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ABSTRACT  The palladium catalyzed annulation of 1-bromo-2-vinylbenzene derivatives with internal alkynes was realized for the efficient synthesis of
substituted naphthalenes. A controllable aryl to vinylic 1,4-palladium migration process is the key for success.   
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Introduction 
The naphthalene core exists extensively in natural products[1] 

and bioactive molecules.[2] Moreover, substituted naphthalenes 
have found wide application in optical and electronic materials.[3] 
As a result, the development of chemoselective and regioselective 
methods for their synthesis is of great importance. Owing to the 
scarcity of suitable source material and the difficulty in selectivity 
control, it is often unapproachable to synthesize a substituted 
naphthalene by electrophilic aromatic substitution. Intense 
research interest has been devoted to synthetic methods via 
benzannulation of properly functionalized arenes,[4] which include 
annulation via Fisher Carbenes,[5] Diels-Alder reactions,[6] 
transition-metal-mediated cyclizations,[7] ring rearrangement 
aromatizations,[8] and acid or base promoted cyclizations.[9] 

Scheme 1  Synthesis of naphthalene via benzannulation of (2-aryl)vinyl 
metal species and internal alkyne 

 
From the standpoint of retrosynthetic analysis, the 

naphthalene ring can be divided into a (2-aryl)vinyl metal moiety 
and an alkyne, which represents an obvious but modular synthetic 
strategy. Pioneered by the work of Sakakibara,[10a] the 
corresponding (2-aryl)vinyl metal species can be in situ generated 
via alkyne insertion and then react with a second alkyne to yield 
the desired naphthalenes. This kind of transformation represents 
one of the most concise synthetic methods, and now can be 
promoted by a variety of transition metals.[10] However, the 
resulting naphthalenes are restricted to the incorporation of two 

same alkynes. In the meanwhile, the (2-aryl)vinyl metal species 
originating from oxidative addition of a vinyl halide was also 
reported by the Larock group,[11] which is limited by the difficulty 
of accessing corresponding stereodefined vinyl halides, especially 
for acyclic ones. Therefore, developing a practical and versatile 
synthetic method by the introduction of a new generation mode 
of (2-aryl)vinyl metal species is attractive. 

1,4-Palladium migration is quite common in organometallic 
chemistry, which can be used to metalate a remote C-H bond, 
generating a new organometallic species that is difficult to acquire 
by other means.[12] Recently, an efficient aryl to vinylic 
1,4-palladium process was disclosed by our group.[13] We envision 
the generated vinylpalladium intermediate might couple with 
alkynes and provide a new method for the synthesis of 
substituted naphthalenes. 

Results and Discussion 
To test our hypothesis, we began our study by testing the 

annulation of alkene 1a and alkyne 2a in the presence of Pd(OAc)2 
and various ligands (Table 1). All the tested bis-phosphine ligands 
were competent to promote the planned reaction sequence. 
Interestingly, ligands bearing odd-numbered carbon chain gave 
higher reaction yields than those with even-numbered ones, 
which may be ascribed to a subtle conformation effect of ligand 
on the reaction. The importance of ligand conformation was also 
shown by the fact that DPEPhos (L6) gave 99% reaction yield 
(entry 6) while conformationally rigid Xantphos (L7) gave only 66% 
reaction yield (entry 7). Mono-phosphine ligand can also be used, 
but was less effective. A screening of solvent found CH2Cl2 as 
another optimal solvent (entry 12). Lowering the reaction 
temperature to 90 oC, resulted in no product formation (entry 17) 

With the optimized conditions in hand, the scope of alkenes 
was first explored (Table 2). High reaction yields were observed 
when the position of phenyl ring A was installed by a variety of 
substituted phenyl groups (3aa-3ga), as well as naphthalenyl (3ha) 
and thienyl (3ia) groups. While the phenyl ring A was replaced by 
a methyl group, a substrate used recently in the coupling with 
alkyne for the preparation of tetracyclic compounds,[14] the 
desired naphthalene 3ja was still produced under our reaction 
conditions, albeit in reduced yield. An ester group was also 
compatible (3ka), which provides a useful handle for further 
derivatization. Introduction of either electron-donating or 
electron-withdrawing substituents to the C-5 position of phenyl 
ring B furnished the desired products in high yields (3ia-3pa). 
Replacing the phenyl ring B by a pyridyl group was also tolerated 
(3qa). As expected, a substrate bearing a C-4 methyl 
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substituented phenyl ring B generated two regio-isomers (3ra and 
3ra’) in a 1.2:1 ratio, which is in accordance with the proposed 
migration mechanism. 

Table 1  Optimization of reaction conditionsa 

 

 
 
entry ligand Temp./oC solvent yieldb /% 

1 L1 110 dioxane 57 

2 L2 110 dioxane 93 

3 L3 110 dioxane 82 

4 L4 110 dioxane 92 

5 L5 110 dioxane 85 

6 L6 110 dioxane 99 

7 L7 110 dioxane 66 

8 L8 110 dioxane 53 

9 L9 110 dioxane 36 

10 L10 110 dioxane 29 

11 L6 110 THF 64 

12 L6 110 CH2Cl2 99 

13 L6 110 toluene 34 

14 L6 110 MeCN 28 

15 L6 110 DMF 62 

16 L6 110 MeOH 26 

17 L6 90 dioxane nd 

18 L6 130 dioxane 95 
a Reaction condition: 1a (0.19 mmol, 1.0 equiv), 2a (0.19 mmol, 1.0 equiv), 
Pd(OAc)2 (0.05 equiv), ligand (0.1 equiv for L1-L7 and 0.2 equiv for L8-L10 ), 
CsOAc (2.0 equiv), solvent (1 mL). b Determined by 1H NMR spectroscopy 
using CH2Br2 as an internal standard. 

Next, the scope of alkynes was examined (Scheme 3). The 
coupling with various symmetrical, internal alkynes bearing two 
different aryl groups proceeded smoothly to afford 3ab-3af in 
good to excellent yields. While the reaction with two 
thienyl-substituted alkynes gave reduced reaction yield (3ag), only 
a trace amount of product was detected by GC-MS analysis with 
di-butyl substituted alkyne (3ah). Although the application of 
non-symmetrical alkynes usually brings a mixture of two 
regioisomers, it is possible to control the regioselectivity by 
applying alkynes with marked differences in the two substituents. 
For example, excellent regioselectivies were observed with 
1-phenyl-2-(trimethylsilyl) acetylene (>20:1) and methyl 
phenylpropiolate (14:1). The structure of the corresponding major 
isomers 3ak and 3al were determined by X-ray crystallographic 
structure analysis (Scheme 4),[15] which can be explained by the 
regioselectivity preference in the alkyne insertion step via an 
alkenylpalladium intermediate,[11,16] and was further confirmed by 
a control experiment with alkenyl bromide 4 as the coupling 
partner (eq 1). 

 

Scheme 2 Synthesis of naphthalene via benzannulation of (2-aryl)vinyl 
metal species and internal alkynea 
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a Reaction condition: 1 (0.30 mmol, 1.0 equiv), 2a (0.30 mmol, 1.0 equiv), 
Pd(OAc)2 (0.05 equiv), L6 (0.1 equiv), CsOAc (2.0 equiv), dioxane (1.5 mL). 
Yield refers to isolated product. b Isomer ratio was determined by 1H NMR 
analysis of the crude product. 

 
Two gram-scale reactions were carried out to demonstrate the 

practicability of the developed method, which offered the desired 
products in comparable reaction yields to those observed on 
small reaction scale (eqs 2 and 3). 

A possible mechanism was proposed based on the current 
experimental observations and previous reports,[13] in which 
alkene 3r was used as the model substrate to elucidate the 
regioselectivity in this reaction (Scheme 5). The reaction is 
initiated by the oxidative addition of starting substrate 3r, and is 
followed by a 1,4-palladium migration process, which may be 
promoted by the generation of less sterically encumbered 
vinylpalladium B. Insertion of internal alkyne produces 
intermediate C and undergoes a subsequent cyclization with the 
phenyl ring B from two different directions to afford 3ga and 3ga’, 
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