Transition-Metal Complexes with Sulfur Ligands. 132.¹ Electron-Rich Fe and Ru Complexes with [MN₂S₃] Cores Containing the New Pentadentate Ligand 'N₂H₂S₃'²⁻ (= 2,2'-Bis(2-mercaptophenylamino)diethyl Sulfide(2-))

Dieter Sellmann,* Jürgen Utz, and Frank W. Heinemann

Institut für Anorganische Chemie, Universität Erlangen-Nürnberg, Egerlandstrasse 1, D-91058 Erlangen, Germany

Received April 3, 1998

The new pentadentate amine thioether thiolate ligand ${}^{\prime}N_2H_2S_3'-H_2$ (= 2,2'-bis(2-mercaptophenylamino)diethyl sulfide) (3) was synthesized in order to obtain iron and ruthenium complexes with high electron densities at the metal centers. The reaction of 'N₂H₂S₃'²⁻ with Fe²⁺ yielded the dinuclear high-spin complex [Fe('N₂H₂S₃')]₂ (5). Complex 5 added CO to give the low-spin complex [Fe(CO)('N₂H₂S₃')] (6) whose low frequency ν (CO) (1932) cm⁻¹) indicates a high electron density at the iron center and a strong Fe-CO bond. However, 6 is labile and readily dissociates CO in solution. Treatment of suitable ruthenium precursor complexes with 'N₂H₂S₃'²⁻ yielded $[Ru(CO)(PCv_3)(N_2H_2S_3')]$ (7), $[Ru(PPr_3)_2(N_2H_2S_3')]$ (8), $[Ru(PR_3)(N_2H_2S_3')]$ (R = Pr (9), Ph (10)), and $[Ru-Pr_3]_2(N_2H_2S_3')$ (NO)('N₂HS₃')] (13). In complexes 7 and 8, 'N₂H₂S₃'²⁻ acts as a tetradentate ligand. When heated in solution, complex 8 dissociates one PPr₃ ligand to give 9. Complex 13 contains the trisanionic 'N₂HS₃'³⁻ resulting from deprotonation of one amine NH function. All [Ru(L)('N₂H₂S₃')] complexes proved inert toward dissociation of the Ru-L bonds. The NH functions of $[M(L)(N_2H_2S_3)]$ complexes are acidic and show H^+/D^+ exchange reactions with D₂O. Methylation of the thiolate donors in 10 yielded the thioether derivative [Ru(PPh₃)('N₂H₂S₃'-Me₂)]I₂ (11) whose PPh₃ ligand is as inert to substitution as that of 10. Complex 11 can reversibly be deprotonated to give [Ru(PPh₃)('N₂HS₃'-Me₂)]I (12). NMR spectroscopic investigations showed that the deprotonation/protonation reactions of 11 and 12 are stereoselective. In contrast, protonation of 13 with HBF4 gives two diastereomers of the corresponding $[Ru(NO)(N_2H_2S_3)]BF_4$ salt (14). X-ray structure analyses of 5, 6, 9, and 11 and NMR spectra showed that the 'N₂H₂S₃'²⁻ ligand and its derivatives bind to the metal centers in the same fashion which combines fac and mer coordination of the donor atoms. The [MN₂S₃] cores of all complexes have an analogous C_1 symmetrical structure in which both the two N and the two terminal S donors assume cis positions.

Introduction

The metal oxidation state, the type and number of donor atoms, and the core structure are major factors determining structure—function relationships of metal complexes.² In the quest for complexes that model structural *and* functional features of the transition metal sulfur centers in enzymes such as nitrogenases, hydrogenases, and CO dehydrogenases, our interest focuses on transition-metal complexes with multidentate ligands containing thiolate, thioether, and amine donors. When these complexes bind biologically relevant molecules and catalyze enzyme-related reactions, they model structural (metal sulfur sites) and functional (reactivity) features of the active centers in the enzymes.³ One ultimate goal in this area of research are complexes with enzymelike activity, which can be termed "competitive" catalysts.⁴

- * To whom correspondence should be addressed.
- Part 131: Sellmann, D.; Hennige, A. C.; Heinemann, F. W. Eur. J. Inorg. Chem. 1998, 819.
- (2) (a) Mellor, D. P. In Chelating Agents and Metal Chelates; Dwyer, F. P., Mellor, D. P., Eds.; Academic Press: New York, London, 1964; p 44. (b) Burger, K. In Biocoordination Chemistry; Burger, K., Ed.; Ellis Horwood: New York, 1990; p 11.
- (3) Wieghardt, K. Nachr. Chem., Tech. Lab. 1985, 33, 961.
- (4) (a) Sellmann, D.; Sutter, J. In Sulfur Coordinated Transition Metal Complexes: Biological and Industrial Significance; Stiefel, E. I., Matsumoto, K., Eds.; ACS Symposium Series 653; American Chemical Society: Washington, DC, 1996; p 101. (b) Sellmann, D. New J. Chem. 1997, 21, 681.

In our search for nitrogenase-related complexes, the [Fe-('NHS₄')] fragment ('NHS₄'²⁻ = 2,2'-bis(2-mercaptophenylthio)-diethylamine(2-)) was found to bind the key molecules of N_2 fixation, N_2H_2 , N_2H_4 , and NH_3 ,5 but not N_2 .

The [Fe('NHS₄')] fragment demonstrated the importance of the core structures for binding and/or stabilization of the coligands. The [Fe('NHS₄')] fragment exists in the two diastereomeric forms **A** and **B**. While **A** binds only σ ligands such as NH₃, N₂H₄, or MeOH, **B** binds only $\sigma-\pi$ ligands such as CO, PMe₃, or diazene, N₂H₂.^{5,6} In the diazene complex, the trans coordination of the thiolate donors in **B** proved pivotal for the stabilization of N₂H₂, because it renders possible strong bifurcated N-H··(S)₂ bridges in the [FeN₂H₂Fe] unit of the binuclear [μ -N₂H₂{Fe('NHS₄')}₂] according to **C**.

Because almost all stable N_2 complexes exhibit electron-rich metal centers,⁷ a major factor for the binding of N_2 can be considered a high electron density at the metal center. Whereas the ν (CO) frequency of [Fe(CO)('NHS₄')] (1960 cm⁻¹) indicates

^{(5) (}a) Sellmann, D.; Soglowek, W.; Knoch, F.; Ritter, G.; Dengler, J. Inorg. Chem. 1992, 31, 3711. (b) Sellmann, D.; Soglowek, W.; Knoch, F.; Moll, M. Angew. Chem. 1989, 101, 1244; Angew. Chem., Int. Ed. Engl. 1989, 28, 1271.

^{(6) (}a) Sellmann, D.; Kunstmann, H.; Knoch, F.; Moll, M. *Inorg. Chem.* 1988, 27, 4183. (b) Sellmann, D.; Hofmann, T.; Knoch, F. *Inorg. Chim. Acta* 1994, 224, 61.

⁽⁷⁾ Henderson, R. A.; Leigh, G. J.; Picket, C. J. Adv. Inorg. Chem. Radiochem. 1983, 27, 245.

a relatively high electron density of the Fe(II) center, it is possibly not high enough to enable the coordination of N_2 . For this reason, we have started a systematic study aiming at the stepwise substitution of the potentially π -accepting thioether sulfur donors in the 'NHS₄'²⁻ ligand by amine functions which act as σ donors only. Our first target ligand in this context was ' $N_2H_2S_3$ '- H_2 (= 2,2'-bis(2-mercaptophenylamino)diethyl sulfide).

'N₂H₂S₃'-H₂ relates to 'NHS₄'-H₂ by having one more amine donor and one less thioether donor. 'N₂H₂S₃'-H₂ further maintains terminal thiol functions which are necessary for the trans coordination of thiolate donors as found in the form **B** of [Fe('NHS₄')].

The notation ${}^{\prime}N_2H_2S_3{}^{\prime}-H_2$ has been chosen in order to allow a facile designation of the varying sets of donor atoms and of deprotonation states of the ${}^{\prime}N_2H_2S_3{}^{\prime}-H_2$ or related ligands. The synthesis of the ${}^{\prime}N_2H_2S_3{}^{\prime}-H_2$ ligand and a couple of characteristic Fe and Ru complexes will be described here.

Experimental Section

General Methods. Unless noted otherwise, all procedures were carried out under an atmosphere of dinitrogen at room temperature by using standard Schlenk techniques. Solvents were dried and distilled before use. As far as possible the reactions were monitored by IR spectroscopy. Spectra were recorded on the following instruments: IR, Perkin-Elmer 16 PC FT-IR; NMR, JEOL JNM-GX 270 and JNM-EX 270; mass spectra, Varian MAT 212 and JEOL JMS-700. Bis(2-bromoethyl)sulfide, RuCl₃(NO)(PPh₃)₂], RuCl₂(PPh₃)₃], Ru(H)-(Cl)(CO)(PCy₃)₂]¹¹, and 2(3H)-benzothiazolone¹² were prepared by literature methods. Hydrazine was obtained by 2-fold distillation of N₂H₄·H₂O over solid potassium hydroxide under reduced pressure.

Alkylation of 2(3*H*)-Benzothiazolone (1) to give 2. n-BuLi (130.8 mmol, 52.3 mL of a 2.5 M solution in n-hexane) was added dropwise to a solution of 2(3*H*)-benzothiazolone (1) (19.74 g, 130.6 mmol) in THF (100 mL) at -78 °C. The reaction mixture was warmed to room temperature, and bis(2-bromoethyl)sulfide (16.19 g, 65.3 mmol) was added. The resulting yellow solution was refluxed for 14 h and then evaporated to dryness, yielding a foamy residue which was redissolved in boiling EtOH (80 mL). Addition of H₂O (120 mL) led to precipitation of a white powder, which was separated, digested two times with EtOH

(80 mL), and dried in vacuo to yield 15.2 g (60%) of **2**: IR (KBr, cm⁻¹) 1678 vs ν (CO); ¹H NMR (CDCl₃, ppm, 269.6 MHz) δ 7.42 (d, 2 H, C₆H₄), 7.32 (t, 2 H, C₆H₄), 7.15 (t, 2 H, C₆H₄), 7.09 (d, 2 H, C₆H₄), 4.14 (t, 4 H, NCH₂), 2.92 (t, 4 H, SCH₂); ¹³C{¹H} NMR (CDCl₃, ppm, 67.7 MHz) δ 169.9 (CO), 136.4, 126.5, 123.3, 122.7, 122.6, 110.4 (C₆H₄), 41.9 (NCH₂), 28.9 (SCH₂); MS (FD, DMSO) m/z 388 ['N₂S₃O₂']⁺. Anal. Calcd for C₁₈H₁₆N₂O₂S₃ (388.54): C, 55.64; H, 4.15; N, 7.21; S, 24.76. Found: C, 55.49; H, 4.22; N, 7.24; S, 24.74.

 $'N_2H_2S_3'-H_2$ (3). A solution of NaOH (14.4 g, 360 mmol) in H₂O (150 mL) was added to a suspension of 2 (14.0 g, 36.0 mmol) in EtOH (150 mL). The mixture was refluxed for 14 h and cooled to room temperature and concentrated hydrochloric acid was added (ca. 25 mL) until pH 3 was reached. The resulting solution was evaporated in vacuo to one-half of its original volume, diluted with H₂O (100 mL) and extracted with CH₂Cl₂ (150 mL). The combined CH₂Cl₂ phases were dried with anhydrous Na₂SO₄ and evaporated to dryness, yielding 12.0 g (99%) of 3 as a yellow, highly viscous oil: ¹H NMR (CDCl₃, ppm, 269.6 MHz): δ 7.41 (d, 2 H, C₆H₄), 7.19 (t, 2 H, C₆H₄), 6.64 (m, 4 H, C₆H₄), 5.00 (s, br, 2 H, NH), 3.41 (t, 4 H, NCH₂), 2.88 (t, 6 H, SCH₂) and SH superimposed); $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃, ppm, 67.7 MHz) δ 136.8, 135.3, 128.7, 128.1, 123.1 (*C*₆H₄), 48.3 (N*C*H₂), 27.6 (S*C*H₂); MS (FD, CDCl₃) m/z 336 ['N₂H₂S₃'-H₂]⁺. Anal. Calcd for C₁₆H₂₀N₂S₃ (336.55): C, 57.10; H, 5.99; N, 8.32; S, 28.58. Found: C, 55.89; H, 6.26; N, 8.67; S, 27.79.

'N₂H₂S₃'-H₂·2HCl (3·2HCl). Concentrated hydrochloric acid (0.75 mL, 9.0 mmol) was added to a solution of 'N₂H₂S₃'-H₂ (3) (0.50 g, 1.50 mmol) in MeOH (20 mL). Removal of the solvents gave a white residue, which was digested three times with CH₂Cl₂ (15 mL) and dried in vacuo, yielding 0.56 g (91%) of 3·2HCl: ¹H NMR (CD₃OD, ppm, 269.6 MHz): δ 7.61 (d, 2 H, C₆H₄), 7.45–7.25 (m, 6 H, C₆H₄), 3.68 (t, 4 H, NCH₂), 3.03 (t, 4 H, SCH₂); ¹³C{¹H} NMR (CD₃OD, ppm, 67.7 MHz) δ 137.7, 136.5, 129.9, 129.8, 124.7, 123.7 (C_6 H₄), 50.0 (NCH₂), 28.5 (SCH₂); MS (FD, MeOH) m/z 338 ['N₂H₄S₃'-H₂]⁺. Anal. Calcd for C₁₆H₂₂Cl₂N₂S₃ (409.47): C, 46.93; H, 5.42; N, 6.84; S, 23.49. Found: C, 47.16; H, 5.53; N, 6.86; S 23.63.

'N₂H₂S₃'-Me₂ (4). MeI (0.75 mL, 11.7 mmol) was added to a solution of 'N₂H₂S₃'-H₂ (3) (0.99 g, 2.9 mmol) and LiOMe (6.2 mmol, 6.2 mL of a 1 M solution in MeOH) in THF (20 mL). The reaction mixture was stirred for 16 h and then evaporated to dryness. The residue was redissolved in 80 mL of a 1:1 mixture of H₂O and CH₂Cl₂, the CH₂Cl₂ phase was separated, dried with anhydrous Na₂SO₄, and evaporated to dryness yielding 1.00 g (95%) of 4 as a yellow oil: ¹H NMR (CDCl₃, ppm, 269.6 MHz) δ 7.35 (d, 2 H, C₆H₄), 7.13 (t, 2 H, C₆H₄), 6.63 (t, 2 H, C₆H₄), 6.54 (d, 2 H, C₆H₄), 5.24 (t, 2 H, NH), 3.33 (dt, 4 H, NCH₂), 2.78 (t, 4 H, SCH₂), 2.27 (s, 6 H, SCH₃); ¹³C{¹H} NMR (CDCl₃, ppm, 67.7 MHz) δ 147.3, 133.7, 129.1, 120.0, 117.1, 109.8 (C₆H₄), 42.6 (NCH₂), 31.1 (SCH₂), 17.9 (SCH₃); MS (FD, CH₂Cl₂) m/z 364 ['N₂H₂S₃'-Me₂]⁺.

'N₂H₂S₃'-Me₂·2HCl (4·2HCl). Concentrated hydrochloric acid (0.20 mL, 2.40 mmol) was added to a solution of 'N₂H₂S₃'-Me₂ (4) (0.20 g, 0.55 mmol) in MeOH (20 mL). Removal of the solvents gave a bright yellow residue, which was digested with CH₂Cl₂ (15 mL) and dried in vacuo yielding 0.22 g (91%) of **4·2HCl**: ¹H NMR (CD₃OD, ppm, 269.6 MHz) δ 7.70–7.38 (m, 8 H, C₆H₄), 5.11 (s, br, 4 H, NH), 3.68 (t, 4 H, NCH₂), 3.08 (t, 4 H, SCH₂), 2.58 (s, 8 H, SCH₃); ¹³C{¹H} NMR (CD₃-OD, ppm, 67.7 MHz) δ 136.2, 133.5, 133.1, 131.0, 129.4, 124.2 (C₆H₄), 51.1 (NCH₂), 28.2 (SCH₂), 18.5 (SCH₃); MS (FD, MeOH) m/z 364 [('N₂H₂S₃'-Me₂)]⁺. Anal. Calcd for C₁₈H₂₆Cl₂N₂S₃ (437.52): C, 49.41; H, 5.99; N, 6.40; S, 21.99. Found: C, 49.79; H, 6.19; N, 6.45; S, 22.18.

[Fe('N₂H₂S₃')]₂ (5). A light green solution of FeCl₂·4H₂O (0.19 g, 0.95 mmol) in MeOH (10 mL) was added to a yellow solution of 'N₂H₂S₃'-H₂ (3) (0.32 g, 0.95 mmol) and LiOMe (1.9 mmol, 1.9 mL of a 1 M solution in MeOH) in MeOH (20 mL). The color of the solution changed to orange, and an orange solid precipitated. The solid was separated, washed with MeOH (20 mL), and dried in vacuo. During drying, the color of the solid changed from orange to green, yield 0.30 g (81%) of 5: IR (KBr, cm⁻¹) 3240 w, br ν (NH); MS (FD, DMSO) m/z 334 [('N₂H₂S₃')]⁺, 390 [Fe('N₂H₂S₃')]⁺; μ _{eff}(293 K) 4.14 μ _B. Anal. Calcd for C₃₂H₃₆Fe₂N₄S₆ (780.76): C, 49.23; H, 4.65; N, 7.18; S, 24.64. Found: C, 49.05; H, 4.60; N, 7.13; S, 24.53.

⁽⁸⁾ Steinkopf, W.; Herold, J.; Stöhr, J. Ber. Dtsch. Chem. Ges. 1920, 53, 1007.

⁽⁹⁾ Levison, J. J.; Robinson, S. D. J. Chem. Soc. A 1970, 2947.

⁽¹⁰⁾ Stephenson, T. A.; Wilkinson, G. J. Inorg. Nucl. Chem. 1966, 28, 945.

⁽¹¹⁾ Sellmann, D.; Ruf, R.; Knoch, F.; Moll, M. Inorg. Chem. 1995, 34, 4745.

⁽¹²⁾ Hunter, R. F. J. Chem. Soc. 1930, 125.

[Fe(CO)('N₂H₂S₃')] (6). CO was bubbled through a suspension of $[Fe('N_2H_2S_3')]_2$ (5) (0.38 g, 0.49 mmol) in THF (30 mL) for 2 h. A green solid resulted which was separated, washed with THF (20 mL), and dried in vacuo yielding 0.42 g (97%) of 6.0.33THF (6 was obtained in equally high yields when the reaction mixture resulting in the synthesis of 5 is directly treated with CO for 2 h): IR (KBr, cm⁻¹) 3229 w, 3166 w ν (NH), 1932 vs ν (CO); ¹H NMR (DMSO- d_6 , ppm, 269.6 MHz) ν 8.06 (s, br, 1 H, NH), 7.50-6.34 (m, 8 H, C₆H₄), 5.10 (d, 1 H, NH), 4.25-1.90 (m, 8 H, C_2H_4); ${}^{13}C\{{}^{1}H\}$ NMR (DMSO- d_6 , ppm, 67.7 MHz) v 221.0 (CO), 152.9, 151.3, 148.0, 146.4, 129.1, 128.3, 125.3, 125.2, 120.8, 120.6, 119.5 (C₆H₄), 52.8, 52.1 (NCH₂), 35.2, 33.0 (SCH_2) ; MS (FD, DMSO) m/z 334 $[('N_2H_2S_3')]^+$, 390 $[Fe('N_2H_2S_3')]^+$, 780 { $[Fe('N_2H_2S_3')]_2$ }⁺. Anal. Calcd for $C_{17}H_{18}FeN_2OS_3 \cdot 0.33C_4H_8O$ (442.43): C, 49.77; H, 4.71; N, 6.33; S, 21.74. Found: C, 49.86; H, 4.74; N, 6.32; S, 21.60.

 $[Ru(CO)(PCy_3)('N_2H_2S_3')]$ (7). $[Ru(H)(Cl)(CO)(PCy_3)_2]$ (1.08 g, 1.49 mmol) was added to a solution of 'N₂H₂S₃'-H₂ (3) (0.50 g, 1.49 mmol) and LiOMe (1.5 mmol, 1.5 mL of a 1 M solution in MeOH) in THF (40 mL). The reaction mixture was stirred for 3 d and yielded a green suspension. The gray-green solid was separated, washed with THF (10 mL), and dried in vacuo yielding 0.75 g (65%) of 7·MeOH. IR (KBr, cm⁻¹) 3213, 3203 w ν (NH), 1935 s ν (CO); ¹H NMR (DMF d_7 , ppm, 269.6 MHz) δ 9.12 (s, 1 H, NH), 7.67–6.54 (m, 8 H, C₆H₄), 5.41 (s, 1 H, NH), 4.30-0.97 (m, 41 H, C_2H_4 and $P(C_6H_{11})_3$ superimposed); $^{13}C\{^{1}H\}$ NMR (DMSO- d_{6} , ppm, 67.7 MHz) δ 160.3, 160.0, 146.7, 131.6, 129.6, 126.2, 125.9, 125.3, 118.9, 118.7, 117.3 (C_6H_4) , 51.8, 48.9 (NCH₂), 38.0, 37.7 (SCH₂), 29.3, 28.9, 27.3, 26.3 (br, $P(C_6H_{11})$); ${}^{31}P\{{}^{1}H\}$ NMR (DMF- d_7 , ppm, 109.38 MHz) δ 47.8 (s, $P(C_6H_{11})$; MS (FD, DMSO, 102 Ru) m/z 716 [Ru(PCy₃)('N₂H₂S₃')]⁺. Anal. Calcd for C₃₅H₅₁N₂PORuS₃•CH₃OH (776.09): C, 55.72; H, 7.14; N, 3.61; S, 12.40. Found: C, 55.45; H, 7.18; N, 3.62; S, 12.27.

 $[Ru(PPr_3)_2('N_2H_2S_3')]$ (8). $[RuCl_2(PPr_3)_3]$ was synthesized in situ by treating a suspension of [RuCl₂(PPh₃)₃] (3.18 g, 3.32 mmol) in n-hexane (50 mL) with PPr₃ (4.0 mL, 20.0 mmol) for 20 h. The resulting green solution was filtered and evaporated to dryness. The green residue was suspended in MeOH (30 mL), combined with a solution of 'N₂H₂S₃'-H₂ (3) (1.12 g, 3.32 mmol) and LiOMe (6.65 mmol, 6.65 mL of a 1 M solution in MeOH) in MeOH (30 mL), and stirred for 3 d to yield a red suspension. The orange solid was separated, washed with MeOH and n-hexane (30 mL each), and dried in vacuo to yield 1.46 g (58%) of **8**: IR (KBr, cm⁻¹) 3289 w, 3227 w ν (NH); ¹H NMR (CD₂-Cl₂, ppm, 269.6 MHz): δ 7.60–6.50 (m, 8 H, C₆H₄), 5.88 (dd, 1 H, NH), 5.09 (s, br, 1 H, NH), 3.68-2.20 (m, 7 H, C_2H_4), 1.94-1.37 (m, 25 H, $P(C_3H_7)$ and C_2H_4 superimposed), 0.95 (dt, 18 H, $P(C_3H_7)$); ¹³C-{¹H} NMR (CD₂Cl₂, ppm, 67.7 MHz) δ 155.3, 151.9, 148.6, 135.8, 135.7, 130.3, 126.5, 124.8, 124.7, 121.3, 118.9, 114.7 (C_6H_4), 59.6, 44.8 (NCH₂), 38.6, 31.8 (SCH₂), 32.3, 28.3 (d, P(CH₂CH₂CH₃)), 19.2, 18.0 (d, P(CH₂CH₂CH₃)), 16.4, 16.3 (d, P(CH₂CH₂CH₃)); ³¹P{¹H} NMR $(CD_2Cl_2, ppm, 109.38 \text{ MHz}) \delta 22.0 (d, 1 P, P(C_3H_7)), 17.3 (d, 1 P, P(C_3H_7))$ $P(C_3H_7)$; MS (FD, DMSO, 102 Ru) m/z 756 [Ru(PPr₃)₂('N₂H₂S₃')]⁺, 596 $[Ru(PPr_3)('N_2H_2S_3')]^+$. Anal. Calcd for $C_{34}H_{60}N_2P_2RuS_3$ (756.08): C, 54.01; H, 8.00; N, 3.71. Found: C, 54.20; H, 7.86; N, 3.50.

 $[Ru(PPr_3)('N_2H_2S_3')]$ (9). A red solution of $[Ru(PPr_3)_2('N_2H_2S_3')]$ (8) (1.30 g, 1.72 mmol) in THF (40 mL) was refluxed for 4 h in the course of which the color changed to green-brown. The solution was cooled to room temperature and layered with *n*-hexane (40 mL). Greenbrown crystals precipitated which were separated after 5 d, washed with THF (5 mL, 0 °C), and dried in vacuo to yield 0.46 g (42%) of **9.**0.5THF: IR (KBr, cm⁻¹) 3251 w ν (NH); ¹H NMR (CD₂Cl₂, ppm, 269.6 MHz) δ 7.38–6.64 (m, 8 H, C₆H₄), 5.55 (s, 1 H, NH), 4.44 (s, 1 H, NH), 3.85-2.37 (m, 8 H, C₂H₄), 1.88-1.26 (m, 12 H, P(CH₂CH₂-CH₃)₃), 0.94 (t, 9 H, P(CH₂CH₂CH₃)₃); ³¹P{¹H} NMR (THF-d₈, ppm, 109.38 MHz) δ 31.6 ppm (s, $P(C_3H_7)$); MS (FD, CH_2Cl_2 , ^{102}Ru) m/z596 [Ru(PPr₃)('N₂H₂S₃')]⁺. Anal. Calcd for C₂₅H₃₉N₂PRuS₃•0.5C₄H₈O (631.90): C, 51.32; H, 6.86; N, 4.43. Found: C, 51.12; H, 7.09; N, 4.13.

 $[Ru(PPh_3)('N_2H_2S_3')]$ (10). $[RuCl_2(PPh_3)_3]$ (0.65 g, 0.68 mmol) was added to a solution of 'N₂H₂S₃'-H₂ (3) (0.23 g, 0.68 mmol) and LiOMe (1.3 mmol, 1.3 mL of a 1 M solution in MeOH) in THF (20 mL). The reaction mixture was refluxed for 4 h to yield a green suspension, from which a yellow solid precipitated. The yellow precipitate was separated

at 20 °C, washed with THF and MeOH (20 mL each), and dried in vacuo yielding 0.25 g (50%) of 10·0.5THF. IR (KBr, cm⁻¹) 3202 m, 3178 m ν (NH); ¹H NMR (CD₂Cl₂, ppm, 269.6 MHz) δ 7.84–6.57 (m, 23 H, C_6H_4 and $P(C_6H_5)$ superimposed), 5.36 (s, br, 1 H, NH), 4.46 (dd, 1 H, NH), 3.30-2.08 (m, 8 H, C_2H_4); $^{13}C\{^1H\}$ NMR (CD₂Cl₂, ppm, 67.7 MHz) δ 155.1, 148.3, 144.0, 136.9, 136.3 (C_6H_4), 134.0 (d, $P(C_6H_5)$, 133.9, 132.5, 130.6 (C_6H_4), 129.5 (s, br, $P(C_6H_5)$), 128.4 (d, $P(C_6H_5)$, 126.5, 126.4, 125.6, 121.6 (C_6H_4), 120.6 (d, $P(C_6H_5)$), 59.0, $51.1 \; (NCH_2), \, 42.5, \, 40.7 \; (SCH_2); \, ^{31}P\{^{1}H\} \; NMR \; (CD_2Cl_2, ppm, \, 109.38 \;$ MHz) δ 63.8 (s, $P(C_6H_5)$); MS (FD, CH_2Cl_2 , $^{102}Ru)$ m/z 697 [Ru- $(PPh_3)(N_2HS_3)^+$. Anal. Calcd for $C_{34}H_{33}N_2PRuS_3 \cdot 0.5C_4H_8O$ (733.95): C, 58.91; H, 5.08; N, 3.82; S, 13.11. Found: C, 58.92; H, 5.22; N, 3.81; S, 12.94.

 $[Ru(PPh_3)('N_2D_2S_3')]$ (10a). (a) A suspension of $[Ru(PPh_3)('N_2H_2S_3')]$. 0.5THF (10·0.5THF) (0.09 g, 0.12 mmol) and D_2O (2.0 mL) in THF (20 mL) was refluxed for 5 h. After removal of the solvents, the yellow residue was characterized by IR spectroscopy (KBr) to be a mixture of **10** and $[Ru(PPh_3)('N_2D_2S_3')]$ (**10a**).

(b) LiOMe (0.24 mmol, 0.24 mL of a 1 M solution in MeOH) and D₂O (1.0 mL) were added to a suspension of [Ru(PPh₃)('N₂H₂S₃')]. 0.5THF (10.5THF) (0.09 g, 0.12 mmol) in THF (20 mL). The reaction mixture was refluxed for 1 h and then evaporated to dryness. The residue was redissolved in CH₂Cl₂ and the resulting green solution was filtered over filter pulp and evaporated to dryness to give 0.09 g (100%) of 10a·0.5THF as a yellow powder: IR (KBr, cm⁻¹) 2385 m, br ν (ND); 1 H NMR (CD₂Cl₂, ppm, 269.6 MHz) δ 7.84–6.57 (m, 23 H, C₆ H_4 and $P(C_6H_5)$ superimposed), 3.25-2.08 (m, 8 H, C_2H_4).

 $[Ru(PPh_3)('N_2H_2S_3'-Me_2)]I_2$ (11). Under stirring, MeI (1.0 mL, 16) mmol) was added to a suspension of [Ru(PPh₃)('N₂H₂S₃')]·0.5THF (10· 0.5THF) (0.27 g, 0.37 mmol) in THF (30 mL). The color of the suspension slowly changed from yellow to beige. The resulting beige solid was separated after 3 d, washed with THF (10 mL), and dried in vacuo to yield 0.32 g (82%) of **11**·THF: IR (KBr, cm⁻¹) 3180 w ν (NH); ¹H NMR (CD₂Cl₂, ppm, 269.6 MHz) δ 8.95 (m, 2 H, NH), 7.88–7.13 (m, 23 H, C_6H_4 and $P(C_6H_5)$ superimposed), 4.41 (m, 1 H, C_2H_4), 3.74-2.86 (m, 6 H, C₂H₄), 2.33 (s, 3 H, SCH₃), 1.92 (s, 3 H, SCH₃), 1.40 (m, 1 H, C_2H_4); $^{13}C\{^1H\}$ NMR (CD_2Cl_2 , ppm, 67.7 MHz) δ 149.6, 149.2, 135.2, 134.1 (d), 133.6 (d), 133.0, 132.6, 131.4, 130.8, 130.2, 129.4, 129.1 (d), 126.9, 124.7 (C(aryl)), 54.1, 47.5 (NCH₂), 39.4 (d), 36.2 (SCH₂), 27.2, 26.4 (SCH₃); ³¹P{¹H} NMR (CD₂Cl₂, ppm, 109.38 MHz) δ 33.8 (s, $P(C_6H_5)$); MS (FD, CH_2Cl_2 , ^{102}Ru) m/z 727 [Ru- $(PPh_3)('N_2HS_3'-Me_2)]^+$, 712 $[Ru(PPh_3)('N_2HS_3'-Me)]^+$, 697 $[Ru-PPh_3]('N_2HS_3'-Me_2)]^+$ $(PPh_3)('N_2HS_3')]^+$. Anal. Calcd for $C_{36}H_{39}I_2N_2PRuS_3 \cdot C_4H_8O$ (1053.88): C, 45.59; H, 4.50; N, 2.66; S, 9.13. Found: C, 45.74; H, 4.41; N, 2.64;

 $[Ru(PPh_3)('N_2HS_3'-Me_2)]I$ (12). $[Ru(PPh_3)('N_2H_2S_3'-Me_2)]I_2\cdot THF$ (11. THF) (0.62 g, 0.59 mmol) was dissolved in N_2H_4 (5.0 mL). The yellow reaction mixture was stirred for 4 h and evaporated to dryness. The yellow residue was redissolved in CH₂Cl₂ (50 mL) and the CH₂-Cl₂ solution was filtered over filter pulp and evaporated to dryness. The resulting yellow powder was digested with MeOH (10 mL) and dried in vacuo to yield 0.47 g (90%) of 12·MeOH: IR (KBr, cm⁻¹) 3124 w, br ν (NH); ¹H NMR (DMSO- d_6 , ppm, 269.6 MHz) δ 7.80 (dd, 1 H, CH(aryl)), 7.71 (d, 1 H, CH(aryl)), 7.58 (s, 1 H, NH), 7.50-7.08 (m, 17 H, CH(aryl)), 6.94 (dt, 1 H, CH(aryl)), 6.85 (dd, 1 H, CH(aryl)), 6.23 (d, 1 H, CH(aryl)), 6.09 (t, 1 H, CH(aryl)), 3.41-2.76 (m, 6 H, C_2H_4), 2.37–2.20 (m, 1 H, C_2H_4), 2.16, 1.97 (s, 3 H each, CH_3), 1.94– 1.79 (m, 1 H, C_2H_4); $^{13}C\{^{1}H\}$ NMR (DMSO- d_6 , ppm, 67.7 MHz) δ 158.9, 146.9, 136.1 (d) (C_6H_4), 133.1, 132.3 (d, $P(C_6H_5)$), 131.5, 131.2, 130.6 (C_6H_4), 130.2 (s, br, $P(C_6H_5)$), 129.3, 128.7 (C_6H_4), 128.2 (d, $P(C_6H_5)$, 127.2, 119.6, 111.4, 110.3 (C_6H_4), 57.5, 48.4 (NCH_2), 40.5, 34.2 (SCH₂), 27.4, 21.9 (d) (SCH₃); ³¹P{¹H} NMR (DMSO-d₆, ppm, 109.38 MHz) δ 43.7 (s, $P(C_6H_5)$); MS (FD, DMSO, 102 Ru) m/z 727 $[Ru(PPh_3)('N_2HS_3'-Me_2)]^+$, 712 $[Ru(PPh_3)('N_2HS_3'-Me)]^+$, 698 $[Ru-PPh_3]('N_2HS_3'-Me_2)]^+$ $(PPh_3)(N_2H_2S_3)^+$. Anal. Calcd for $C_{36}H_{38}IN_2PRuS_3 \cdot CH_3OH$ (885.91): C, 50.16; H, 4.78; N, 3.16; S, 10.86. Found: C, 50.42; H, 4.94; N,

[Ru(PPh₃)('N₂H₂S₃'-Me₂)](I)(Cl) from 12 and HCl. Hydrochloric acid (0.50 mmol, 5 mL of a 0.1 M solution of HCl in H2O) was added to a solution of [Ru(PPh₃)('N₂HS₃'-Me₂)]I·MeOH (12·MeOH) (0.048 g, 0.054 mmol) in CH₂Cl₂ (15 mL). The reaction mixture was stirred

 $\frac{\textbf{Table 1. Selected Crystallographic Data for [Fe('N_2H_2S_3')]_2 \cdot 4\text{MeOH (5} \cdot 4\text{MeOH), [Fe(CO)('N}_2H_2S_3')] \ \textbf{(6), [Ru(PPr_3)('N}_2H_2S_3')] \cdot 2\text{THF} }{(9 \cdot 2\text{THF}), \ \text{and [Ru(PPh}_3)('N}_2H_2S_3' - \text{Me}_2)]I_2 \cdot 2\text{CH}_2\text{Cl}_2 \ (\textbf{11} \cdot 2\text{CH}_2\text{Cl}_2)} } \\ \\ \text{compd} \qquad \textbf{5} \cdot 4\text{MeOH} \qquad \textbf{6} \qquad \textbf{9} \cdot 2\text{THF} \qquad \textbf{11} \cdot 2\text{CH}_2\text{Cl}_2 \\ \textbf{11} \cdot 2\text{CH}_2\text{Cl}_2 \ \textbf{11} \cdot 2\text{CH}_2\text{Cl}_2 \ \textbf{11} \\ \textbf{11} \cdot 2\text{CH}_2\text{Cl}_2 \ \textbf{11}$

compd	5·4MeOH	6	9·2THF	11 •2CH ₂ Cl ₂
formula	$C_{36}H_{52}Fe_2N_4O_4S_6$	$C_{17}H_{18}FeN_2OS_3$	$C_{33}H_{55}N_2O_2PRuS_3$	$C_{38}H_{43}Cl_4I_2N_2PRuS_3$
fw	908.88	418.36	740.01	1151.56
crystal size, mm ³	$0.5 \times 0.5 \times 0.5$	$0.8 \times 0.4 \times 0.2$	$0.4 \times 0.4 \times 0.2$	$0.5 \times 0.4 \times 0.4$
crystal system	tr <u>i</u> clinic	monoclinic	monoclinic	monoclinic
space group	<i>P</i> 1	$P2_1/n$	$P2_1/c$	C2/c
a, pm	976.3(3)	813.6(8)	1053.7(3)	3313(1)
b, pm	1025.5(4)	1141(2)	2443.7(7)	1625.2(5)
c, pm	1160.7(6)	1987(2)	1453.1(7)	1718.5(7)
α, deg	114.01(4)	90	90	90
β , deg	95.03(3)	95.36(7)	102.35(3)	109.24(5)
γ, deg	95.23(3)	90	90	90
V, nm ³	1.0471(8)	1.836(3)	3.655(2)	8.736(6)
Z	1	4	4	8
λ , pm	71.073	71.073	71.073	71.073
$d_{\rm calc}$, g/cm ⁻³	1.441	1.514	1.345	1.751
μ , mm ⁻¹	1.034	1.169	0.675	2.227
2θ range, deg	$4 \le 2\theta \le 48$	$4 < 2\theta < 54$	$4 \le 2\theta \le 54$	$4 < 2\theta < 48$
meas reflections	4287	5010	12031	18249
indep reflections	3291	4030	8036	6895
obsd reflections	2677	2741	3914	5063
refined parameters	339	217	535	460
$R_1 \text{ (wR}_2),^{a,b} \%$	3.60 (10.52)	4.15 (14.24)	4.29 (8.89)	3.61 (9.04)
q^{b} r^{b}	0.0693	0.0639 1.0635	0.0246	0.0515

 $^{a}R_{1} = [\sum ||F_{o}| - |F_{c}||/\sum |F_{o}|]$ for $F \ge 4\sigma(F)$. $^{b}wR_{2} = [\sum [w(F_{o}^{2} - F_{c}^{2})^{2}]/\sum [w(F_{o}^{2})^{2}]^{1/2}$, where $w = 1/[\sigma^{2}(F_{o}^{2}) + (qP)^{2} + rP]$ and $P = (F_{o}^{2} + 2F_{c}^{2})/3$.

for 5 min. Removal of the solvents yielded a yellow powder, which was identified by ¹H NMR spectroscopy as [Ru(PPh₃)('N₂H₂S₃'-Me₂)]-(D(Cl)

[Ru(NO)('N₂HS₃')] (13). [RuCl₃(NO)(PPh₃)₂] (0.648 g, 0.85 mmol) was added to a solution of 'N₂H₂S₃'-H₂ (3) (0.285 g, 0.85 mmol) and LiOMe (2.55 mmol, 2.55 mL of a 1 M solution in MeOH) in THF (25 mL). The reaction mixture was stirred for 14 h to yield a green suspension. The deep green opalescent precipitate was separated, washed with MeOH and THF (20 mL each), and dried in vacuo to yield 0.287 g (67%) of 13·0.5THF: IR (KBr, cm⁻¹) 3228 m ν (NH), 1799 vs ν (NO); ¹H NMR (DMSO- d_6 , ppm, 269.6 MHz) δ 7.20 (d, 1 H, C₆ H_4), 7.00 –6.73 (m, 6 H, C₆ H_4 and NH), 6.49 (d, 1 H, C₆ H_4), 6.39 (t, 1 H, C₆ H_4), 4.15 –2.64 (m, 8 H, C₂ H_4); ¹³C{¹H} NMR (DMSO- d_6 , ppm, 67.7 MHz) δ 159.2, 145.6, 145.4, 137.7, 128.9, 127.1, 126.5, 125.0, 122.8, 122.0, 115.7, 110.0 (C_6 H₄), 58.5, 54.8 (NCH₂), 39.2, 34.7 (SCH₂); MS (FD, DMSO, ¹⁰²Ru) m/z 465 [Ru(NO)('N₂HS₃')]⁺. Anal. Calcd for C₁₆H₁₇N₃ORuS₃·0.5C₄H₈O (500.65): C, 43.18; H, 4.23; N, 8.39; S, 19.21. Found: C, 43.22; H, 4.27; N, 8.26; S, 18.94.

 $[Ru(NO)('N_2H_2S_3')]BF_4$ (14). HBF₄ (1.63 mmol, 0.225 mL of a 54% solution in Et2O) was added to a green suspension of [Ru(NO)('N2-HS₃')]•0.5THF (13•0.5THF) (0.816 g, 1.63 mmol) in Et₂O (40 mL) and stirred for 14 h. A red solid precipitated, which was separated, washed with Et₂O (40 mL), and dried in vacuo to yield 0.890 g (99%) of 14. ¹³C{¹H} and ¹H NMR spectra showed that the red solid contained a 1:1 mixture of two diastereomers of 14. IR (KBr, cm⁻¹) 3202 w, br, 3169 w ν (NH), 1856 vs ν (NO), 1084 s ν (BF₄); ¹H NMR (DMSO- d_6 , ppm, 269.6 MHz) δ 9.97 (d, 0.5 H, NH), 8.64 (s, 0.5 H, NH), 7.99 (d, 0.5 H, NH), 7.39 (s, 0.5 H, NH), $7.70-6.90 \text{ (m, } 8 \text{ H, } C_6H_4)$, 4.80-2.70 (m, 8 H, C_2H_4); $^{13}C\{^{1}H\}$ NMR (DMSO- d_6 , ppm, 67.7 MHz) δ 150.0, 147.2, 146.7, 145.2, 145.1, 142.6, 141.5, 141.1, 129.5, 129.3, 128.8, 128.7, 128.4, 128.3, 128.0, 127.7, 127.0, 125.4, 124.0, 123.9, 123.7, 122.7 (C₆H₄), 63.6, 59.3, 57.1, 51.5 (NCH₂), 39.3, 37.0, 36.2, 36.0 (SCH₂); MS (FD, DMSO, ¹⁰²Ru) m/z 465 [Ru(NO)('N₂HS₃')]⁺. Anal. Calcd for C₁₆H₁₈BF₄N₃ORuS₃ (552.41): C, 34.79; H, 3.28; N, 7.61; S, 17.41. Found: C, 34.75; H, 3.31; N, 7.38; S, 17.34.

X-ray Structure Analyses of [Fe('N₂H₂S₃')]₂-4MeOH (5·4MeOH), [Fe(CO)('N₂H₂S₃')] (6), [Ru(PPr₃)('N₂H₂S₃')]·2THF (9·2THF), and [Ru(PPh₃)('N₂H₂S₃'-Me₂)]I₂·2CH₂Cl₂ (11·2CH₂Cl₂). Black columns of [Fe('N₂H₂S₃')]₂·4MeOH (5·4MeOH) were obtained by layering a solution of 'N₂H₂S₃'-H₂ (3) (0.16 g, 0.48 mmol) and LiOMe (0.95 mmol, 0.95 mL of a 1 M solution in MeOH) in MeOH (80 mL) with a solution

of FeCl_{2*}4H₂O (0.95 g, 0.48 mmol) in MeOH (80 mL). Brown columns of [Fe(CO)('N₂H₂S₃')] (6) formed when a saturated solution of 6 in a 1:1 mixture of MeOH and THF was layered with Et2O under an atmosphere of CO. Brown plates of [Ru(PPr₃)('N₂H₂S₃')]•2THF (9• 2THF) crystallized from a saturated THF solution of 9 which was layered with n-hexane. Yellow plates of [Ru(PPh₃)('N₂H₂S₃'-Me₂)]I₂• 2CH₂Cl₂ (11·2CH₂Cl₂) were grown from a saturated solution of 11 in CH₂Cl₂ by slowly evaporating the solvent. Suitable single crystals were sealed under N2 in glass capillaries and data were collected with a Siemens P4 diffractometer at 200 K. The structures were solved by direct methods (SHELXTL-PLUS). 13 Full-matrix least-squares refinement was carried out on F2 values (SHELXL-93).14 The hydrogen atoms were located in a difference Fourier synthesis and either restricted during refinement (6, 11) or isotropically refined (5, 9). Complex 5 crystallizes with four molecules of MeOH, 11 with two molecules of CH2Cl2, and 9 with two molecules of THF per unit. The hydrogen atoms of the THF molecules in 9.2THF and of the CH2Cl2 molecules of 11.2CH2-Cl₂ were calculated for ideal geometries. Their isotropic temperature factors were fixed at 1.5 times the $U_{\rm eq}$ value of the preceding carbon atom. Table 1 contains selected crystallographic data of [Fe('N₂H₂S₃')]₂• 4MeOH (5·4MeOH), [Fe(CO)('N₂H₂S₃')] (6), [Ru(PPr₃)('N₂H₂S₃')]· 2THF (9·2THF), and [Ru(PPh₃)('N₂H₂S₃'-Me₂)]I₂·2CH₂Cl₂ (11·2CH₂-Cl₂).

Results and Discussion

Syntheses of Ligands. The requirement of having terminal thiolate functions in the target ligand ${}'N_2H_2S_3{}'^{2-}$ necessitated the development of the synthesis route shown in Scheme 1.

Deprotonation of 2(3H)-benzothiazolone (1) by n-BuLi and subsequent treatment with bis(2-bromoethyl)sulfide yielded 2 as the major product. The 1H NMR spectrum of the crude product indicated that byproducts resulting from O-alkylation of 1 had also formed. 15 These byproducts could readily be removed by extraction with EtOH. The remaining 2 proved

⁽¹³⁾ SHELXTL-PLUS for Siemens Crystallographic Research Systems, Release 4 21/V, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1990.

⁽¹⁴⁾ Sheldrick, G. M. SHELXL-93, Program for crystal structure refinement, Universität Göttingen, 1993.

⁽¹⁵⁾ Klein, G.; Prijs, B. *Helv. Chim. Acta* **1954**, *37*, 2057.

Scheme 1. Synthesis of 'N₂H₂S₃'-H₂ and Its Derivatives^a

^a Key: (a) +2n-BuLi, + S(C₂H₄Br)₂, THF, reflux, 14 h; (b) (1) + NaOH, EtOH/H₂O, reflux, 14 h, (2) + HCl; (c) + HCl, MeOH; (d) + 2LiOMe, + exc. MeI, 16 h.

soluble in CH2Cl2 and THF and was characterized by spectroscopic methods and elemental analysis. The CO group ¹³C NMR signal ($\delta = 169.9$ ppm) and the $\nu(CO)$ IR band (1678 cm⁻¹) proved particularly suitable to confirm the N-alkylation of 1. Alkaline hydrolysis of 2 and subsequent acidification yielded 3 as a highly viscous yellow oil which could be purified via the white dihydrochloride ['N₂H₄S₃'-H₂]Cl₂ (3·2HCl). For the syntheses of complexes, 3 could be used without further purification. Successive treatment of 3 with LiOMe and MeI yielded the dimethyl derivative 'N₂H₂S₃'-Me₂ (4).

The facile alkylation of the thiol functions of 3 illustrates the necessity to provide an efficient protective group for the sulfur functions, which are to become thiol groups in the synthesis of 3. Accordingly, numerous attempts to obtain the target ligand 3 via other routes remained unsuccessful. For example, template alkylations of doubly deprotonated 2-aminothiophenol bound to [Fe(CO)₂]²⁺ fragments yielded untractable materials. Benzylation of the thiol function in 2-aminothiophenol and subsequent treatment of the resulting 2-benzylthioaniline with S(C₂H₄Br)₂ led to 2-fold alkylation of the NH₂ group and formation of 4-(2-benzylthiophenyl)thiomorpholine.¹⁶

Syntheses of Complexes. The reaction between Fe(II) salts and the 'N₂H₂S₃'²⁻ anion obtained by deprotonation of 3 with LiOMe yielded green $[Fe('N_2H_2S_3')]_2$ (5) (eq 1). In solid state, **5** is dinuclear (X-ray diffraction) and paramagnetic (μ_{eff} (293) K) = 4.14 $\mu_{\rm B}$). The paramagnetism of 5 is compatible with four unpaired electrons at the Fe centers, whose spins partially couple via Fe-S-Fe bridges. In solution (THF or MeOH), 5 proved unreactive toward N₂H₄, NEt₄N₃, PMe₃, and also N₂, but readily added CO to give diamagnetic green [Fe(CO)('N₂H₂S₃')] (6). The molecular structure of 6 was determined by X-ray diffrac-

The low frequency $\nu(CO)$ IR band of 6 (1932 cm⁻¹ in KBr) indicates strong Fe-CO π -back bonding, and solid **6** is indeed stable at room temperature for unlimited periods of time. Therefore, it was surprising to observe that 6 is labile in solution and slowly loses CO to regenerate 5.

$$Fe^{2+} + N_2H_2S_3^{2-} \xrightarrow{20 \text{ °C}} MeOH$$

The unexpected lability of 6 prompted us to search for less labile ruthenium complexes of 3 (Scheme 2). All efforts to obtain the ruthenium analogue of 6, [Ru(CO)('N₂H₂S₃')], from ruthenium carbonyl precursor complexes and 'N₂H₂S₃'²⁻ remained as yet unsuccessful. Precursor complexes such as [Ru-(H)(Cl)(CO)(PCy₃)₂] or [RuCl₂(CO)₃(THF)]^{17,18} proved too inert to exchange all ligands except one CO for the 'N₂H₂S₃'²⁻ donors. For example, the reaction of [Ru(H)(Cl)(CO)(PCy₃)₂] with $'N_2H_2S_3'^{2-}$ yielded green [Ru(CO)(PCy₃)($'N_2H_2S_3'$)] (7), whose composition suggests that 'N₂H₂S₃'²⁻ acts as tetradentate ligand only. Complex 7 proved so stable that it did not loose PCy₃ or CO even when heated for 14 h in refluxing THF.

Phosphine complexes such as $[RuCl_2(PR_3)_3]$ (R = Pr, Ph) proved more reactive toward 'N₂H₂S₃'²⁻. At room temperature, the reaction of [RuCl₂(PPr₃)₃] with 'N₂H₂S₃'²⁻ yielded orange $[Ru(PPr_3)_2('N_2H_2S_3')]$ (8), in which the 'N₂H₂S₃'²⁻ ligand again probably utilizes only four of its five donors. However, 8 is readily converted into green-brown [Ru(PPr₃)('N₂H₂S₃')] (9) in boiling THF. The C_1 symmetrical structure of **9** and **10** indicated in Scheme 2 was concluded from NMR spectra and could be confirmed for 9 by X-ray structure analysis. Complexes 9 and 10 proved inert toward substitution of the remaining PR₃ ligands with CO, N₂H₄, N₂, or other PR₃ ligands. In an attempt to labilize the Ru-PR₃ bonds via alkylation of the thiolate donors, 10 was treated with MeI and yielded beige [Ru(PPh₃)('N₂H₂S₃'- Me_2] I_2 (11). The molecular structure of 11 could be elucidated by X-ray structure determination, but the PPh₃ ligand in 11 proved as inert to substitution as that in 10. In the respective experiments, however, it was observed that Brønsted bases such as N₂H₄ caused deprotonation of one amine function of the 'N₂H₂S₃'-Me₂ ligand of 11. The monoiodide [Ru(PPh₃)('N₂HS₃'-Me₂)]I (12) resulted which contains one amide donor (Scheme 2, reaction e). A similar deprotonation of amine functions was

⁽¹⁷⁾ Bruce, M. I.; Stone, F. G. A. J. Chem. Soc. A 1967, 1238.

⁽¹⁸⁾ Chatt, J.; Shaw, B. L.; Field, A. E. J. Chem. Soc. 1964, 3466.

Scheme 2. Synthesis of [Ru('N₂H₂S₃')] Complexes^a

$$[Ru(CO)(PCy_3)('N_2H_2S_3')] (7) \qquad [Ru(PPr_3)_2('N_2H_2S_3')] (8)$$

$$R = Pr (9), Ph (10)$$

$$N_2H_2S_3'^2 \qquad d)$$

$$g)$$

$$[Ru(NO)('N_2H_2S_3')]BF_4 (14)$$

$$12$$

$$11$$

^a Key: (a) + $[Ru(H)(Cl)(CO)(PCy_3)_2]$, THF, 3 d; (b) + $[RuCl_2(PPr_3)_3]$, MeOH, 3 d; (c) + $[RuCl_2(PR_3)_3]$ (R = Pr, Ph), THF, reflux, 4 h; (d) + exc. MeI, THF, 3 d; (e) + N_2H_4 ; (f) + $[RuCl_3(NO)(PPh_3)_2]$, + LiOMe, MeOH/THF, 14 h; (g) + HBF₄, Et₂O.

observed when the nitrosyl complex [RuCl₃(NO)(PPh₃)₂] was treated with 'N₂H₂S₃'-H₂ in the presence of 3 equiv of LiOMe. Deep green [Ru(NO)('N₂HS₃')] (**13**) (ν (NO) = 1799 cm⁻¹) formed, which is neutral and diamagnetic and contains the trisanionic 'N₂HS₃'³⁻ ligand. Subsequent treatment of **13** with HBF₄ yielded red [Ru(NO)('N₂H₂S₃')]BF₄ (**14**) (ν (NO) = 1856 cm⁻¹) and showed that the amine deprotonation is reversible. In accordance with expectations, the protonation of **13** to yield **14** shifts the ν (NO) band to higher frequencies.

Substitution and Acid—Base Reactions. The lability of [Fe-(CO)(' $N_2H_2S_3$ ')] (6) toward CO dissociation and the resulting formation of the dinuclear [Fe(' $N_2H_2S_3$ ')]₂ (5) can be regarded as substitution of CO by thiolate ligands. This reaction is plausibly explained by the equilibrium according to eq 2. The formation of the sparingly soluble dinuclear 5 most likely serves as driving force. It precipitates from solution and shifts the equilibrium to the right side. The favored formation of the dinuclear 5 could also explain why the attempts to obtain [Fe-(L)(' $N_2H_2S_3$ ')] derivatives with L = N_2H_4 , NH_3 , N_3 ⁻ remained unsuccessful.

$$2[Fe(CO)('N_2H_2S_3')] \rightleftharpoons [Fe('N_2H_2S_3')]_2 + 2 CO$$
 (2)

In contrast to the labile [Fe(CO)('N₂H₂S₃')], the ruthenium complexes [Ru(PR₃)('N₂H₂S₃')] (R = Pr (9), Ph (10)) and [Ru-(NO)('N₂HS₃')] (13) proved extremely inert to substitution. The PPh₃ ligand in 10 could be substituted by CO neither under elevated pressure (50 bar, 20 °C, 2 d) nor by treatment with hydrazine as solvent (40 °C, 1 d). Attempts to nucleophilically attack the NO ligand in [Ru(NO)('N₂HS₃')] (13) with N₂H₄ or NEt₄N₃ in boiling THF or MeOH also remained unsuccessful. A possible reason for this inertness to substitution is, in addition to the inherent kinetic stability of ruthenium complexes, the Brønsted acidity of the 'N₂H₂S₃'²⁻ amine functions. The NH Brønsted acidity was indicated by the deprotonation of the 'N₂H₂S₃'-Me₂ ligand, when 11 was treated with N₂H₄, and it could subsequently be observed for 'N₂H₂S₃'²⁻ in the formation of the NO complex 13.

The Brønsted acid—base reactions could further be established by H^+/D^+ exchange reactions. Addition of D_2O to THF solutions of $[Fe(CO)('N_2H_2S_3')]$ (6) spontaneously yielded $[Fe(CO)('N_2D_2S_3')]$ (6a). The H^+/D^+ exchange of the ruthenium complex $[Ru(PPh_3)('N_2H_2S_3')]$ (10) was rather slow with neutral D_2O (in THF), but highly accelerated by addition of base (LiOMe) and yielded $[Ru(PPh_3)('N_2D_2S_3')]$ (10a). $[Ru(PPh_3)-($

 $('N_2H_2S_3'-Me_2)]I_2$ (11) and $[Ru(NO)('N_2H_2S_3')]BF_4$ (14) spontaneously exchanged with D^+ from D_2O . In these two cases, the corresponding amide complexes could also be isolated. Addition of Brønsted bases such as N_2H_4 and NEt_4N_3 to solutions of 11 and 14 gave $[Ru(PPh_3)('N_2HS_3'-Me_2)]I$ (12) and $[Ru(NO)('N_2HS_3')]$ (13), respectively.

These results show that the amine NH donors of [M(L)-('N₂H₂S₃')] complexes can be reversibly deprotonated to give amide donors according to the equilibrium of eq 3.

$$[M(L)('N_2H_2S_3')] \rightleftharpoons [M(L)('N_2HS_3')]^- + H^+$$
 (3)

The formation of the amide species $[M(L)('N_2HS_3')]^-$ can have two opposite consequences with respect to the M-L bond: (1) The M-L bond can be labilized because the amide donor stabilizes a coordinatively unsaturated species via π donation, resulting from M-L bond dissociation according to eq $4.^{19}$ (2) In the opposite case, and this could be favored when L is a π acceptor, the M-L bond is stabilized by exactly the same effect of π donation from the amide donor. ^{6b}

$$[M(L)('N_2HS_3')]^- \rightleftharpoons [M('N_2HS_3')]^- + L$$
 (4)

For the complexes described here, apparently the second alternative prevails. It also explains why the NO ligand in [Ru-(NO)('N₂H₂S₃')]BF₄ (14), which shows a high-frequency ν (NO) at 1856 cm⁻¹, is insusceptible to nucleophilic attack by N₂H₄ or azide ions. The primary reaction is a deprotonation of 14 to give 13, whose ν (NO) of 1799 cm⁻¹ indicates a relatively high electron density at the NO ligand.

The investigation of the protonation/deprotonation reactions of [Ru(PPh₃)('N₂HS₃'-Me₂)]I (12) and [Ru(NO)('N₂HS₃')] (13) further revealed that the attack of the amide donors by H⁺ can be influenced by the ligands L so that it occurs in a stereocontrolled manner. ¹³C{¹H} and ¹H NMR spectra (see below) showed that protonation of 12 by HCl yielded only one stereoisomer of [Ru(PPh₃)('N₂H₂S₃'-Me₂)](I)(Cl). However, the protonation of [Ru(NO)('N₂HS₃')] (13) (with HBF₄) resulted in a 1:1 mixture of two diastereomers of [Ru(NO)('N₂H₂S₃')]-BF₄. These findings are explained by the chirality of the complexes, which allows the protons to approach the amide donors from two distinguishable ("front" or "back") sides. In 12, which exhibits the sterically demanding PPh₃ ligand and

two methyl groups at the terminal sulfur atoms, one of these two sides is evidently blocked. In 13, which carries the small NO ligand, both sides are accessible so that protons can attack the amide function from the front as well as from the back side as indicated in eq 5.

Characterization of Complexes. All complexes but [Fe-('N₂H₂S₃')]₂ (5) proved to be diamagnetic and exhibit similar solubilities. The neutral CO, NO, and phosphine complexes are soluble in DMF, DMSO, CH₂Cl₂, THF, and acetone but virtually insoluble in all other common organic solvents. The salt 14 is soluble only in DMF and DMSO and is sparingly soluble in MeOH. All complexes have been characterized by elemental analyses, IR, NMR, and mass spectra. The FD mass spectra showed the molecular ions or ions resulting from loss of CO (6, 7). Characteristic IR bands of the complexes containing [M('N₂H₂S₃')] cores are either one, unresolved, broad or two, weak-to-medium $\nu(NH)$ absorptions in the region of 3290 to 3160 cm⁻¹ (in KBr). The complexes containing [Ru('N₂HS₃')] cores display one medium $\nu(NH)$ IR band at 3124 cm⁻¹ (12) or 3228 cm⁻¹ (13). The strong ν (CO) or ν (NO) IR bands of 6 (1932 cm^{-1}) , 7 (1935 cm^{-1}) , 13 (1799 cm^{-1}) , and 14 (1856 cm^{-1}) cm⁻¹) are suited to monitor reactions by IR spectroscopy. All mononuclear complexes possess only C_1 symmetry. This is clearly displayed by the ${}^{13}C\{{}^{1}H\}$ NMR spectra. The [M('N₂H_nS₃')] cores (n = 1 or 2) of the respective complexes give rise to 12 aromatic ¹³C signals in the range of 160–110 ppm and two signals each for the N-bonded (63-44 ppm) and S-bonded (42-31 ppm) aliphatic C atoms. The ¹³C{¹H} NMR spectrum of [Ru(NO)('N₂H₂S₃')]BF₄ (14) displays two sets of this signal pattern, which indicates that 14 exists in two diastereomeric forms.

X-ray Structure Analyses of [Fe('N₂H₂S₃')]₂·4MeOH (5· 4MeOH), [Fe(CO)('N₂H₂S₃')] (6), [Ru(PPr₃)('N₂H₂S₃')]·2THF (9.2THF), and $[Ru(PPh_3)('N_2H_2S_3'-Me_2)]I_2.2CH_2Cl_2$ (11. 2CH₂Cl₂). The molecular structures of four complexes could be elucidated by X-ray structure determination. Figures 1 and 2 show views of the molecular structures, and Tables 2 and 3 list selected distances and angles.

In all four complexes, the metal centers exhibit pseudooctahedral coordination. The 'N₂H₂S₃'²⁻ ligand and its 'N₂H₂S₃'-Me₂ derivative bind to the metals in the same characteristic fashion which combines mer and fac coordination of the donor atoms. For the 'N₂H₂S₃'² ligand, cis positions of both the two amine and the two thiolate donors result. A further result of this coordination is that all $[M('N_2S_3')]$ cores exhibit C_1 symmetry only. Bond distances and angles show no anomalies. The distances of **5** and **6** are typical for high-spin and low-spin Fe(II) complexes, respectively, which contain thiolate—thioether-amine ligands.^{5,6} They correspond with distances found in high-spin/low-spin [Fe(L)('NHS₄')] complexes. The low-spin

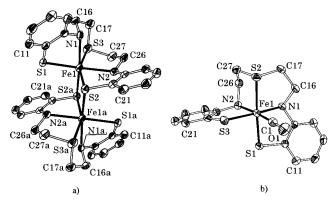


Figure 1. ORTEP diagrams of (a) [Fe('N₂H₂S₃')]₂·4MeOH (5·4MeOH) and (b) [Fe(CO)('N₂H₂S₃')] (6) (50% probability ellipsoids; H atoms and solvate molecules omitted).

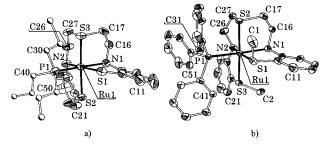


Figure 2. ORTEP diagrams of (a) [Ru(PPr₃)('N₂H₂S₃')]·2THF (9· 2THF) and (b) the cation of [Ru(PPh₃)('N₂H₂S₃'-Me₂)]I₂•2CH₂Cl₂ (11.2CH₂Cl₂) (50% probability ellipsoids; H atoms and solvate molecules omitted).

Table 2. Selected Distances (pm) and Angles (deg) of $[Fe('N_2H_2S_3')]_2 \cdot 4MeOH (5 \cdot 4MeOH)$ and $[Fe(CO)('N_2H_2S_3')] (6)$

	5.			5.	
complex	4MeOH	6	complex	4MeOH	6
Fe1-S1	242.7(1)	229.9(2)	N1-Fe1-S1	79.79(9)	86.8(1)
Fe1-S2	244.7(1)	227.9(2)	N1-Fe1-N2	94.9(1)	89.8(1)
Fe1-S3	257.2(1)	231.5(2)	S2-Fe1-S3	158.70(3)	92.21(8)
Fe1-N1	225.4(3)	207.5(3)	N1-Fe1-S3	79.41(8)	175.76(9)
Fe1-N2	232.1(3)	210.2(3)	N2-Fe1-S3	80.37(7)	85.9(1)
Fe1-S2a	251.7(2)		N2-Fe1-S2a	88.84(8)	
Fe1-C1		175.6(4)	C1-Fe1-N1		93.8(2)

Table 3. Selected Distances (pm) and Angles (deg) of $[Ru(PPr_3)('N_2H_2S_3')] \cdot 2THF (9 \cdot 2THF)$ and $[Ru(PPh_3)('N_2H_2S_3'-Me_2)]I_2\cdot 2CH_2Cl_2$ (11·2CH₂Cl₂)

	9.	11.		9.	11.
complex	2THF	$2CH_{2}Cl_{2} \\$	complex	2THF	$2CH_2Cl_2$
Ru1-S1	236.9(2)	233.2(2)	N1-Ru1-S1	83.0(1)	83.0(1)
Ru1-S2	236.2(2)	233.6(2)	N1-Ru1-N2	90.8(2)	86.3(2)
Ru1-S3	229.1(2)	234.3(2)	N2-Ru1-P1	95.0(2)	98.4(1)
Ru1-N1	223.2(4)	220.5(4)	N1-Ru1-S3	84.4(1)	94.2(1)
Ru1-N2	214.2(5)	213.9(5)	N2-Ru1-S3	86.9(1)	83.4(1)
Ru1-P1	225.7(2)	235.6(2)	S2-Ru1-S3	167.35(5)	168.12(5)

complexes always show markedly shorter distances than the high-spin complexes. Worth being noted are the very similar Fe-S(thiolate) and Fe-S(thioether) distances of 6, which are found in the narrow range of 227.9(2)-231.5(2) pm. In the highspin Fe(II) complex 5 which possesses crystallographically imposed inversion symmetry, Fe-S(thiolate) and Fe-S(thioether) distances differ more from each other (~15 pm). It is also noted that the Fe1-S2a and Fe1a-S2 distances (251.7(2) pm) in the Fe-S(thiolate)-Fe bridges are distinctly longer than the Fe-S(thiolate) distances (242.71(12), 244.66(13) pm) within the two [Fe('N₂H₂S₃')] halves. This certainly reflects the ability of 5 to dissociate into [Fe('N₂H₂S₃')] monomers in solution.

The Ru-N and Ru-S distances of **9** and **11** are in the range expected for Ru(II) complexes. The comparison of **9** with **11**, which contains only thioether S donors, shows that the Ru-S distances do not allow an unambiguous differentiation between Ru-S(thiolate) and Ru-S(thioether) distances. This certainly reflects the electronic flexibility of thiolate and thioether S donors which can exhibit σ -donor, σ -donor- π -acceptor as well as σ -donor- π -donor properties. Therefore, the Ru-P distance in **11** (235.6(2) pm), which is markedly longer than that in **9** (225.7(2) pm), may be due not only to a higher steric demand of PPh₃ vs PPr₃ but also to the decreased electron density at the ruthenium center of **11** which carries three potentially π -accepting thioether donors.

Conclusion

The new pentadentate ${}'N_2H_2S_3'-H_2$ ligand has been synthesized, aiming at transition metal complexes which exhibit electron rich-metal centers, possess core configurations with thiolate, thioether, and amine donors relating to the structures of [Fe(${}'NHS_4'$)] fragments, and bind biologically relevant small molecules.

The goal of increasing the electron density at the metal centers by replacing thioether S by amine N donors in pentadentate thiolate thioether amine ligands could be reached. This is evidenced by the $\nu(CO)$ frequencies of [Fe(CO)('N₂H₂S₃')] (1932 cm⁻¹) vs [Fe(CO)('NHS₄')] (1960 cm⁻¹). However, the metal donor core configurations of [M('NHS₄')] and [M('N₂H₂S₃')] complexes strongly differ. While [M('NHS₄')] complexes exhibit either structure **A** or **B** (cf. introduction), all [M('N₂H₂S₃')] complexes characterized so far invariably show the structure **D**. A major geometric difference between these structures is

the fac—fac coordination of the 'NHS₄'²- ligand versus the fac—mer coordination of the 'N₂H₂S₃'²- ligand. This structural difference complicates direct comparison between [M(L)-('NHS₄')] and [M(L)('N₂H₂S₃')] complexes and may explain some unexpected results. For example, [Fe(CO)('N₂H₂S₃')]

readily loses its CO ligand though its low frequency $\nu(CO)$ indicates strong Fe-CO π -back bonding, whereas [Fe(CO)-('NHS₄')] is practically inert toward loss of CO. With regard to the labile CO binding, it was not unexpected to be found that N₂ could not be coordinated. Another important difference between the $[M(L)('N_2H_2S_3')]$ and $[M(L)('NHS_4')]$ complexes is the relatively high acidity of the (aromatic) NH functions in the [M(L)('N₂H₂S₃')] complexes. The NH acidity was proved by H⁺/D⁺ exchange reactions and isolation of conjugate acid base complex couples. The NH acidity also influences the substitution properties of the M-L bonds via intermediate formation of amide complexes. For example, when L is a strong electron withdrawing ligand such as NO in [Ru(NO)('N₂H₂S₃')]-BF₄, one NH function is easily deprotonated by bases such as N₂H₄ or by azide ions. As a consequence, the NO ligand in the resulting [Ru(NO)('N₂HS₃')] becomes insusceptible for attack by nucleophiles. Similar effects have been observed with Fe, Ni, and Ru complexes which contain [M('N₂H₂S₂')] fragments $(N_2H_2S_2'^{2-} = 1, 2$ -ethanediamino-N, N'-bis(2-benzenethiolato)-(2-)).²¹ The resulting coordination geometry and, in addition, acid-base reactions of the amine functions drastically reduce the versatility of the [Fe('N₂H₂S₃')] or [Ru('N₂H₂S₃')] fragments with respect to coordination and/or substitution of small coligand molecules. In particular, the cis coordination of the thiolate donors in [M('N₂H₂S₃')] fragments is unsuited to effect a stabilization of the unstable diazene molecule via [M--NH--NH···M] four-center/six-electron π bonds and tricentric N-H··· (S)₂ bridges. This stabilization has been observed in complexes such as $[\mu-N_2H_2\{Fe('NHS_4')\}_2]^5$ or $[\mu-N_2H_2\{Ru(PPh_3)('S_4')\}_2]^{22}$ and it imperatively requires trans-thiolate donors at the metal centers.

Acknowledgment. Support of this work by the Fonds der chemischen Industrie is gratefully acknowledged.

Supporting Information Available: X-ray crystallographic data, in CIF format, for compounds **5**·4MeOH, **6**, **9**·2THF, and **11**·2CH₂Cl₂ are available on the Internet. Access information is given on any current masthead page. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as depository nos. 104537 (**5**·4MeOH), 104538 (**6**), 104539 (**9**·2THF), and 104540 (**11**·2CH₂Cl₂). Copies of the data can be obtained free of charge upon application to: The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: int.code +44(1223)336-033, e-mail: deposit@chemcrys.cam.ac.uk].

IC980383O

- (21) (a) Sellmann, D.; Käppler, O. Angew. Chem. 1988, 100, 706; Angew. Chem., Int. Ed. Engl. 1988, 27, 689. (b) Spence, J. T.; Minelli, M.; Kroneck, P. J. Am. Chem. Soc. 1980, 102, 4538. (c) Sellmann, D.; Ruf, R. Z. Naturforsch., B: Chem. Sci. 1993, 48B, 723. (d) Gardner, J. K.; Pariyadath, N.; Corbin, J. L.; Stiefel, E. I. Inorg. Chem. 1978, 17, 897. (e) Sellmann, D.; Reinecke, U. J. Organomet. Chem. 1986, 314, 91. (f) Sellmann, D.; Käppler, O.; Knoch, F.; Moll, M. Z. Naturforsch., B: Chem. Sci. 1990, 45B, 803.
- (22) Sellmann, D.; Böhlen, E.; Waeber, M.; Huttner, G.; Zsolnai, L. Angew. Chem. 1985, 97, 984; Angew. Chem., Int. Ed. Engl. 1985, 24, 981.

⁽²⁰⁾ Sellmann, D.; Geck, M.; Knoch, F.; Ritter, G.; Dengler, J. J. Am. Chem. Soc. 1991, 113, 3819.