a second wash. Membranes

were dissolved in 0.5 ml 0.1 N NaOH, mixed with 5 ml Optophase Supermix

scintillation liquid and counted using an LS-6000IC scintillation counter

(Beckman Coulter). Nonspecific uptake assessed by treatment of

membranes with 10 mM cytochalasin B did not exceed 6% of uptake in

vehicle treated membranes and was excluded from all samples. Uptake

was calculated as previously described (Helgerson et al., 1989). Initial

velocity of D-glucose uptake in ghosts treated with vehicle control was

0.028 mM/min.
Kinetics of D-Glucose Uptake in Erythrocyte Ghosts

Sealed membranes were treated with small molecules and exposed to vari-

able concentrations of D-glucose (0.0625 O 1000 mM plus 10 mCi/ml). Initial

rates of glucose uptake were measured as described above over intervals of

30–120 s where uptake did not exceed 18% of equilibrium uptake. Michae-

lis-Menten parameters were estimated by nonlinear curve fitting (Prism soft-

ware). Kinetic constants were calculated using a single concentration of

inhibitor.
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