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Abstract New s-triazine derivatives 13a–h were

synthesized for the structure–activity relationship studies

as potent anticancer agents. The prepared analogues were

evaluated for their in vitro inhibitory activity against the

growth of PA-1 (Ovarian cancer), A549 (Lung cancer),

MCF-7 (Breast cancer), and HT-29 (Colon cancer).

Tri-substituted s-triazine derivatives (13e–h) with mor-

pholino group on s-triazine scaffold exhibited potent

anticancer activities compared to di-substituted s-triazine

derivatives. Compounds 13e–h also showed relatively

selective PA-1 and HT-29 cancer cell inhibition over other

cancer cell lines. Structure–activity relationships provided

useful insights in these classes of compounds and paved the

way to design novel analogues with more potency.

Keywords S-triazine derivatives � Anticancer activity �
Structure–activity relationships � Hit identification

Introduction

s-Triazine is a six-membered heterocyclic ring, with three

nitrogens situated at 1st, 3rd and 5th positions. Its analogues,

melamine, cyanuric acid and cyanuric chloride are important

starting compounds for various materials with wide range of

applications in textile, plastic, pharmaceuticals and rubber

industries. These compounds are also used as pesticides,

dyestuffs, optical bleaches, explosives and surface active

agents (Bartholomew, 1996; Comins and O’Connor, 1988;

Quirke, 1984; Smolin and Rapport, 1959). s-Triazine

compounds have been studied extensively and are the subject

of many reviews (Blotny, 2006; Giacomelli et al., 2004;

Sathiakumar et al., 2011; Therrien, 2010). This s-triazine

scaffold attracted many researchers, as its symmetrical

structure facilitates to synthesize diverse set of analogues

(ease of synthesis) such as 2, 4, 6-mono, di- or tri-substituted,

symmetrical and nonsymmetrical compounds bearing

different substituents and in particular, cyanuric chloride is the

most important one in this aspect (Blotny, 2006). The s-tri-

azine scaffold also provides the basis for the design of bio-

logically relevant molecules with widespread application as

therapeutics. For example, these compounds possess potent

antiprotozoal (Klenke et al., 2001), antimalarial (Manohar

et al., 2010; Melato et al., 2008), antiviral (Mahajan et al.,

2009; Maarouf et al., 2012; Xiong et al., 2008), anticancer

(Baindur et al., 2005; Leftheris et al., 2004; Manohar et al.,

2010; Moon et al., 2002; Sun et al., 2010; Zheng et al., 2007),

antimicrobial (Patel et al., 2012a, b, c; Raval et al., 2011;

Singh et al., 2011; Srinivas et al., 2005, 2006; Desai et al.,

2008), antituberculosis (Patel et al., 2012a; Sunduru et al.,

2010) etc. Recently, the s-triazine derivatives were extensively

investigated for anticancer activity with a particular target

to mTOR/PI3K pathway (Menear et al., 2009; Poulsen

et al., 2012; Tanneeru et al., 2012; Venkatesan et al., 2010;
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Verheijen et al., 2010; Zask et al., 2010; Zhang et al., 2011).

Some of the compounds possessing s-triazine scaffold reported

in the literature are presented in Fig. 1. Our continuous interest in

the field of bioactive heterocyclic compounds (Kumar et al.,

2010, 2011; Ravinder et al., 2012; Rao et al., 2011; Srinivas

et al., 2009), we have got interest in new s-triazine derivatives as

cancer therapeutics. In the context of identification of new

chemical entities (NCEs) for cancer therapy, we have selected

s-triazine as core scaffold as many reports indicate its signifi-

cance (Fig. 1) and structural modifications were made at three

positions (1st, 3rd and 5th positions) with various pharmaco-

phores. In this article, synthesis of new s-triazine derivatives is

presented. All the synthesized compounds were screened against

four cancer cell lines and discussed to develop the structure–

activity relationships (SAR) of this series. Among all, com-

pounds 13e–h exhibited potent inhibitory activity against

ovarian (PA-1) and colon (HT-29) cancer cell lines

Chemistry

4-(Benzo[d]oxazol-2-yl) aniline (3) was prepared from the

simple condensation of o-amino phenol (1) with p-amino

benzoic acid in the presence of polyphosphoric acid at

200 �C (Scheme 1) (Chua et al., 1999). Nucleophilic sub-

stitution of one of the chlorines of the cyanuric acid (4)

with substituted anilines (5–7 & 11) in the presence of

diisopropylehtylamine (DIPEA) yielded mono-substituted

triazine derivatives 8–10 & 12, respectively, in good yields

(mono substitution w.r.t. cyanuric chloride) and the syn-

thetic scheme is presented in Scheme 2 (Zheng et al.,

2007). Compounds 8–10 and 12 were reported in the lit-

erature (Hunter et al., 1994; McKay et al., 2006; Maga

et al., 2011). Synthesis of compounds 13a–d involves a

coupling reaction between mono-substituted s-triazine

derivatives (8–10 & 12) and one equivalent of compound 3

in the presence of K2CO3 (Scheme 3). Compounds 13e–

h were synthesized by the replacement of third chlorine

atom of di-substituted s-triazine derivatives (13a–d) in the

presence of K2CO3 (Scheme 4). All the intermediates and

final compounds were purified by column chromatography

and characterized by spectroscopic techniques.

Biology

The anticancer activities of all the synthesized compounds

were evaluated by MTT [3-(4, 5-dimethylthiazol-2-yl)-2,

5-diphenyl tetrazolium bromide] method using PA-1

(Ovarian cancer), A549 (Lung cancer), MCF-7 (Breast

cancer) and HT-29 (Colon cancer) cell lines. The effect of

compounds on the cell viability for each cell line after

exposure to different concentrations were depicted in the

Fig. 2 and their respective IC50 values are presented in

Table 1. Synthesized compounds can be classified into two

categories based on the presence of the chlorine atom and

morpholino group i.e. di-substituted s-triazine derivatives

(13a–d) and tri-substituted s-triazine derivatives (13e–h),

respectively. Among the two categories, tri-substituted

s-triazine derivatives were more active against in all tested

human cancer cell lines than di-substituted s-triazine

derivatives which suggest the key role of morpholino group

for activities. In case of PA-1 cell lines, among 13e–h,

compounds 13e–g are more potent and are equally potent

as Doxorubucin. This indicates the importance of substi-

tuted aniline groups on s-triazine compared to benzylamine

group. The activity difference in compounds 13e and 13h is

more than one magnitude (13e: 0.61 ± 0.16 lM and 13h:

10.5 ± 0.51 lM) and this attributes to bridge between
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compounds possessing

s-triazine scaffold
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s-triazine and substituted group i.e. –NH– and –NH–CH2–

groups, respectively. The di-substituted s-triazine deriva-

tives (13a–d) were inactive against A549 (lung cancer) cell

lines, whereas tri-substituted derivatives have exhibited

relatively better inhibitory activity. Among the compounds

13e–h, compound 13f is relatively potent with IC50 at

12.9 ± 2.43 lM and other compounds (13e, 13g–

h) exhibited twofolds less inhibitory activity. In case of

MCF-7 cell lines, compounds 13f and 13h are more potent

than reference compound, doxorubicin. Among the all

compounds in the series, 13h is most potent. Compounds

13e and 13g exhibited moderate anticancer activity against

MCF-7 cell lines. Compounds 13e–h exhibited potent

anticancer activity against HT-29 (Colon cancer) cell lines

(Fig. 1) and these are more potent than reference com-

pound, doxorubicin. Among the 13e–h, compound 13e–

g are more potent with IC50 of 0.27 ± 0.02, 0.14 ± 0.04

and 0.31 ± 0.15 lM, respectively and compound 13h is

relatively less potent with IC50 at 0.92 ± 0.51 lM

(Table 1). The disparity in magnitude of activity within

13e–h is due to the structural dissimilarity i.e. the presence

of anilino and substituted anilino groups in case of 13e–

g and the presence of benzylamino group in case of 13h. In

summary, compounds 13e–h exhibited selective cytotox-

icity in HT-29 & PA-1 when compared to other cell line

(A549 and MCF-7) and compound 13f is found to be most

potent in respective cell lines. Structure–activity relation-

ships (SAR) reveals that the presence of morpholino group,

substituted aniline groups along with benzoxazole moiety

on s-triazine ring are essential to exhibit potent anticancer

activity. Structural modifications on aniline group and

benzoxazole group can provide more insights and give

better hits/leads and focus of our future work is on struc-

tural modifications on these classes of compounds to
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improve the anticancer activity and on understanding of

this activity through mechanistic studies.

Conclusions

In conclusion, two series of s-triazine derivatives i.e. di-

substituted (13a–d) and tri-substituted derivatives (13e–

h) were synthesized as anticancer agents. All the synthe-

sized compounds were screened against four cancer cell

lines viz. PA-1 (Ovarian cancer), A549 (Lung cancer),

MCF-7 (Breast cancer) and HT-29 (Colon cancer). This

preliminary study demonstrated that tri-substituted deriva-

tives 13e–h exhibited potent anticancer activity over the di-

substituted derivatives. Among these derivatives, com-

pound 13f is the most potent in respective cell lines.

Structure–activity relationships in these classes of com-

pounds laid foundations to develop more potent com-

pounds as leads for cancer chemotherapy.

Experimental

Chemistry

Synthesis of 4-(benzo[d]oxazol-2-yl) aniline (3)

(Chua et al., 1999; Shi et al., 1996)

To a stirring solution of polyphosphoric acid (PPA; 85 g),

2-Aminothiophenol 1 (5.78 g, 0.053 mol), para amino

benzoic acid 2 (7.26 g, 0.053 mol) were added, heated at

220 �C for 4 h. After confirming the reaction completion

by TLC (Thin Layer Chromatography), it was cooled, and

poured into ice-cold 10 % aqueous sodium carbonate. The

solid product was collected, washed with water and

recrystallized with methanol water. Yield: 65 %; mp

180–183 �C; 1H NMR (CDCl3, 300 MHz): d 8.07–8.03 (d,

2H, J 8.3 Hz), 7.73–7.67 (m, 1H), 7.55–7.49 (m, 1H),

7.31–7.27 (m, 2H), 6.78–6.74 (d, 2H, J 9.0 Hz) and 4.05

(brs, 2H); ESI–MS: m/z 211 (M ? H).

Table 1 Chemical structures of compounds 13a–h and their inhibitory effects on the growth of tumour cell lines

N

N

N

R3

R1 R2

Comp-

ound

R1 R2 R3 IC50 (µM)

PA-1a A549b MCF-7c HT-29d

13a
NH HN

O

N Cl 169±2.78 225±5.64 55.2±3.21 32.6±2.65

13b
NHH3CO HN

O

N Cl 172±6.21 278±3.98 269.7±6.98 139±5.47

13c NHF HN
O

N Cl 186±3.21 254±6.21 68.4±3.41 47±2.54

13d NH
HN

O

N Cl 195±5.43 296±2.45 66.1±2.48 44±3.59

13e
NH HN

O

N

N

O 0.61±0.16 22.0±1.11 10.56±1.56 0.27±0.02

13f
NHH3CO HN

O

N

N

O 0.25±0.19 12.9±2.43 6.48±0.21 0.14±0.04

13g NHF HN
O

N

N

O 0.45±0.21 26.7±0.67 12.39±1.38 0.31±0.15

13h NH
HN

O

N

N

O 10.5±0.51 23.4± 1.70 2.46±0.15 0.92±0.51

Doxorubicin ((Reference compound) 0.64±0.13 1.88±0.56 10.9±1.76 1.76±0.23

a Ovarian cancer cells; b Lung cancer cells; c Breast cancer cells, d Colon cancer cells
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Fig. 2 Dose response of

compounds (13a–13h) against

a, b PA-1, c, d A549, e, f MCF-

7, g, h HT-29 cancer cell lines
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General procedure for synthesis of mono-substituted

cyanuric chloride derivatives (Zheng et al., 2007)

Compounds 8, 9, 10 and 12 were synthesized using cyan-

uric chloride 4 (10 g, 0.054 mol) in dichloromethane

(DCM), N,N- Di- isopropyl ethylamine (DIPEA). DIPEA

(9.26 ml, 0.054 mol) was added slowly drop wise to the

reaction mixture at -78 �C (maintained by using acetone

and dry ice) for 10 min then it was allowed to stir for

10 min. Aniline 5 (4.94 ml, 0.054 mol) or 4-methoxyani-

line 6 (6.66 g, 0.054 mol) or 4-fluoroaniline 7 (5.19 ml,

0.054 mol) or benzyl amine 11 (5.9 ml, 0.054 mol) were

added respectively and allowed to stir for 15 min. The

reaction was monitored by TLC. After completing the

reaction, the reaction mixture was filtered, washed with

water, extracted with chloroform, the organic layer was

dried over Na2SO4 and then concentrated to get the desired

mono-substituted s-triazines in excellent yield. Compounds

8–10 and 12 were reported in the literature (Hunter et al.,

1994; McKay et al., 2006; Maga et al., 2011).

General procedure for synthesis of di-substituted

s-triazines

Di-substituted cyanuric chloride derivatives (13a–d), were

synthesized using mono-substituted cyanuric chloride 8

(1 eq), 9 (1 eq), 10 (1 eq) and 12 (1 eq) in dry THF

(30 ml), K2CO3 (2 eq). The reaction mixture was allowed

to stir for 5 min then the benzoxazolephenylamine 3 (1 eq)

was added and refluxed for 24 h at 70–80 �C. After con-

firming the reaction completion by TLC, K2CO3 was

decanted and the THF was removed, water was added and

extracted with EtOAc. The organic layer was dried over

Na2SO4, concentrated and purified to give the desired di-

substituted s-triazines.

N2-(4-(benzo[d]oxazol-2-yl)phenyl)-6-chloro-N4-phenyl-1,3,5-

triazine-2,4-diamine (13a): Yield: 80 %; mp: 263–265 �C;

IR (KBr): 3,273, 3,109, 1,610, 1,585, 1,243 and 989 cm-1;
1H NMR (300 MHz, DMSO-d6): d 10.32 (brs, 1H), 10.03

(brs, 1H) 8.11 (m, 2H), 7.93 (m, 2H), 7.74–7.68 (m, 2H),

7.57 (m, 1H) and 7.32 (m, 4H); 13C NMR (75 MHz,

DMSO-d6): d 162.1, 150.1, 150.0, 142.0, 141.5, 128.8,

128.5, 127.8, 125.0, 124.7, 120.6, 120.4, 119.4, 110.8,

110.7; ESI–MS: m/z 415 [M ? H]?; HRMS (ESI) m/z

Calcd. for C22H16ClN6O [M ? H]? 415.8471, found

415.8342.

N2-(4-(benzo[d]oxazol-2-yl)phenyl)-6-chloro-N4-(4-methoxy-

phenyl)-1,3,5-triazine-2,4-diamine (13b): Yield: 82 %;

mp: 275–276 �C; IR (KBr): 3,278, 3,185, 2,835, 1,232 and

992 cm-1; 1H NMR (300 MHz, DMSO-d6): d 10.36 (brs,

1H), 10.00 (brs, 1H), 8.13–8.07 (m, 3H,), 7.90 (s, 1H),

7.70–7.55 (m, 4H), 7.5 (s, 1H), 7.35 (m, 2H), 6.90 (m, 2H)

and 3.82 (s, 3H); 13C NMR (75 MHz, CDCl3 ? DMSO-

d6): d 165.1, 164.3, 164.3, 155.0, 151.9, 142.3, 142.2,

133.3, 133.2, 127.1, 123.4, 122.2, 121.9, 119.8, 119.7,

113.8, 79.6, 79.3, 79.1, 78.7; ESI–MS: m/z 445 [M ? H]?;

HRMS (ESI) m/z Calcd. for C23H18ClN6O2 [M ? H]?

445.1102, found 445.1112.

N2-(4-(benzo[d]oxazol-2-yl)phenyl)-6-chloro-N4-(4-fluoro-

phenyl)-1,3,5-triazine-2,4-diamine (13c): Yield: 77 %;

mp: 268–269 �C; IR (KBr): 3,384, 3,111, 1,508, 1,242 and

995 cm-1; 1H NMR (300 MHz, DMSO-d6): d 9.42 (brs,

1H), 9.16 (brs, 1H), 8.18–8.12 (m, 4H), 7.69–7.67 (m, 2H),

7.59–7.57 (m, 1H), 7.32–7.29 (m, 3H), 7.05–7.01 (t, 2H,

J 8.5, 17.0 Hz); 13C NMR (75 MHz, CDCl3 ? DMSO-d6):

d 162.1, 160.5, 148.5, 140.1, 132.8, 126.0, 122.9, 122.6,

121.5, 119.2, 118.5, 117.6, 113.3, 108.6, 93.9; ESI–MS:

m/z 433 [M ? H]?; HRMS (ESI) m/z Calcd. for

C22H15ClFN6O [M ? H]? 433.8376, found 433.8362.

N2-(4-(benzo[d]oxazol-2-yl)phenyl)-N4-benzyl-6-chloro-1,3,5-

triazine-2,4-diamine (13d): Yield: 76 %; mp: 278-

279 �C; IR (KBr): 3,268, 3,111, 2,993, 1,240 and

987 cm-1; 1H NMR (75 MHz, CDCl3): d 8.30–8.26 (m,

1H), 8.22–8.17 (m, 2H), 7.78–7.74 (m, 3H), 7.58–7.56 (m,

1H), 7.40–7.39 (m, 2H), 7.37–7.31 (m, 4H), 6.05 (brs, 1H),

5.77 (brs, 1H) and 4.72–4.66 (t, 2H, J 5.2, 10.5 Hz); 13C

NMR (75 MHz, CDCl3 ? DMSO-d6): d 148.9, 140.9,

140.6, 126.9, 126.8, 126.4, 125.6, 125.5, 118.4, 118.3,

118.0, 117.9, 117.8, 109.1, 109.0; ESI–MS: m/z 429

[M ? H]?; HRMS (ESI) m/z Calcd. for C23H18ClN6O

[M ? H]? 429.8737, found 429.8725.

General procedure for synthesis of tri-substituted

s-triazines

Tri-substituted s-triazine derivatives (13e–h) were syn-

thesized from di-substituted cyanuric chloride derivatives

13a–d (1 eq) in dry DMF (20 ml), K2CO3 (2 eq). The

reaction mixture was allowed to stir for 5 min then mor-

pholine 14 (1 eq) was added and stirred for 24 h at 100 �C.

The reaction was monitored by TLC. After completion of

the reaction, the mixture was poured into ice-cold water,

extracted with ehtylacetate and dried over Na2SO4. Solvent

was evaporated and solid was purified to get desired

product in good yield.

N2-(4-(benzo[d]oxazol-2-yl)phenyl)-6-morpholino-N4-phe-

nyl-1,3,5-triazine-2,4-diamine (13e): Yield: 82 % mp:

259–260 �C; IR (KBr): 3,402, 3,299, 2,925–2,855 and

1,242 cm-1; 1H NMR (300 MHz, DMSO-d6): d 9.08 (brs,
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1H), 8.67 (brs, 1H), 8.14–8.11 (d, 2H, J 8.6 Hz), 7.98–7.96

(d, 2H, J 8.4 Hz), 7.72–7.70 (t, 3H, J 7.9, 5.3 Hz),

7.61–7.58 (t, 1H, J 7.1, 14.3 Hz), 7.35–7.27 (m, 4H),

7.03–6.98 (m, 1H), 3.84 (d, 4H, J 3.2 Hz), 3.75 (d, 4H,

J 3.3 Hz);); 13C NMR (75 MHz, CDCl3 ? DMSO-d6): d
164.5, 163.9, 163.9, 162.4, 150.0, 143.7, 141.6, 139.8,

128.3, 127.8, 124.8, 124.6, 122.1, 122.0, 119.5, 119.3,

118.9, 10.6, 65.9, 43.4; ESI–MS: m/z 466 [M ? H]?;

HRMS (ESI) m/z Calcd. for C26H24N7O2 [M ? H]?

466.5065, found 466.5023.

N2-(4-(benzo[d]oxazol-2-yl)phenyl)-N4-(4-methoxyphenyl)-6-

morpholino-1,3,5-triazine-2,4-diamine (13f): Yield: 80 %;

mp: 252–253 �C; IR (KBr): 3,400, 3,307, 2,963, 2,922,

2,855 and 1,227 cm-1; 1H NMR (300 MHz, DMSO-d6): d
9.52 (brs, 1H), 9.08 (brs, 1H), 8.04–7.99 (d, 2H, J 8.3 Hz),

7.97–7.92 (m, 2H), 7.72–7.66 (m, 2H), 7.53–7.50 (d, 2H,

J 8.3 Hz), 7.35–7.26 (m, 2H), 3.8 (m, 7H) and 3.7 (d, 4H,

J 4.5 Hz); 13C NMR (75 MHz, CDCl3 ? DMSO-d6): d
164.6, 163.8, 154.4, 151.4, 141.6, 132.6, 126.6, 122.8,

121.6, 121.3, 119.2, 113.3, 79.0, 78.8, 78.6, 78.1, 65.9,

54.9, 43.3; ESI–MS: m/z 496 [M ? H]?; HRMS (ESI) m/z

Calcd. for C27H26N7O3 [M ? H]? 496.2325, found

466.2091.

N2-(4-(benzo[d]oxazol-2-yl)phenyl)-N4-(4-fluorophenyl)-6-

morpholino-1,3,5-triazine-2,4-diamine (13g): Yield: 84 %;

mp: 246–247 �C; IR (KBr): 3,424, 3,297, 2,924–2,856,

1,508 and 1,243 cm-1; 1H NMR (75 MHz, DMSO-d6): d
8.22–8.19 (d, 2H, J 8.3 Hz), 7.75–7.72 (m, 3H), 7.58–55

(m, 1H), 7.53–7.48 (m, 2H), 7.37–7.31 (m, 2H), 7.08–7.02

(m, 3H), 6.99 (brs, 1H) 6.79 (brs, 1H) 3.84 (d, 4H,

J 4.5 Hz) and 3.76 (d, 4H, J 4.5 Hz);); 13C NMR

(300 MHz, CDCl3 ? DMSO-d6): d 164.6, 164.0, 163.9,

151.4, 143.8, 141.7, 139.8, 134.8, 128.3, 126.7, 123.2,

122.0, 121.9, 121.4, 120.1, 119.5. 118.3, 110.9, 6539, 43.3;

ESI–MS: m/z 484 [M ? H]?; HRMS (ESI) m/z Calcd. for

C26H23FN7O2 [M ? H]? 484.1970, found 484.1891.

N2-(4-(benzo[d]oxazol-2-yl)phenyl)-N4-benzyl-6-morpho-

lino-1,3,5-triazine-2,4-diamine (13h): Yield: 78 %; mp:

240–242 �C; IR (KBr): 3,403, 3,296, 2,924, 2,853 and

1,241 cm-1; 1H NMR (300 MHz, DMSO-d6): d 9.33–9.29

(brs, 2H), 8.19–8.16 (d, 2H, J 8.3 Hz), 7.71–7.68 (d, 2H,

J 8.3 Hz), 7.52–7.49 (d, 2H), 7.29–7.27 (m, 2H), 7.1 (m,

3H), 7.09–7.06 (m, 1H), 6.86 (s, 1H), 6.66–6.62 (d, 2H,

J 7.9 Hz), 3.78–3.76 (d, 4H, J 4.5 Hz), 3.72–3.70 (d, 4H,

J4.9 Hz) and 3.55 (s, 2H);); 13C NMR (75 MHz,

CDCl3 ? DMSO-d6): d 136.3, 163.1, 150.0, 138.6, 126.3,

125.6, 125.2, 125.0, 121.1, 119.9, 117.6, 117.5, 64.4, 42.0,

41.6; ESI–MS: m/z 480 [M ? H]?; HRMS (ESI) m/z

Calcd. for C27H26N7O2 [M ? H]? 480.5331, found

480.2103.

Biological evaluation

Materials

PA-1 (Ovarian cancer), A549 (Lung cancer) cell lines

MCF-7 (Breast cancer) and HT-29 (Colon cancer) cell line

were obtained from the National center for Cell science

(NCCS), Pune, India. MEM, DMEM, RPMI, MTT [3-(4, 5-

dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide],

Trypsin–EDTA were purchased from Sigma Chemicals Co

(st. Louis, MO), Fetal bovine serum were purchased from

Gibco, USA, 96-well flat bottom tissue culture plates were

purchased from Tarson.

Maintenance of cell lines

PA-1 (Ovarian cancer) A549 (Lung cancer) cell line were

grown as adherent in MEM medium, MCF-7 (Breast can-

cer) cell line was grown as adherent in DMEM medium

and HT-29 (Colon cancer) cell line was grown as adherent

in RPMI medium supplemented with 10 % fetal bovine

serum, 100 lg/ml penicillin, 200 lg/ml streptomycin,

2 mM L-glutamine, and culture was maintained in a

humidified atmosphere with 5 % CO2.

Preparation of samples for cytotoxicity

Stock solution for compounds 13a–13d of 30 mM and

compounds 13e–13f of 10 mM stock solution in DMSO

were prepared, from the above stock various dilutions were

made with sterile PBS to get required concentration.

Cytotoxicity screening using MTT assay

MTT [3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphenyl tetra-

zolium bromide] assay is a standard colourimetric assay for

measuring cellular proliferation. MTT is a tetrazolium salt,

which is yellow in colour and is photosensitive. MTT [3-(4,

5- dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bro-

mide] is taken by the living cells and reduced by a mito-

chondrial dehydrogenase enzyme to a purple formazan

product that is impermeable to the cell membrane. Solu-

bilisation with solvents like DMSO leads to liberation of

product and amount of purple formazan product is directly

related to the cell viability. 1 9 104 Cells (counted by

Trypan blue exclusion dye method)) in 96-well plates were

incubated with compounds and standard Cisplatin with

series of concentrations for 24 h at 37 �C in MEM with

10 % FBS medium. Then, the above media was replaced

with 90 ll of fresh serum free media and 10 ll of MTT

reagent (5 mg/ml) and plates were incubated at 37 �C for

4 h, there after the above media was replaced with 200 ll

of DMSO and incubated at 37 �C for 10 min. The
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absorbance at 570 nm was measured on a spectrophotom-

eter (spectra max, Molecular devices) IC50 values were

determined from plot: % cell viability (from control) versus

concentration.
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