

A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

Accepted Article

- Title: Tuning Cu/Cu2O Interfaces for Reduction of Carbon Dioxide to Methanol in Aqueous Solutions
- Authors: Jinlong Gong, Xiaoxia Chang, Tuo Wang, Zhijian Zhao, Piaoping Yang, Jeffrey Greeley, Rentao Mu, Gong Zhang, Zhongmiao Gong, Zhibin Luo, Jun Chen, Yi Cui, and Geoffrey Ozin

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201805256 Angew. Chem. 10.1002/ange.201805256

Link to VoR: http://dx.doi.org/10.1002/anie.201805256 http://dx.doi.org/10.1002/ange.201805256

WILEY-VCH

Tuning Cu/Cu₂O Interfaces for Reduction of Carbon Dioxide to Methanol in Aqueous Solutions

Xiaoxia Chang⁺, Tuo Wang⁺, Zhi-Jian Zhao, Piaoping Yang, Jeffrey Greeley, Rentao Mu, Gong Zhang, Zhongmiao Gong, Zhibin Luo, Jun Chen, Yi Cui, Geoffrey A. Ozin, and Jinlong Gong^{*}

Abstract: Artificial photosynthesis can store solar energy and reduce CO2 into fuels to potentially alleviate global warming and energy crisis. Compared to gas products, it remains a grand challenge to tune the product distribution of artificial photosynthesis to liquid fuels, such as CH₃OH, that are suitable for storage and transport. This paper describes the introduction of metallic Cu nanoparticles (NPs) on Cu₂O films to change the product distribution from gas products on bare Cu₂O to predominant CH₃OH via CO₂ reduction in aqueous solutions. The specifically designed Cu/Cu₂O interfaces could balance the binding strengths of H^{*} and CO^{*} intermediates, which plays critical roles in CH₃OH production. With TiO₂ model photoanode to construct a photoelectrochemical cell, Cu/Cu₂O dark cathode exhibited a Faradaic efficiency up to 53.6% for CH₃OH production. This work demonstrates the feasibility and mechanism of interface engineering to enhance the CH₃OH production from CO₂ reduction in aqueous electrolytes.

Solar power is a clean, renewable and abundant energy source, which can be utilized to reduce CO₂ into fuels and chemicals.^[1] However, the reduction of CO₂ with H₂O is confronted with fierce competition from the H₂ evolution reaction (HER), together with a wide product distribution due to many possible reaction pathways.^[2] Liquid products of CO₂ reduction, such as CH₃OH, are more suitable for storage and transport as fuels or chemical feedstocks. The utilization of CH₃OH could become very important in the development of a sustainable society.^[3] Unfortunately, the involved six-proton-coupled six-electron-transfer processes make it much more difficult to produce CH₃OH than the two-electron-reduced products of CO/HCOOH. Although Bocarsly and co-workers have achieved

[*]	Dr. X. Chang, Dr. T. Wang, Dr. Z. Zhao, P. Yang, Dr. R. Mu, G.
	Zhang, Z. Luo, Prof. Dr. J. Gong
	Key Laboratory for Green Chemical Technology of Ministry of
	Education, School of Chemical Engineering and Technology, Tianjin
	University; Collaborative Innovation Center of Chemical Science and
	Engineering, Tianjin 300072, China
	E-mail: <u>jlgong@tju.edu.cn</u>
	Prof. Dr. J. Greeley
	Davidson School of Chemical Engineering, Purdue University, West
	Lafayette, Indiana 47907, United States
	Z. Gong, Dr. Y. Cui
	Vacuum Interconnected Nanotech Workstation, Suzhou Institute of
	Nano-Tech and Nano-Bionics, Chinese Academy of Sciences,
	Suzhou 215123, China
	Dr. J. Chen
	Department of Materials Science and Engineering, Stanford
	University, Stanford, California 94305, United States
	Prof. Dr. G. Ozin
	Department of Chemistry, University of Toronto, Toronto, Canada
	Dr. X. Chang, and Dr. T. Wang contributed equally to the creation of
	this work.
	Supporting information for this article is given via a link at the end of
	the document.

CH₃OH production with nearly unity FE via CO₂ reduction in pyridine,^[3a] selectively targeting CH₃OH at a high yield in aqueous solutions is still a grand challenge. Rajeshwar and co-workers have reported CH₃OH production at a FE of ~95% over CuO-Cu₂O arrays in aqueous solution, which is speculated from the current-potential curves.^[4] Wei et al. have performed the CH₃OH generation with a FE of 88% over CdSeTe/TiO₂ electrode, which however omits the detection of gas products.^[5]

Many recent studies on CO₂ reduction and related reactions have primarily focused on designing copper-based materials owing to their low toxicity, high abundance, unique catalytic activity and good stability. Systematic investigations have been performed to reveal the active sites and Cu-oxide interfacial interaction over Cu-based industrial and electrochemical CO2 hydrogenation catalysts.^[6] In our previous work, a CO₂ reduction system containing Cu₂O dark cathode was demonstrated to continuously suppress HER and enhance the generation of gaseous CO and CH₄ products in CO₂ reduction for up to 6 h reaction.^[7] However, the generation of CH₃OH was limited since this process requires an appropriate binding strength of CO* intermediate and sufficient surface adsorbed hydrogen (H*) rather than protons in the solution for the further reduction and hydrogenation of CO^{*,[8]} Although Cu(I) species were proposed to be the active sites for selective CH₃OH generation by some previous studies on Cu₂O NPs,^[9] there is no catalytic system developed yet to successfully manipulate the binding strengths of H^{*} and CO^{*} as the descriptors to optimize CH₃OH production in CO₂ reduction. Therefore, Cu₂O is taken as a model cathode, on which the binding strengths of H^{*} and CO^{*} are too weak and too strong, respectively (see DFT and experimental results shown below), to optimize these two descriptors for the selective production of CH₃OH. In this study, metallic Cu NPs were introduced onto Cu₂O films to obtain an explicitly defined structure of Cu/Cu₂O interface for enhanced H^{*} binding and reduced CO* binding, resulting in an increased FE up to 53.6% for CH₃OH generation via aqueous CO₂ reduction in conjunction with a TiO₂ photoanode in photoelectrochemical (PEC) cell, which is among the highest FE ever reported in aqueous solutions over non-noble catalysts.^[9] Through thermodynamic and kinetic analysis on CH₃OH production over Cu/Cu₂O films with different Cu amounts, Cu/Cu₂O interface is demonstrated to be the dominant factor in CH₃OH production since the interfacial sites play critical roles in catalysis.[6c, 10]

In order to investigate the properties of Cu/Cu₂O interface individually, Cu₂O model cathode with a film thickness of ~1 μ m is electrodeposited on Cu substrate and exhibits a smooth surface with a predominant (111) orientation (Figure S1 and S2a).^[11] X-ray photoelectron spectroscopy (XPS) of Cu₂O film reveals the absence of Cu²⁺ peaks, indicating that the obtained

Figure 1. (a) Schematic, (b-f) TEM images and (g-k) HRTEM images of Cu NPs/Cu₂O film. The particle sizes of Cu NPs were determined via averaging at least 50 particles.

electrodes were not oxidized in air (Figure S2b). Cu NPs were loaded onto Cu₂O film using e-beam evaporation, employing a quartz crystal microbalance (QCM) to monitor the loading amount. Five samples denoted as E1-E5 with different Cu loading amounts were selected to investigate the interfacial effects. The nucleation of Cu on Cu₂O surface followed an island growth mechanism, $^{\left[12\right] }$ resulting in the formation of Cu NPs with a predominant (111) orientation (Figure 1). The average particle diameters of Cu are 1.5 \pm 0.1, 3.4 \pm 0.2, 5.4 \pm 0.4, 7.1 \pm 0.5 and 8.6 ± 0.5 nm for E1-E5, respectively, as evidenced by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images in Figure 1 (size distribution in Figure S3). TiO₂ nanorod (NR) model photoanode was obtained by a facile hydrothermal method to construct a PEC cell with Cu/Cu₂O cathode for CO₂ reduction. In addition, bare metallic Cu NPs were deposited on inert glassy carbon electrode (GCE) with the same loading amount as E2 for comparison.

The CO₂ reduction reactions were conducted in CO₂saturated 0.1 M KHCO3 (pH 6.9) in a Nafion-separated twocompartment cell using a typical three-electrode configuration with TiO₂ NRs as the working electrode (WE) under illumination and external bias, saturated Ag/AgCl as reference electrode (RE), and Cu NPs, Cu₂O film and Cu/Cu₂O films as counter electrodes (CE) in darkness (dark cathodes), respectively (Figure S4). TiO₂ photoanode with a high photovoltage under air mass 1.5 global (AM 1.5G) plays a critical role in improving the stability of Cu₂O, attributing to the highly energetic electrons and large potential exerted on cathode for preferential CO2 reduction as well as the moderate current density that inhibits corrosion, which could not be achieved through electrocatalysis over Cu₂O (Figure S5 and S6).^[7, 13] Thus, TiO₂ is a suitable photoanode to maintain the stability of Cu₂O cathodes and to investigate their surface catalytic properties. To facilitate the comparison with previous studies, all the CO₂ reduction reactions were conducted by applying 100 mW cm⁻² AM 1.5G and a constant external bias of 0.75 V vs. the reversible hydrogen electrode (RHE) on TiO₂ WE. The potential on Cu₂O dark cathode and the average current density in the circuit were measured to be about -0.7 V vs. RHE and 1.3 mA cm⁻², respectively, during the reaction under these conditions (Figure S6a). In contrast to the Cu/GCE and Cu₂O film dark cathodes with gaseous H₂/CO/CH₄ as main products (Figure 2a and b), Cu/Cu₂O films exhibit a great enhancement for CH₃OH generation (Figure 2c, d and S7), which is ascribed to the interface between Cu NPs and Cu₂O film. With increasing Cu NPs loading amount and particle size, CH₃OH evolution shows a volcano-like trend and E2 exhibits the maximum CH₃OH production with a FE of 53.6%, which is among the highest for CO₂ reduction in aqueous solutions (Figure 2e, Table S1 and S2). It is worthy to note that the size range of deposited Cu NPs in this work (1.5~8.6 nm) could rule out the size effect on product selectivity according to previous studies on CO₂ reduction over Cu NPs with different sizes.^[14]

Figure 2. (a, b, c and d) The product amounts normalized to the geometric area of GCE or Cu₂O electrodes as a function of reaction time using TiO₂ NRs as WE, saturated Ag/AgCl as RE, bare Cu NPs, Cu₂O film, E1 and E2 as CE, respectively. (e) The dependence of FE on the Cu NP size. (f) The dependence of CH₃OH generation amount on the Cu/Cu₂O interfacial length.

To quantify the interface between Cu NPs and Cu₂O film, the Cu NPs were treated as spheres with half inserted into Cu_2O

surface, which is a reasonable simplification according to TEM and HRTEM images (Figure 1). Therefore, the Cu NP numbers and Cu/Cu2O interfacial lengths could be estimated based on loading mass and particle size (Table S3), which decrease gradually with increasing Cu particle size (from E1 to E5). With a minor Cu loading amount on E1, the Cu NPs are featured by very small sizes with a high density, thus nearly covering all the Cu₂O surface (as estimated in Table S3 and Figure S8), which is consistent with the growth mechanism of glancing angle deposition^[12] and leads to insufficient exposure of Cu₂O and Cu/Cu₂O interface. Thus, CO₂ reduction occurred predominantly on the surface of metallic Cu, resulting in a similar performance to the Cu/GCE electrode and yielding a large amount of H₂. With increasing Cu loading amount (E2-E5), the adjacent small Cu NPs would aggregate to form larger ones and the Cu/Cu₂O interface could be exposed.^[15] It can be seen that the CH₃OH evolution amounts show an approximate linear relationship with the lengths of Cu/Cu₂O interface (Figure 2f), strongly suggesting that most CH₃OH come from the interfacial sites. In addition, the TEM and SEM images of E2 after the reaction indicate the good maintenance of surface structure (Figure S9).

Figure 3. (a, b) The Cu LMM Auger spectra for Cu₂O and Cu/Cu₂O under various conditions. (c) FTIR spectra of CO^{*} adsorbed on Cu₂O and Cu/Cu₂O. (d) The calculated free energies of H^{*} and CO^{*} after entropy correction on different sites. Insets are models of Cu₂O(111), Cu(111) and the interface.

Furthermore, ambient pressure XPS (APXPS), Fourier transform infrared spectroscopy (FTIR) in the reflection mode, and DFT calculations were applied to investigate the H^{*} and CO^{*} adsorption properties, which play critical roles in CH₃OH production, on Cu, Cu₂O and Cu/Cu₂O interface (Figure 3). Prior to the measurements of APXPS, the samples were annealed at 600 K in ultrahigh vacuum (UHV) to remove surface impurities. With increasing annealing temperature, the peak of hydroxyl, formed by adsorbing H^{*} on O atoms in Cu₂O,^[16] at 531.4 eV decreases gradually. The Cu/Cu₂O sample exhibits a much slower decrease of hydroxyl signal, indicating its stronger H^{*} binding strength compared to the Cu₂O sample (Figure S10a). After cooling down in UHV, H₂ was introduced and surface

adsorbed H^{*} was formed to reduce Cu⁺ into Cu⁰. Compared to bare Cu₂O (Figure 3a), Cu/Cu₂O (Figure 3b) exhibits a much more prominent generation rate of Cu⁰ peak (918.4 eV)^[17] at 1 mbar H₂ as the temperature rises from 300 K to 490 K, which is visualized by the larger slope for the increase of Cu⁰/Cu⁺ peak area ratio (Figure S11a).

In addition, H₂ temperature-programmed desorption (TPD) results also indicate stronger H* binding on Cu/Cu₂O (Figure S10b). Furthermore, with increasing temperature from 313 K to 353 K, the peak of adsorbed CO^{*} on Cu₂O (2117.8 cm⁻¹)^[18] in FTIR decreases much more slowly than that on Cu/Cu₂O, indicating the much stronger CO^{*} binding on Cu₂O^[19] and the reduced CO^{*} binding strength on Cu/Cu₂O (Figure 3c and S11b). DFT calculations (Figure 3d) provide further evidence of the extremely weak and strong adsorption of H* and CO*, respectively, on Cu₂O. In contrast, Cu/Cu₂O interface exhibits enhanced H* adsorption and reduced CO* adsorption, both of which are favorable to CH₃OH production. At microscopic level, a simple qualitative explanation for the stronger H* adsorption and weaker CO^{*} adsorption is that the Cu/Cu₂O interface offers appropriate adsorption sites. Specifically, H* can not only bind to Cu₂O but also bind to metallic Cu, leading to a more stable adsorption. On the other hand, CO* binding is much stronger on Cu₂O due to the coordinatively unsaturated Cu atoms. However, according to the Bader charge analysis (Table S4), the positive charge of coordinatively unsaturated Cu at the Cu/Cu2O interface becomes less positive by 0.12 e compared to that on Cu₂O, leading to a weaker CO^{*} adsorption at the interfacial site.

Figure 4. (a) The schematic reaction mechanism of CO₂^{*} reduction to CH₃OH^{*} on the surface of Cu/Cu₂O. (b) Energy profile from DFT calculations for CO₂ reduction to CH₃OH on different sites at 0 V vs. RHE. (c) Tafel curves of CH₃OH production for samples E2-E5 measured by using them as WE, Pt as CE and saturated Ag/AgCl as RE. (d) The relationship between $\theta_{\rm H}$ and Cu/Cu₂O interfacial length. (e) The logarithm of CH₃OH partial current as a function of In $\theta_{\rm H}$.

mechanism was investigated through The reaction thermodynamic and kinetic studies based on DFT calculations and Tafel analysis. The Cu(111) and Cu₂O(111) were chosen as the model surfaces for DFT calculations according to the measured lattice spacing values in HRTEM images (Figure 1 and S1) and the fact that $Cu_2O(111)$ is the most thermodynamically stable facet of Cu₂O with the lowest surface energy.^[20] Furthermore, the lowest free energy pathway for CO₂ reduction to CH₃OH at 0 V vs. RHE can be concluded based on our calculated adsorption energies of various intermediates on the three reaction sites (Figure 4a, b and S12; Table S5 and S6). The formation of key intermediate CHO^{*} (step 3 in Figure 4a) is a potential-limiting step in thermodynamics for CH₃OH generation over all the reaction sites due to its largest uphill change in free energy (ΔG >0).^[8d, 21] Cu/Cu₂O interface exhibits the lowest ΔG for step 3, suggesting that the interface is more beneficial for CHO^{*} formation.

In addition to thermodynamics, kinetic studies were also conducted based on Tafel analysis (details in Supplemental Information). The samples E2-E5 possess Tafel slopes of 66, 57, 51 and 48 mV dec⁻¹, respectively, for CH₃OH production (Figure 4c), which are very close to 59 mV dec⁻¹ and suggest a reduction mechanism involving a fast initial single electron reduction of CO2 and a subsequent slower hydrogenation process as the rate-determining step.^[22] It has been widely accepted that CO^{*} is the key intermediate in CO₂ reduction and the precursor for hydrocarbon generation on copper based catalysts, which indicates that the product distribution is determined by the subsequent hydrogenation process of CO*. Therefore, in order to conveniently investigate the rate-limiting step for CH₃OH generation, it is proposed that CO^{*} molecules initially adsorbed on the surface of catalysts, followed by subsequent reduction steps into CH₃OH (marked with red in Figure 4a). Since the first hydrogenation of CO^{*} (step 3 in Figure 4a) has an uphill ΔG and may be the rate-limiting step (Figure 4b), the CH₃OH partial current can be described as follows with the other reactions in equilibrium.

$$i = n F k_3 \theta_{\rm CO} \theta_{\rm H} = \frac{n F k_3 K_2 P_{\rm CO} \theta_{\rm H}^2}{K_1 [\rm H^+] \exp(\frac{-EF}{RT})}$$
(1)

where *i* is the partial current of CH₃OH, $\theta_{\rm H}$ is the surface coverage of H^{*} and *E* is the applied potential. Meanwhile, combining Nernst equation and the definition of Tafel slope, the expression of Tafel slope can be described as equation 2.

Tafel slope =
$$-\frac{2.3}{\frac{\partial \ln i}{\partial E}} = \frac{2.3RT}{2F(1-2\theta_{\rm H})}$$
 (2)

Therefore, the surface coverages of H^{*} for E2-E5 are estimated to be 0.27, 0.23, 0.21 and 0.19, respectively, according to the experimental results of Tafel slopes in Figure 4c (results summarized in Table S7). It can be seen that $\theta_{\rm H}$ shows an approximate linear relationship with Cu/Cu₂O interfacial length (Figure 4d) but no specific relationship with the total surface area of Cu NPs (Figure S13), indicating that almost all

the H^* species for CH₃OH generation are adsorbed on interfacial sites. In addition, equation 1 can also be described as:

$$\ln i = 2\ln\theta_{\rm H} + \ln\frac{nFk_3K_2P_{\rm CO}}{K_1} - \ln[{\rm H}^+] + \frac{EF}{RT}$$
(3)

which indicates the theoretical two-order dependence between $\ln i$ and $\ln \theta_{\rm H}$. On the other hand, the relationship between $\ln i$ and $\ln \theta_{\rm H}$ can be established through the experimental results of CO₂ reduction in PEC cell (Figure 2 and S7; Table S1) and Tafel slope measurements (Figure 4c). The linear fitted line obtained from experimental results shows a slope of 2.2 (Figure 4e), which is very close to the theoretical value of 2 in equation 3. Therefore, both the theoretical analysis and experimental results confirm that the first hydrogenation of CO⁺ is indeed the rate-limiting step for all the samples and Cu/Cu₂O interface plays a critical role in the binding of H⁺ and the production of CH₃OH.

In summary, a common challenge exists in CO₂ reduction in aqueous solutions, namely the competition between proton reduction and surface adsorbed H* reduction, where the latter largely determines the CH₃OH generation. Meanwhile, the binding strength of CO^{*} intermediates needs to be controlled to an appropriate level to facilitate the subsequent hydrogenation process. In this work, an electrode with structurally tunable Cu/Cu₂O interface is constructed for the enhanced H^{*} binding and reduced CO^{*} binding compared to the original Cu₂O surface, which effectively tunes the product distribution and increases the production of CH₃OH to a high FE of 53.6%. This work will provide new insights into controlling the product distribution of CO₂ reduction and develop a new method for high-efficiency, low-cost and stable CH₃OH generation. If Cu NPs could be selectively deposited onto the edge sites of Cu₂O film, more reactive Cu/Cu₂O interfacial sites might be generated to further boost the production of CH₃OH, which calls for more future investigations.

Acknowledgements

We acknowledge the National Key R&D Program of China (2016YFB0600901), the National Natural Science Foundation of China (21525626, U1463205, U1662111, 21722608, 51861125104), and the Program of Introducing Talents of Discipline to Universities (B06006) for financial support.

Keywords: Artificial photosynthesis • CO₂ reduction • Liquid fuels • CH₃OH production • Cu/Cu₂O interface

- J. L. White, M. F. Baruch, J. E. Pander Iii, Y. Hu, I. C. Fortmeyer, J. E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T. W. Shaw, E. Abelev, A. B. Bocarsly, *Chem. Rev.* 2015, *115*, 12888-12935.
- [2] a) X. Chang, T. Wang, J. Gong, *Energy Environ. Sci.* **2016**, *9*, 2177-2196; b) S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed. **2013**, *52*, 7372-7408; *Angew. Chem.* **2013**, *125*, 7516-7557.
- [3] a) E. E. Barton, D. M. Rampulla, A. B. Bocarsly, J. Am. Chem. Soc. 2008, 130, 6342-6344; b) M. Behrens, F. Studt, I. Kasatkin, S. Kuhl, M. Havecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B. L. Kniep, M. Tovar, R. W. Fischer, J. K. Norskov, R. Schlogl, Science 2012, 336, 893-897.

- [4] G. Ghadimkhani, N. R. de Tacconi, W. Chanmanee, C. Janaky, K.
- Rajeshwar, *Chem. Commun.* **2013**, *49*, 1297-1299. W. Wei, Z. Yang, W. Song, F. Hu, B. Luan, P. Li, H. Yin, *J. Colloid. Interf. Sci.* **2017**, *49*6, 327-333. [5]
- M. Schreier, F. Héroguel, L. Steier, S. Ahmad, J. S. Luterbacher, M.
 T. Mayer, J. Luo, M. Grätzel, *Nat. Energy* 2017, *2*, 17087; b) A.
 Marimuthu, J. Zhang, S. Linic, *Science* 2013, *339*, 1590-1593; c) J. [6] Marimutru, J. Zhang, S. Linic, Science 2013, 339, 1590-1593; c) J.
 Graciani, K. Mudiyanselage, F. Xu, A. E. Baber, J. Evans, S. D.
 Senanayake, D. J. Stacchiola, P. Liu, J. Hrbek, J. F. Sanz, J. A.
 Rodriguez, Science 2014, 345, 546-550.
 X. Chang, T. Wang, P. Zhang, Y. Wei, J. Zhao, J. Gong, Angew. Chem.
 Int. Ed. 2016, 55, 8840-8845; Angew. Chem. 2016, 128, 8986-8991.
 a) Q. Fu, W. X. Li, Y. Yao, H. Liu, H. Y. Su, D. Ma, X. K. Gu, L. Chen, Z.
 Wang H. Zhang, Wang, V. Dan, Y. K. Gu, L. Chen, Z.
- [7]
- [8] Wang, H. Zhang, B. Wang, X. Bao, Science 2010, 328, 1141-1144; b) Z. Wang, H. Zhang, B. Wang, X. Bao, Science 2010, 328, 1141-1144, 5) Z.
 W. Ulissi, M. T. Tang, J. Xiao, X. Liu, D. A. Torelli, M. Karamad, K. Cummins, C. Hahn, N. S. Lewis, T. F. Jaramillo, K. Chan, J. K. Nørskov, ACS Catal. 2017, 7, 6600-6608; c) T. Cheng, H. Xiao, W. A. Goddard, III, J. Phys. Chem. Lett. 2015, 6, 4767-4773; d) X. Nie, W. Luo, M. J. Janik, A. Asthagiri, J. Catal. 2014, 312, 108-122.
 a) J. Albo, A. Sáez, J. Solla-Gullón, V. Montiel, A. Irabien, Appl. Catal. 2014, 217, 476-477.
- [9] B 2015, 176-177, 709-717; b) M. Le, M. Ren, Z. Zhang, P. T. Sprunger, R. L. Kurtz, J. C. Flake, J. Electrochem. Soc. 2011, 158, E45.
- a) S. Kattel, P. Liu, J. G. Chen, *J. Am. Chem. Soc.* **2017**, *139*, 9739-9754; b) X. Zhou, R. Liu, K. Sun, D. Friedrich, M. T. McDowell, F. Yang, [10] S. T. Omelchenko, F. H. Saadi, A. C. Nielander, S. Yalamanchili, K. M.

- Papadantonakis, B. S. Brunschwig, N. S. Lewis, Energy Environ. Sci. 2015, 8, 2644-2649
- T. Wang, Y. Wei, X. Chang, C. Li, A. Li, S. Liu, J. Zhang, J. Gong, Appl. [11] Catal. B 2018, 226, 31-37.
- M. M. Hawkeye, M. J. Brett, J. Vac. Sci. Technol. A 2007, 25, 1317. [12]
- P. Yang, Z. J. Zhao, X. Chang, S. Zha, G. Zhang, R. Mu, J. Gong, *Angew. Chem. Int. Ed.* **2018**, DOI:10.1002/anie.201801463. [13]
- R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, P. Strasser, J. Am. Chem. Soc. 2014, 136, 6978-6986. [14]
- N. T. Hahn, H. Ye, D. W. Flaherty, A. J. Bard, C. B. Mullins, ACS Nano 2010, 4, 1977-1986. [15]
- J. Kunze, V. Maurice, L. H. Klein, H.-H. Strehblow, P. Marcus, J. Phys. [16] Chem. B 2001, 105, 4263-4269.
- S. Lee, D. Kim, J. Lee, Angew. Chem. Int. Ed. 2015, 54, 14701-14705; [17] Angew. Chem. 2015, 127, 14914-14918.
- [18] D. Scarano, S. Bordiga, C. Lamberti, G. Spoto, G. Ricchiardi, A. Zecchina, C. Otero Areán, Surf. Sci. 1998, 411, 272-285.
- B. Eren, C. Heine, H. Bluhm, G. A. Somorjai, M. Salmeron, J. Am. Chem. Soc. 2015, 137, 11186-11190.
 Z. Zheng, B. Huang, Z. Wang, M. Guo, X. Qin, X. Zhang, P. Wang, Y. Dai, J. Phys. Chem. C 2009, 113, 14448-14453.
 A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J. K. [19]
- [20]
- [21]
- Nørskov, Energy Environ. Sci. 2010, 3, 1311-1315. L. Zhang, Z. J. Zhao, J. Gong, Angew. Chem. Int. Ed. 2017, 56, 11326-11353; Angew. Chem. 2017, 129, 11482-11511. [22]

WILEY-VCH

COMMUNICATION

Table of Contents

COMMUNICATION

This communication describes how the Cu/Cu₂O interface balances the binding strength of H^{*} and CO^{*} intermediates for photoelectrochemical reduction of CO₂, leading to a CH₃OH Faradaic efficiency (FE) of 53.6% in aqueous conditions.

CH₂OH FE: 53.6% Balanced binding Cu/Cu₂O interface Cu₂O film Xiaoxia Chang⁺, Tuo Wang⁺, Zhi-Jian Zhao, Piaoping Yang, Jeffrey Greeley, Rentao Mu, Gong Zhang, Zhongmiao Gong, Zhibin Luo, Jun Chen, Yi Cui, Geoffrey A. Ozin, and Jinlong Gong^{*}

Page No. – Page No.

Tuning Cu/Cu₂O Interfaces for Reduction of Carbon Dioxide to Methanol in Aqueous Solutions

