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Abstract 

 

A mild and operationally-simple method to synthesize diphenylhexatriene (DPH) is reported.  The 

method relies on the Pd-catalyzed dimerization of cinnamyl acetate and provides efficient access to 

DPH in a single step. 
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The synthesis of conjugated hydrocarbons that display interesting fluorescence properties remains 

an important area of research. For example, compounds such as diphenylhexatriene (DPH, 1), 

DiSC3+(5) (2), and CTMPA (3) (Figure 1), play key roles as fluorescent probes in biological studies.1 Of 

these, DPH is exceptionally noteworthy as it can be utilized in an array of applications, such as serving 

as a lipid membrane fluorescent probe for cancer studies,2 performing as a biological sensor for 

detecting fatty acyl chains,2 and monitoring protein aggregation to identify both amorphous and fibrillar 

aggregates.1c 

 

Figure 1. Conjugated Hydrocarbons as Fluorescent Probes. 

  

  

Several reported methods for the synthesis of diphenylhexatriene (1) are summarized in Figure 

2. Doyle and Yan disclosed a method to arrive at diphenylhexatriene (1) and its isomer 6 in 55% yield 

(98:2 mixture of isomers). Their approach first involved conversion of cinnamaldehyde (4) to diazo 

compound 5.  Subsequent rhodium-catalyzed dimerization of 5 provided DPH (1).3 The Tian group 

reported a stereoselective olefination of triphenylphosphonium ylide 8 with N-sulfonyl imine 7 to arrive 

at 1 in 87% yield.4 Kasahara and coworkers discovered the palladium-catalyzed coupling of fumaryl 

chloride (9) with styrene (10) to provide 1 in 44% yield.5 Two methods to directly convert 
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cinnamaldehyde (12) to DPH (1) in good yields have also been reported. A titanium-catalyzed 

dimerization furnished DPH (1) in 65% yield, as recently shown by the Barrero group.6 Finally, 

Mioskowski and Falck have disclosed a reductive olefination of cinnamaldehyde (12) via a chromium 

Brook rearrangement to yield diphenylhexatriene (1) in 83% yield.7  

 

Figure 2. Various Approaches to Diphenylhexatriene (1). 

 

 

 While investigating unrelated transformations involving π-allyl Pd intermediates, we 

unexpectedly found that cinnamyl acetate (13) may be readily converted to diphenylhexatriene (1) using 

Pd catalysis. As shown in Table 1, we initially observed that exposure of cinnamyl acetate to Pd(OAc)2, 

PPh3, and triethylamine in DMSO gave 1 in 48% yield (entry 1).  We also investigated the dimerization 

in toluene, 1,2-dichloroethane, and tetrahydrofuran (entries 2–4), but 1 was not observed when these 

solvents were employed.8 Gratifyingly, the use of acetonitrile as solvent furnished 1 in 92% yield (entry 
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5). After identifying acetonitrile as the optimal solvent, we examined the influence of ligands. Several 

phosphorous-based ligands were tested, namely, triphenyl phosphite, tricyclohexylphosphine, and tri-

ortho-tolylphosphine, but DPH (1) formation was not observed (entries 6–8).8 However, dimerization in 

the presence of dppf as the ligand yielded 77% of the desired triene 1 (entry 9). We also investigated the 

use of Pd/C without ligand additives, but the reaction shut down completely (entry 10). With these 

results in hand the conditions described in entry were selected for further optimization studies. In order 

to ease the purification process, the use of a triphenylphosphine resin was examined. To our delight, 

replacement of PPh3 with a solid-supported variant gave 1 in quantitative yield (entry 11).9 It was also 

found that propionitrile could be substituted for acetonitrile to give 1 in comparable yields (entry 12). 

The use of propionitrile was beneficial in that it allowed for reactions to be conducted at higher 

temperatures and led to more consistent results in larger-scale experiments. 

Table 1. Optimization of Reaction Conditions.a 

 
a Conditions unless otherwise stated:  Pd source (5 mol%), ligand (15 
mol%), cinnamyl acetate 13 (1 equiv), Et3N (3 equiv) in solvent (0.2 
M) at 85 ºC for 24 h. b Yield determined by 1H NMR analysis of the 
crude reaction mixture using hexamethylbenzene as an internal 
standard. c Reaction performed at 105 ºC. 

 

Pd source
ligand, Et3N

solvent, 85 °C

entry Pd source ligand solvent yieldb

10 -- acetonitrile 0%

Pd(OAc)2 P(OPh)3 acetonitrile 0%6
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2

3
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With suitable reaction conditions in hand for the efficient synthesis of 1, we tested the scalability 

of our procedure (Figure 3). Performing the coupling using >10 mmol of cinnamyl acetate (13) under 

our optimized reaction conditions (Pd(OAc)2, PPh3 resin, and triethylamine in propionitrile at 105 ºC) 

gave diphenylhexatriene (1) in 73% isolated yield after flash column chromatography.10 This result 

underscores the effectiveness of our method for preparing the fluorescent probe DPH (1).  

 

Figure 3. Synthesis of Diphenylhexatriene (1). 

 

 

We also tested the viability of accessing 1 using substrates other than cinnamyl acetate (Figure 

4).  Initially, we examined the branched isomer of cinnamyl acetate, 14,11 and subjected it to our 

coupling conditions. DPH (1) was formed in 96% yield, which is comparable to the results obtained 

using cinnamyl acetate (13).12  Other linear derivatives of cinnamyl alcohol were also probed under our 

optimized dimerization conditions. Cinnamyl pivalate 1513 underwent smooth coupling to furnish 1 in 

88% yield, whereas the corresponding carbonate 1614 yielded only 27% of the desired product.  In the 

latter case, the remainder of the mass consisted of unreacted starting material and cinnamyl alcohol. 

Finally, commercially available cinnamyl chloride 17 was converted to 1 in 70% yield using our 

standard conditions. 
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(73% yield)

Page 5 of 9

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 6  

Figure 4. Testing Substrate Variation for the Synthesis of Diphenylhexatriene (1). 

 

 

In summary, we have developed an efficient means to synthesize the important fluorescent probe 

diphenylhexatriene. The method relies on the unusual palladium-catalyzed dimerization of cinnamyl 

acetate to furnish DPH (1) in good yield. Our method is scalable and provides access to gram quantities 

of the desired conjugated triene. The use of alternate electrophilic derivatives, other than cinnamyl 

acetate, can also be used to efficiently access 1.   

 

Experimental Section 

Representative Procedure for Optimization Studies (Table 1, entry 1 is used as an example). 

Diphenylhexatriene (1). A flame-dried 4-mL vial equipped with a magnetic stir bar was charged with 

hexamethylbenzene (6.5 mg, 0.04 mmol, 10 mol%), Pd(OAc)2 (4.6 mg, 0.02 mmol, 5 mol%), and PPh3 

(15.7 mg, 0.06 mmol, 15 mol%) while purging with N2. Subsequently, DMSO (2.0 mL), Et3N (167 µL, 

1.2 mmol, 3 equiv) and cinnamyl acetate (67 µL, 0.4 mmol, 1 equiv) were added to the reaction vial. 

The solvent was sparged with N2 for 20 minutes and the vial was capped with a Teflon-lined screw cap. 

The reaction was heated at 85 °C for 24 h. The reaction was allowed to cool to room temperature and 

was then diluted with benzene:Et2O (1:1, 5 mL). The solution was filtered by passage over a short plug 

of silica plug (x 2), and eluted with additional benzene:Et2O (1:1, 5 mL). The yield was determined by 
1H NMR analysis with hexamethylbenzene as an internal standard.  

X
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Diphenylhexatriene (1): To a flame-dried pressure tube equipped with a stir bar was added 

Pd(OAc)2 (0.129 g, 0.568 mmol) and PPh3 resin (1.42 g, 1.70 mmol), while purging with N2. The vent 

needle was removed and EtCN (19 mL), triethylamine (4.74 mL, 34.0 mmol) and cinnamyl acetate 

(1.91 mL, 11.4 mmol) were added. The solvent was sparged with N2 and the resulting mixture was 

stirred vigorously for 45 min. The pressure tube was capped and the reaction was heated at 105 °C. 

After 2.5 d, the reaction mixture was allowed to cool to 23 °C. The mixture was then diluted with 

benzene:Et2O (1:1, 20 mL), filtered by passage over silica gel (x 2), and eluted with additional 

benzene:Et2O (1:1, 20 mL). The solvent was removed under reduced pressure. Purification by flash 

chromatography (95:5 hexanes:EtOAc) afforded diphenylhexatriene (1) as a yellow solid (0.96 g, 73% 

yield). Rf 0.4 (95:5 Hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 7.42 (d, J = 7.5, 4H), 7.32 (t, J = 

7.5, 4H); 7.24 (t, J = 7.5, 2H), 6.89 (dddd, J = 15.0, 7.5, 7.5, 3.0, 2H), 6.60 (d, J = 15.0, 2H), 6.52 (dd, J 

= 7.5, 3.0, 2H); 13C NMR (125 MHz, CDCl3): δ 137.4, 133.6, 132.7, 129.1, 128.7, 127.6, 126.4;  IR 

(film): 3058, 3013, 1594, 1490, 1447, 1178, 1072 cm-1; HRMS-CI (m/z) [M]+ calcd for C18H16, 

232.1252; found, 232.1253; m.p. 193–195 °C. Spectral data match those previously reported.4 
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