A Simple Synthesis of Polyfunctionalized 4-Aminopyrazolidin-3-ones as 'Azadeoxa' Analogs of D-Cycloserine

by Ana Novak^a), Matej Štefanič^a), Uroš Grošelj^a), Martina Hrast^b), Marta Kasunič^a), Stanislav Gobec^b), Branko Stanovnik^a)^c), and Jurij Svete^{*a})^c)

 ^a) Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (phone: +386-1-2419254; fax: +386-1-2419220; e-mail: jurij.svete@fkkt.uni-lj.si)
 ^b) Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana
 ^c) Centre of Excellence EN-FIST, Trg osvobodilne fronte 13, SI-1000 Ljubljana

A simple five-step synthesis of fully substituted (4RS,5RS)-4-aminopyrazolidin-3-ones as analogs of D-cycloserine was developed. It comprises a two-step preparation of 5-substituted (4RS,5RS)-4-(benzyloxycarbonylamino)pyrazolidin-3-ones, reductive alkylation at N(1), alkylation of the amidic N(2) with alkyl halides, and simultaneous hydrogenolytic deprotection/reductive alkylation of the primary NH₂ group. The synthesis enables an easy stepwise functionalization of the pyrazolidin-3-one core with only two types of common reagents, aldehydes (or ketones) and alkyl halides. The structures of products were elucidated by NMR spectroscopy and X-ray diffraction.

1. Introduction. – As cyclic analogs of 3-hydrazinopropanoic acid, pyrazolidin-3ones are easily available by treatment of α,β -unsaturated carboxylic acid derivatives with NH₂NH₂·H₂O [1-4]. The importance of pyrazolidin-3-one derivatives grew significantly during the last decades due to their synthetic applicability and biological activity. The most representative examples of important pyrazolidin-3-ones are phenidone (1) as photographic developer [5] and COX-inhibitor [6], and *Eli Lilly*'s antibiotics (2) [7] (*Fig. 1*). Recent applications of pyrazolidin-3-ones include their use as templates in enantioselective *Diels–Alder* [8][9], *Michael* [10][11], and 'click' reactions [12–14].

Fig. 1. Examples of important pyrazolidin-3-ones 1 and 2, and 4-aminopyrazolidinones, structural analogs of (R)-4-aminoisoxazolidin-3-one (p-cycloserine; 3)

© 2014 Verlag Helvetica Chimica Acta AG, Zürich

D-Cycloserine (3; *Fig. 1*), an antibiotic effective against *Mycobacterium tuberculosis*, is applied for treatment of tuberculosis as a second-line drug, due to its adverse effects [15][16]. Recently, D-cycloserine (3) has also been used for cognitive behavioral therapy for anxiety disorders [17], and for treatment of behavioral and neuro-inflammatory disorders in *Parkinson*'s disease [18]. Therefore, development of simple and efficient synthetic methods for preparation of novel structural analogs as well as synthesis of libraries of novel 4-aminopyrazolidin-3-one derivatives for biological screening (and other applications) seems justified.

In the last two decades, part of our research interest has also been directed to the chemistry of pyrazolidinones with focus on 1,3-dipolar cycloadditions of (1Z,4R,5R)-4-(benzoylamino)-1-benzylidene-3-oxopyrazolidin-1-azomethine imines to various dipolarophiles [4][13]. Within this context, reductive alkylation of (4R,5R)-4-(benzoylamino)-3-oxo-5-phenylpyrazolidine has also been reported [19]. Recently, we reported the synthesis of (4RS,5RS)-4-{[(benzyloxy)carbonyl]amino}-5-phenylpyrazolidin-3-one (**5f**) from methyl 2-{[(benzyloxy)carbonyl]amino}-2-(dimethoxyphosphoryl)acetate (**4b**) via the corresponding N-Cbz- α,β -dehydro- β -phenylalanine ester **7f** and transformations of **5f** into the hydantoin derivative [20]. The availability of N-deprotectable 4-aminopyrazolidinones **5** and their structural analogy with (R)-4-aminoisoxazolidin-3-one (D-cycloserine; **3**) prompted us to extend this study towards the synthesis of 'aza-deoxa' analogs of **3** (*Fig. 1*) with the ring O-atom, O(1), replaced by a N-atom, and with different alkyl substituents at C(5), N(1), N(2), and 4-NH₂. We herein report a simple five-step synthetic protocol for the synthesis of polyfunction-alized 4-amino-3-pyrazolidinones **5**, **10**, and **12–19**.

2. Results and Discussion. – The 5-unsubstituted pyrazolidinone 5a [21] was obtained by heating methyl *N*-[(benzyloxy)carbonyl]-*O*-tosyl-L-serinate (4a) with excess NH₂NH₂·H₂O in MeOH, as described for the synthesis of the Boc analog of 5a [22]. Next, 3-substituted methyl 2-{[(benzyloxy)carbonyl]amino}prop-2-enoates 7b – 7k were prepared by *Wittig-Horner* condensation of 4b with aldehydes and ketones 6b – 6k following a slightly modified procedure of *Schmidt et al.* [23]. As in previously reported successful examples [4][20][24], 7b – 7j were then treated with excess NH₂NH₂·H₂O in an alcohol at room temperature or at reflux to afford the corresponding pyrazolidin-3-ones 5b – 5j, respectively, in yields between 23 and 100% (*Scheme 1* and *Table 1*).

For further transformations, the representative pyrazolidinones 5a-5d, 5f, and 5g were used. Acid-catalyzed treatment of 5 with acetone (6d) and aromatic aldehydes 6f and 6k-6m in MeOH gave the corresponding azomethine imines 9a-9k in yields in the range of 31-99% yield (*Scheme 2*). The deuterated compound 9k was first obtained unintentionally. After recording the NMR spectra of 5g in (D₆)acetone (6m), the solution was left to stand at room temperature for several days to give 9k as an insoluble precipitate. In the repeated experiment, 5g was treated with excess 6m to furnish 9k in 75% yield. Reduction of 9c with NaBH₄ in MeOH at room temperature afforded the N(1)-benzyl derivative 10e in 93% yield (*Path A*). The additional N(1)-alkyl derivatives 10 were prepared by an one-pot procedure *via in situ* formation of azomethine imines 9, followed by subsequent reduction with NaBH₄. In this manner, a series of ten N(1)-alkylated 4-{[(benzyloxy)carbonyl]amino}pyrazolidin-3-ones 10

Table 1. Yields of Compounds 5a-5j

Compound	\mathbf{R}^1	\mathbb{R}^2	Yield [%] ^a)
5a	Н	Н	62
5b	Pr	Н	45
5c	ⁱ Pr	Н	83 [24]
5d	Me	Me	69
5e	$-(CH_2)_5-$		23
5f	Ph	Н	85 [20]
5g	$3-NO_2-C_6H_4$	Н	44
5h	$4-NO_2-C_6H_4$	Н	100
5i	$4-Cl-C_6H_4$	Н	43
5j	$2-HO-C_6H_4$	Н	49

^a) Yields of the isolated products.

were obtained (yields, 21-95%; *Path B*). S_N2 -Type alkylation at the amidic N(2)-atom was achieved with alkyl halides **11a**-**11d** in DMF in the presence of K₂CO₃ at room temperature to furnish the fully substituted 4-aminopyrazolidin-3-ones **12** (yields, 45-97%; *Scheme 2* and *Table 2*).

Finally, transformations of the [(benzyloxy)carbonyl]amino group at C(4) were studied. Hydrogenolytic deprotection of the 4-amino function in the Cbz-protected intermediates **5c**, **10d**, **10e**, **12e**, and **12h** gave the free amines **13**, **14a**, **14b**, **15a**, and **15b**, respectively, in almost quantitative yields (*Scheme 3*). When hydrogenolytic deprotection of the 1,5-disubstituted 4-{[(benzyloxy)carbonyl]amino}pyrazolidin-3-ones **10a**

The structures of all novel compounds were determined by spectroscopic methods (IR, ¹H- and ¹³C-NMR, and HR-MS) and by elemental analyses for C, H, and N. Physical and spectroscopic data of known compounds **5a** [21]; **5c**, **9c**, **9d** [24]; and **9h** and **9j** [20] were in agreement with those in the literature. Compounds **5i**, **5j**, **7i** – **7k**, **9k**,

Compound	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	Yield [%]
9a	Н	Н	Benzylidene	-	31
9b	Pr	Н	Benzylidene	-	58
9c	ⁱ Pr	Н	Benzylidene	_	96 [24]
9d	ⁱ Pr	Н	2,6-Dichlorobenzylidene	_	99 [24]
9e	Me	Me	Benzylidene	_	77
9f	Me	Me	2,6-Dichlorobenzylidene		60
9g	Ph	Н	Isopropylidene	_	86
9h	Ph	Н	Benzylidene	_	81 [20]
9i	Ph	Н	3,4,5-Trimethoxybenzylidene	_	79
9j	Ph	Н	2,6-Dichlorobenzylidene	_	74 [20]
9k	$3-NO_2-C_6H_4$	Н	(D_6) Isopropylidene	-	75
10a	Н	Н	ⁱ Pr	-	90 ^a)
10b	ⁱ Pr	Н	Bu	-	21 ^a)
10c	ⁱ Pr	Н	ⁱ Bu	-	48 ^a)
10d	ⁱ Pr	Н	ⁱ Pr	-	92ª)
10e	ⁱ Pr	Н	Bn	_	56 ^a), 93 ^b)
10f	Me	Me	Bn	_	53 ^a)
10g	Ph	Н	Bu	_	63 ^a)
10h	Ph	Н	ⁱ Bu	_	78 ^a)
10i	Ph	Н	ⁱ Pr	_	21 ^a)
10j	Ph	Н	Bn	_	95
12a	ⁱ Pr	Н	ⁱ Pr	Me	61
12b	ⁱ Pr	Н	ⁱ Pr	Bn	45
12c	ⁱ Pr	Н	ⁱ Pr	CH ₂ COOEt	76
12d	ⁱ Pr	Н	ⁱ Pr	CH ₂ COO ^t Bu	53
12e	ⁱ Pr	Н	Bn	Me	70
12f	ⁱ Pr	Н	Bn	Bn	73
12g	ⁱ Pr	Н	Bn	CH ₂ COOEt	97
12h	Ph	Н	Bn	Me	50

Table 2. Yields of Compounds 9, 10, and 12

^a) Obtained by a one-pot procedure from **5**. ^b) Obtained by reduction of **9c**.

10c, **10h**, **12d**, **12h**, **14a**, **14b**, **15a**, **15b**, **16a** – **16i**, and **17** were not obtained in analytically pure form. Their identities were confirmed by ¹³C-NMR and HR-MS analyses.

The spectroscopic data of the pyrazolidinones 5, 10, and 12–19, and azomethine imines 9 were in agreement with those in the literature reported for closely related compounds [4] [19] [20] [24]. In solution, pyrazolidinone derivatives 5, 9, 10, and 12–19 can equilibrate between the two envelope conformers A and C via the planar conformer B (*Fig.* 2). The conformations in solution were established by ¹H-NMR spectroscopy on the basis of the magnitude of the vicinal coupling constants, ³J(4,5) and ³J(1,5). According to the coupling constants ³ $J(1,5) \approx {}^{3}J(4,5) \approx 11$, the 4,5-disubstituted compounds 5, 13, and 17 occur as envelope conformers A with pseudoaxial H–N(1), H–C(4), and H–C(5) (θ ca. 180°). In contrast, small vicinal coupling constants, ³ $J(4,5) \approx 3$, in 1,2,4,5-tetrasubstituted pyrazolidinones 12, 14–16, 18, and 19 were in agreement with conformer C, where H–C(4) and H–C(5) were pseudoequatorial ($\theta \sim 100^\circ$). The conformation of 1,4,5-trisubstituted compounds 10 was dependent on the substituent at C(5): 10g–10j with a Ph substituent adopted conformation A with

Scheme 3

pseudoaxial H–C(4) and H–C(5) (${}^{3}J(4,5) \approx 11 \text{ Hz}$), while ${}^{3}J(4,5) \approx 7$ in 5-isopropylpyrazolidinones **10b** – **10e** was in agreement with the flat conformer **B** (θ ca. 120°). Similarly, ${}^{3}J(4,5) \approx 5$, in dipoles **9** also supported the planar conformer **B** (*Fig. 2*).

The structures of compounds 9k, 10f, and 18 were determined by X-ray crystallography (*Figs. 3–5*). The conformations of compounds 9k, 10f, and 18 in the solid state were in agreement with the conformations in solution determined by NMR spectroscopy.

Most of the synthesized compounds were also tested for their inhibitory activities on two bacterial peptidoglycan biosynthesis enzymes, MurD ligase (MurD) and Dalanine:D-alanine ligase (DdlB) [25]. The Malachite green assay [26], which detects the orthophosphate generated during enzymatic reactions, was used. Unfortunately, none of the tested compounds inhibited these two enzymes.

3. Conclusions. – In conclusion, a simple five-step method for the synthesis of polyfunctionalized 4-aminopyrazolidin-3-ones from α -(phosphoryl)glycine ester **4b** was developed. The advantage of this method is its simplicity, which is reflected in a

Table 3. Yields of Compounds 13-19

Compound	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	R ⁵	Yield [%]
13	ⁱ Pr	Н	Н	Н	_	100
14a	ⁱ Pr	Н	ⁱ Pr	Н	-	100
14b	ⁱ Pr	Н	Bn	Н	_	90
15a	ⁱ Pr	Н	Bn	Me	_	97
15b	Ph	Н	Bn	Me	_	94
16a	Н	Н	ⁱ Pr	-	ⁱ Pr	100
16b	ⁱ Pr	Н	ⁱ Pr	-	Bu	94
16c	ⁱ Pr	Н	ⁱ Pr	-	ⁱ Pr	100
16d	ⁱ Pr	Н	ⁱ Pr	-	Cyclohexyl	100
16e	ⁱ Pr	Н	ⁱ Pr	-	Pr	96
16f	ⁱ Pr	Н	ⁱ Pr	-	Pentan-2-yl	75
16g	ⁱ Pr	Н	ⁱ Pr	-	Cyclopentyl	99
16h	ⁱ Pr	Н	ⁱ Pr	-	Cycloheptyl	100
16i	ⁱ Pr	Н	ⁱ Pr	-	(Tetrahydrofuran-3-yl)methyl	100
17	_	-	Н	Н	[1,1'-Biphenyl]-4-carbonyl	10
18	-	-	ⁱ Pr	Н	2-Phenylacetyl	83
19	-	-	Bn	Me	2-Phenylacetyl	82

Fig. 2. Conformations of 4-aminopyrazolidin-3-one derivatives 5, 9, 10, and 12-19 in solution

small number of required synthetic steps and building blocks (or reagents). In total, the title compounds are built up in two-to-five steps from phosphorylglycinate **4b**, $NH_2NH_2 \cdot H_2O$, aldehydes or ketones **6**, and alkyl halides **11**. The substitution pattern at N(1), C(5) and 4- NH_2 is controlled by the carbonyl compound **6**, and the substituent at N(2) by the alkyl halide **11**. In summary, this method enables an easy and diverse stepwise functionalization of 4-aminopyrazolidin-3-ones, therefore, it could also be

Fig. 3. *The molecular structure of* **9k**, *showing the atom labelling*. The displacement ellipsoids are drawn with 30% probability, and the H-atoms are shown as small spheres of arbitrary radii.

Fig. 4. *The molecular structure of* **10f**, *showing the atom labelling*. The displacement ellipsoids are drawn with 30% probability, and the H-atoms are indicated as small spheres of arbitrary radii.

Fig. 5. *The molecular structure of* **18**, *showing the atom labelling*. The displacement ellipsoids are drawn with 30% probability, and the H-atoms are indicated as small spheres of arbitrary radii.

useful for the preparation of libraries of diversely functionalized pyrazolidin-3-ones in search for novel bioactive compounds and other applications.

The financial support from the *Slovenian Research Agency* through grants P1-0179 and L1-4039 is gratefully acknowledged. The authors thank Dr. *Didier Blanot* for providing MurD, and Prof. *Ian Chopra* for providing DdlB.

Experimental Part

1. General. Catalytic hydrogenations: Parr Pressure Reaction Hydrogenation Apparatus 500 ml 3916EF. Flash column chromatography (FC) and column chromatography (CC): silica gel (SiO₂; Fluka, silica gel 60; particle size, 0.035 - 0.070 mm). TLC: Aluminium sheets, SiO₂ 60 F₂₅₄ (Fluka). Medium-pressure liquid chromatography (MPLC): Büchi Sepacore Flash Chromatography System (Büchi Fraction Collector C-660, Büchi Pump Module C-605, Büchi Control Unit C-620) on SiO₂ (Merck, LiChroprep[®] Si 60; particle size, 0.015 - 0.025 mm); column dimensions, 36×460 mm; backpressure, 10 bar; detection, UV (254 nm). M.p.: Kofler micro hot stage and Stanford Research Systems MPA100 OptiMelt automated melting-point system; uncorrected. IR Spectra: PerkinElmer Spectrum BX FT-IR spectrophotometer; $\tilde{\nu}$ in cm⁻¹. ¹H- and ¹³C-NMR spectra: Bruker Avance III UltraShield 500 plus instrument (500 and 126 MHz, resp.) in (D₆)DMSO, CDCl₃, and (D₆)acetone; δ in ppm rel. to Me₄Si as internal standard, J in Hz. MS and HR-MS: Agilent 6224 Accurate Mass TOF LC/MS spectrometer; in m/z. Microanalyses: PerkinElmer CHN Analyser 2400 II.

2. Starting Materials. Aldehydes and ketones 6b-6r, alkyl halides 11a-11d, $NH_2NH_2 \cdot H_2O$, diazabicyclo[5.4.0]undec-7-ene (DBU), NaBH₄, NaBH₃CN, 2-ethoxy-1-(ethoxycarbonyl)-1,2-dihydroquinoline (EEDQ), bis(pentafluorophenyl) carbonate (BPC), and 10% Pd/C are commercially available (*Sigma–Aldrich*). Methyl N-[(benzyloxy)carbonyl]-O-tosyl-L-serinate (4a) [27], methyl 2-{[(benzyloxy)carbonyl]amino]-2-(dimethoxyphosphoryl)acetate (4b) [28], 3-substituted methyl 2-{[(benzyloxy)carbonyl]amino]-acrylates 7c-7f [23], benzyl ((3RS,4RS)-3-substituted-5-oxopyrazolidin4-yl)carbamates **5c** [24] and **5f** [20], and (4*RS*,5*RS*)-1-[(*Z*)-arylmethylidene]-4-{[(benzyloxy)carbonyl]amino}-3-oxo-5-substituted-pyrazolidin-1-ium-2-ides **9c**, **9d** [24] and **9h**, **9j** [20] were prepared according to the literature procedures.

3. General Procedure for the Preparation of 3-Substituted Methyl 2-[[(Benzyloxy)carbonyl]amino]acrylates 7 (GP 1). Compounds 7 were prepared according to a slightly modified literature procedure [23]. A mixture of **4b** (16.6 g, 50 mmol), CH₂Cl₂ (200 ml), DBU (52.5 mmol, 7.83 ml), and **6**¹) (50 mmol) was stirred at r.t. for 3-24 h. Volatile components were evaporated *in vacuo*, and the residue was diluted with AcOEt (150 ml) and washed with 1M aq. NaHSO₄ (2 × 70 ml). The combined org. phase was dried (Na₂SO₄), filtered, and the filtrate was evaporated *in vacuo* to give **7**.

3.1. *Methyl* (2E)-2-{[[Benzyloxy]carbonyl]amino]hex-2-enoate (**7b**) [29]. Prepared from **4b** (6.6 g, 20 mmol) and **6b** (1.08 ml, 20 mmol), 3 h. Yield: 5.54 g (100%). Colorless oil. ([29a]: m.p. 38.5°). Spectroscopic data were in agreement with those in the literature [29b][29c].

3.2. *Methyl* (2Z)-2-{[(*Benzyloxy*)*carbonyl*]*amino*]-3-(3-*nitrophenyl*)*prop*-2-*enoate* (**7g**). Prepared from **4b** (1.65 g, 5 mmol) and **6g** (0.755 g, 5 mmol); 3 h. Yield: 0.73 g (41%). White solid. M.p. 105 – 109°. IR (KBr): 3545, 3468, 3412, 3287, 3234, 1715, 1697, 1617, 1531, 1455, 1409, 1352, 1293, 1239, 1214, 1147, 1061, 1029, 967, 899, 834, 818, 772, 738, 696, 618. ¹H-NMR (CDCl₃): 3.87 (*s*, Me); 5.07 (*s*, CH₂); 6.76 (br. *s*, NH); 7.23 – 7.40 (*m*, 5 H, Ph); 7.33 (*s*, H–C(3)); 7.46 (*t*, *J* = 8.0, 1 H, C₆H₄); 7.74 (*d*, *J* = 7.6, 1 H, C₆H₄); 8.31 (*s*, 1 H, C₆H₄). ¹³C-NMR (CDCl₃): 53.3; 68.1; 123.7; 124.2; 125.9; 127.2; 128.6; 128.7; 128.8; 129.5; 135.2; 135.7; 136.1; 148.4; 153.0; 165.3. ESI-MS: 357 ([*M* + H]⁺). HR-ESI-MS: 357.1081 ([*M* + H]⁺, C₁₈H₁₇N₂O₆⁺; calc. 357.1081). Anal. calc. for C₁₈H₁₆N₂O₆ (356.33): C 60.67, H 4.53, N 7.86; found: C 60.87, H 4.61, N, 7.87.

3.3. *Methyl* (2Z)-2-{[(*Benzyloxy*)*carbonyl*]*amino*]-3-(4-*nitrophenyl*)*prop*-2-*enoate* (**7h**) [30]. Prepared from **4b** (3.31 g, 10 mmol) and **6h** (1.37 g, 9 mmol), 3 h. The crude **7h** was further purified by CC (AcOEt/hexanes 1:9). Yield: 2.1 g (58%). Yellow solid. M.p. $110-114^{\circ}$ ([6]: m.p. $124-126^{\circ}$). IR (KBr): 3258, 1733, 1698, 1641, 1597, 1520, 1508, 1490, 1455, 1438, 1346, 1311, 1287, 1273, 1240, 1209, 1189, 1146, 1071, 863, 849, 770, 748, 695, 670. ¹H-NMR (CDCl₃): 3.87 (*s*, Me); 5.06 (*s*, CH₂); 6.78 (br. *s*, NH); 7.28–7.37 (*m*, 5 arom. H); 7.31 (*s*, H–C(3)); 7.55, 8.10 (2*d*, 1:1, *J* = 8.7, C₆H₄). ¹³C-NMR (CDCl₃): 53.3; 68.0; 123.8; 126.6; 128.7; 128.7; 128.8; 130.0; 130.0; 135.7; 141.0; 147.4; 165.2. ESI-MS: 357 ([*M* + H]⁺). HR-ESI-MS: 357.1079 ([*M* + H]⁺, C₁₈H₁₇N₂O₆⁺; calc. 357.1081). Anal. calc. for C₁₈H₁₆N₂O₆ (356.33): C 60.67, H 4.53, N 7.86; found: C 60.42, H 4.43, N 7.83.

3.4. *Methyl* (2Z)-2-{[(*Benzyloxy*)*carbonyl*]*amino*]-3-(4-*chlorophenyl*)*prop*-2-*enoate* (7i) [31]. Prepared from 4b (3.31 g, 10 mmol) and 6i (1.69 g, 12 mmol); 3 h. Yield: 3.45 g (100%). Brown oil. IR (NaCl): 3260, 3068, 3033, 2952, 2980, 1718, 1691, 1645, 1591, 1508, 1488, 1455, 1437, 1404, 1389, 1375, 1313, 1266, 1212, 1144, 1088, 1064, 1029, 101, 993, 962, 918, 902, 875, 849, 824, 774, 752, 698, 652. ¹H-NMR (CDCl₃): 3.80 (*s*, Me); 5.09 (*s*, CH₂); 6.54 (br. *s*, NH); 7.25–7.42 (*m*, Ph, C₆H₄); 7.29 (*s*, H–C(3)). ¹³C-NMR (CDCl₃): 53.0; 67.8; 124.4; 127.2; 128.5; 128.5; 128.7; 129.0; 129.6; 131.1; 131.1; 165.8; 191.1. ESI-MS: 346 ([M + H]⁺). HR-ESI-MS: 346.0845 ([M + H]⁺, C₁₈H₁₇CINO⁴; calc. 346.0841).

3.5. *Methyl* (2Z)-2-{[(*Benzyloxy*)*carbonyl*]*amino*}-3-(2-*hydroxyphenyl*)*prop*-2-*enoate* (**7**). Prepared from **4b** (6.29 g, 19 mmol) and **6**j (2 ml, 19 mmol), 3 h. Yield: 5.46 g (88%). Colorless oil. IR (NaCl): 3336, 3315, 3065, 3033, 2952, 2851, 1693, 1633, 1603, 1486, 1454, 1436, 1382, 1358, 1339, 1307, 1220, 113, 1102, 1048, 1027, 992, 945, 898, 852, 816, 752, 696, 617. ¹H-NMR (CDCl₃): 3.74 (*s*, Me); 5.10 (*s*, CH₂); 5.23 (*s*, OH); 6.80–6.90 (*m*, 2 arom. H); 7.27–7.43 (*m*, 7 arom. H); 7.32 (*s*, H–C(3)). ¹³C-NMR (CDCl₃): 52.8; 67.9; 116.8; 120.6; 128.4; 128.5; 128.7; 128.9; 130.8; 133.9; 137.2; 153.8; 158.7; 166.0. ESI-MS: 328 ([M + H]⁺). HR-ESI-MS: 328.1185 ([M + H]⁺, C₁₈H₁₈NO⁺₅; calc. 328.1179).

3.6. *Methyl* (2Z)-2-*{*[(*Benzyloxy*)*carbonyl*]*amino*]-3-(3,4,5-*trimethoxyphenyl*)*prop*-2-*enoate* (**7k**). Prepared from **4b** (3.31 g, 10 mmol) and **6k** (1.78 g, 9.1 mmol), 3 h. The crude **7k** was purified by CC (AcOEt/hexanes 1:9). Yield: 2.22 g (55%). White solid. M.p. 114–119°. IR (KBr): 3305, 2997, 2946, 2842, 1719, 1639, 1581, 1505, 1455, 1435, 1418, 1388, 1334, 1312, 1262, 1240, 1191, 1159, 1128, 1053, 1001,

¹⁾ In the reactions of **4b** with acetone **6d** and cyclohexanone **6e**, these two ketones were also used as solvents (200 ml each) instead of CH_2Cl_2 .

755, 698, 667. ¹H-NMR (CDCl₃): 3.72, 3.83, 3.87 (4*s*, 1:2:1, 4 Me); 5.13 (*s*, CH₂); 6.30 (br. *s*, NH); 6.78 (*s*, C₆H₂); 7.31 (*s*, H–C(3)); 7.32 – 7.40 (*m*, Ph). ¹³C-NMR (CDCl₃): 52.8; 56.0; 56.0; 61.0; 67.7; 107.2; 107.2; 123.5; 128.3; 128.5; 128.7; 129.0; 132.6; 136.0; 139.3; 153.1; 153.1; 154.1; 165.9. ESI-MS: 402 ([M + H]⁺). HR-ESI-MS: 402.1541 ([M + H]⁺, C₂₁H₂₄NO^{\ddagger}; calc. 402.1547).

4. *Benzyl* (4RS)-(3-Oxopyrazolidin-4-yl)carbamate (**5a**). This compound was prepared following a slightly modified literature procedure for the synthesis of the *t*-Bu analog [22]. A mixture of **4a** (4.07 g, 10 mmol), MeOH (50 ml), and NH₂NH₂·H₂O (1.5 ml, 30 mmol) was refluxed for 1 h. The volatile components were evaporated *in vacuo*, the residue was taken up in 1M aq. NaHCO₃ (30 ml), and the product was isolated by continuous extraction with CHCl₃ (100 ml). The precipitate was collected by filtration to give **5** [1]. Yield: 1.46 g (62%). Beige solid. M.p. 151–154° ([21]: 155–156°).

5. General Procedures for the Preparation of Pyrazolidin-3-ones 5 (GP 2). A mixture of 7 (20 mmol), alcohol (30 ml), and $NH_2NH_2 \cdot H_2O$ (3–5 equiv.) was stirred at r.t. or at reflux for 3–336 h.

Workup A: General Procedure 2A (GP 2A). The precipitate was collected by filtration and washed with the mother liquor and hexanes to give **5**. *Workup B: General Procedure 2B (GP 2B).* Volatile components were evaporated *in vacuo*, and the

Workup B: General Procedure 2B (GP 2B). Volatile components were evaporated *in vacuo*, and the residue was purified by CC (AcOEt). Fractions containing the product were combined and evaporated *in vacuo* to give **5**.

5.1. *Benzyl* [(4RS,5RS)-3-*Oxo-5-propylpyrazolidin-4-yl*]*carbamate* (**5b**). Prepared from **7b** (4.33 g, 15.6 mmol), NH₂NH₂·H₂O (2.28 ml, 47 mmol), and PrOH (30 ml); r.t. for 3 h; *GP 2A*. Yield: 1.94 g (45%). White solid. M.p. 178–182°. IR (KBr): 3440, 3327, 3207, 2959, 2932, 1718, 1695, 1661, 1639, 1541, 1456, 1420, 1364, 1297, 1279, 1257, 1241, 1168, 1064, 776, 755, 730, 696. ¹H-NMR ((D₆)DMSO): 0.85 (t, J = 7.3, Me); 1.20–1.41, 1.42–1.58 (2m, 1:1, 2 CH₂); 3.15 (dt, J = 6.7, 11.1, H–C(5)); 3.95 (dd, J = 9.5, 11.1, H–C(4)); 4.90 (d, J = 11.4, H–N(1)); 5.04, 5.06 (2d, 1:1, J = 12.4, CH₂); 7.28–7.40 (m, 5 arom. H); 7.54 (d, J = 9.5, HN–C(4)); 9.21 (s, H–N(2)). ¹³C-NMR ((D₆)DMSO): 14.0; 18.8; 32.9; 57.7; 62.8; 65.5; 127.7; 127.9; 128.4; 137.1; 156.3; 173.9. ESI-MS: 278 ([M + H]⁺). HR-ESI-MS: 278.1501 ([M + H]⁺, C₁₄H₂₀N₃O₃⁺; calc. 278.1505). Anal. calc. for C₁₄H₁₉N₃O₃·1/5 H₂O (280.92): C 59.86, H 6.96, N 14.96; found: C 59.83, H 6.61, N 15.07.

5.2. *Benzyl* [(4RS)-3,3-*Dimethyl-5-oxopyrazolidin-4-yl*]*carbamate* (**5d**). Prepared from **7d** (5.26 g, 20 mmol), NH₂NH₂· H₂O (2.92 ml, 60 mmol), and PrOH (30 ml); reflux for 10 h; *GP* 2*B*. Yield: 3.66 g (69%). White solid. M.p. 122–129°. IR (KBr): 3293, 3216, 3067, 3036, 2974, 2937, 1728, 1688, 1680, 1545, 1497, 1448, 1388, 1369, 1326, 1262, 1249, 1217, 1052, 1020, 1009, 982, 881, 805, 774, 756, 699. ¹H-NMR ((D₆)DMSO): 0.91, 1.15 (2*s*, 1:1, 2 Me); 4.16 (*d*, J=9.4, H–C(4)); 5.06 (*s*, CH₂); 5.07 (*d*, J=3.8, H–N(1)); 7.29–7.41 (*m*, 5 arom. H); 7.47 (*d*, J=9.4, HN–C(4)); 9.14 (*s*, H–N(2)). ¹³C-NMR ((D₆)DMSO): 20.3; 23.9; 30.7; 61.1; 65.7; 127.8; 127.9; 128.4; 137.0; 156.8; 174.2. ESI-MS: 264 ([*M* + H]⁺). HR-ESI-MS: 264.1339 ([*M* + H]⁺, C₁₃H₁₈N₃O⁺₃; calc. 264.1348). Anal. calc. for C₁₃H₁₇N₃O₃ (263.29): C 59.30, H 6.51, N 15.96; found: C 59.50, H 6.31, N 15.74.

5.3. *Benzyl* [(4RS)-3-*Oxo-1*,2-*diazaspiro*[4.5]*dec*-4-*yl*]*carbamate* (**5e**). Prepared from **7e** (303 mg, 1 mmol), NH₂NH₂·H₂O (0.146 ml, 3 mmol), and EtOH (1.5 ml), r.t. for 336 h, *GP 2B*. Yield: 70 mg (23%). White solid. M.p. 160–164°. IR (KBr): 3297, 3230, 3066, 3066, 2936, 2850, 1728, 1682, 1544, 1448, 1386, 1264, 1243, 1217, 1098, 1080, 1050, 754, 698. ¹H-NMR (CDCl₃): 1.09–1.33 (*m*, CH₂); 1.38–1.69 (*m*, 3 CH₂); 1.75 (*d*, J = 14.2, 1 H, CH₂); 1.96 (*dt*, J = 3.7, 13.9, 1 H, CH₂); 3.91 (*s*, H–N(1)); 4.29 (*d*, J = 6.9, H–C(4)); 5.11, 5.15 (2*d*, 1:1, J = 12.2, CH₂); 5.21 (*d*, J = 6.9, HN–C(4)); 6.91 (*s*, H–N(2)); 7.27–7.47 (*m*, 5 arom. H). ¹³C-NMR ((D₆)DMSO): 21.3; 22.0; 25.6; 26.8; 35.1; 61.7; 66.6; 67.6; 128.4; 128.5; 128.8; 136.2; 157.0; 175.8. ESI-MS: 304 ([M + H]⁺). HR-ESI-MS: 304.1655 ([M + H]⁺, C₁₆H₂₂N₃O₃⁺; calc. 304.1656). Anal. calc. for C₁₆H₂₁N₃O₃ (303.36): C 63.35, H 6.98, N 13.85; found: C 63.12, H 7.09, N 13.78.

5.4. *Benzyl* [(3RS,4RS)-3-(3-Nitrophenyl)-5-oxopyrazolidin-4-yl]carbamate (**5**g). Prepared from **7**g (1.78 g, 5 mmol), NH₂NH₂· H₂O (2.28 ml, 47 mmol), and EtOH (13 ml); r.t. for 5 h; *GP* 2A. Yield: 780 mg (44%). Yellow solid. M.p. 146–151°. IR (KBr): 3260, 1726, 1695, 1646, 1616, 1574, 1527, 1506, 1480, 1458, 1440, 1354, 1310, 1285, 1256, 1240, 1214, 1144, 1088, 1064, 998, 929, 865, 826, 773, 752, 735, 701, 670. ¹H-NMR ((D₆)DMSO): 4.42 (t, J =9.7, H–C(4)); 4.50 (t, J =10.4, H–C(5)); 5.03 (br. s, CH₂); 5.66 (d, J =10.4, H–N(1)); 7.26–7.38 (m, 5 arom. H); 7.70 (br. t, J =7.9, 1 H, C₆H₄); 7.81 (br. d, J =8.6, HN–C(4)); 7.70 (br. d, J =7.8, 1 H, C₆H₄); 8.18–8.24 (m, 1 H, C₆H₄); 8.34 (br. t, J =2.0, 1 H, C₆H₄); 9.62 (s, H–N(2)). ¹³C-NMR ((D₆)DMSO): 58.0; 65.0; 65.7; 121.9; 123.1; 127.7; 127.9; 128.4; 130.2; 134.1; 136.8;

139.4; 147.9; 156.2; 172.1. ESI-MS: 357 ($[M + H]^+$). HR-ESI-MS: 357.12 ($[M + H]^+$, $C_{17}H_{17}N_4O_5^+$; calc. 357.1193). Anal. calc. for $C_{17}H_{16}N_4O_5$ (356.33): C 57.30, H 4.53, N 15.72; found: C 57.06, H 4.43, N 15.64.

5.5. *Benzyl* [(3RS,4RS)-3-(4-Nitrophenyl)-5-oxopyrazolidin-4-yl]carbamate (**5h**). Prepared from **7h** (356 mg, 1 mmol), NH₂NH₂· H₂O (0.146 ml, 3 mmol), and EtOH (5 ml); r.t. for 24 h; *GP* 2A. Yield: 356 mg (100%). Yellow solid. M.p. 184–190°. IR (KBr): 3478, 3411, 3340, 3234, 3183, 1719, 1697, 1606, 1521, 1456, 1348, 1288, 1242, 1181, 1148, 1108, 1052, 952, 850, 832, 748, 698, 669. ¹H-NMR ((D₆)DMSO): 4.39 (*t*, *J* = 9.9, H–C(4)); 4.48 (*t*, *J* = 10.7, H–C(5)); 5.01, 5.04 (2d, 1:1, *J* = 12.6, CH₂); 5.67 (*d*, *J* = 10.7, H–N(1)); 7.25 – 7.40 (*m*, 5 arom. H); 7.72 (*d*, *J* = 8.5, 2 H, C₆H₄); 7.83 (*d*, *J* = 9.9, HN–C(4)); 8.25 (*d*, *J* = 8.5, 2 H, C₆H₄); 9.7 (br. *s*, H–N(2)). ¹³C-NMR ((D₆)DMSO): 58.1; 65.2; 65.8; 123.7; 127.8; 128.0; 128.4; 128.6; 136.8; 144.9; 147.3; 156.2; 172.0. ESI-MS: 357 ([*M* + H]⁺). HR-ESI-MS: 357.1195 ([*M* + H]⁺, C₁₇H₁₇N₄O₅⁺; calc. 357.1193). Anal. calc. for C₁₇H₁₆N₄O₅· 1/5 H₂O (359.54): C 56.73, H 4.59, N 15.57; found: C 56.56, H 4.22, N 15.51.

5.6. *Benzyl* [(3RS,4RS)-3-(4-*Chlorophenyl*)-5-oxopyrazolidin-4-yl]carbamate (**Si**). Prepared from **7i** (417 mg, 1.2 mmol), NH₂NH₂· H₂O (0.176 ml, 3.6 mmol), and MeOH (2 ml); r.t. for 24 h; *GP* 2A. Yield: 148 mg (43%). Pale-yellow solid. M.p. 193–197°. IR (KBr): 3336, 3217, 3188, 1780, 1719, 1694, 1660, 1538, 1494, 1466, 1454, 1418, 1356, 1292, 1244, 1216, 1201, 1181, 1152, 1091, 1071, 1056, 1028, 1015, 963, 917, 857, 827, 773, 732, 707, 694, 645. ¹H-NMR ((D₆)DMSO): 4.32 (t, J = 11.1, H–C(5)); 4.40 (dd, J = 9.0, 11.1, H–C(4)); 4.99, 5.05 (2d, 1:1, J = 12.5, CH₂); 5.44 (d, J = 11.1, H–N(1)); 7.30–7.37 (m, 5 H, Ph); 7.43–7.48 (m, 4 H, C₆H₄); 7.73 (d, J = 9.0, HN–C(4)); 9.54 (s, H–N(2)). ¹³C-NMR ((D₆)DMSO): 577; 65.3; 65.6; 127.8; 128.3; 128.5; 129.3; 131.1; 132.7; 135.9; 136.8; 156.2; 172.6. ESI-MS: 346 ([M + H]⁺). HR-ESI-MS: 346.0951 ([M + H]⁺, C₁₇H₁₇ClN₃O⁺₃; calc. 346.0953).

5.7. Benzyl [(3RS,4RS)-3-(2-Hydroxyphenyl)-5-oxopyrazolidin-4-yl]carbamate (**5j**). Prepared from 7**j** (4.08 g, 12.5 mmol), NH₂NH₂· H₂O (2.44 ml, 50 mmol), and EtOH (40 ml); r.t. for 24 h; $GP 2A^2$). Yield: 1.99 g (49%). White solid. M.p. 110–115°. IR (KBr): 3324, 2929, 1728, 1696, 1632, 1606, 1573, 1536, 1489, 1459, 1450, 1382, 1360, 1321, 1297, 1277, 1248, 1229, 1205, 1183, 1166, 1119, 1085, 1042, 1000, 992, 943, 926, 891, 852, 758, 738, 715, 696. ¹H-NMR ((D₆)DMSO): 4.51 (t, J = 10.9, H–C(5)); 4.65 (br. t, J = 10.0, H–C(4)); 4.95, 5.00 (2d, 1:1, J = 12.5, CH₂); 5.23 (br. d, J = 11.3, H–N(1)); 6.79 (t, J = 7.5, 1 H, C₆H₄); 6.84 (t, J = 8.0, 1 H, C₆H₄); 6.84 (t, J = 8.0, 1 H, C₆H₄); 7.15 (dt, J = 1.7, 7.7, 1 H, C₆H₄); 7.27–7.38 (m, 5 arom. H); 7.62 (d, J = 9.2, HN–C(4)); 9.44 (s, H–N(2)); 9.88 (s, OH). ¹³C-NMR ((D₆)DMSO): 55.6, 64.1, 65.4, 115.6, 118.4, 119.0, 123.8, 127.8, 128.3, 128.3, 136.9, 137.0, 156.1, 156.3, 169.2. ESI-MS: 328 ([M + H]⁺). HR-ESI-MS: 328.1285 ([M + H]⁺, C₁₇H₁₈N₃O⁺; calc. 328.1292).

6. General Procedures for the Preparation of Azomethine Imines 9 (GP 3). Compounds 9 were prepared following a slightly modified literature procedure [20][24]. A mixture of 5 (1 mmol), MeOH (4 ml), and 6 (1.2 mmol) was stirred at r.t. for 5 min. Then, CF₃COOH (TFA, 2 drops) was added, and the mixture was stirred at r.t. or at reflux for 1-24 h.

Workup A: General Procedure 3A (GP 3A). The precipitate was collected by filtration and washed with EtOH (2 ml) and Et_2O (5 ml) to give **9**.

Workup B: General Procedure 3B (GP 3B). Volatile components were evaporated *in vacuo*, and the residue was purified by CC (AcOEt/EtOH). Fractions containing the product were combined, and the solvent was evaporated *in vacuo* to give **9**.

6.1. (2Z,4RS)-2-Benzylidene-4-{[(benzyloxy)carbonyl]amino}-5-oxopyrazolidin-2-ium-1-ide (**9a**). Prepared from **5a** (0.118 g, 0.5 mmol), **6f** (0.061 ml, 0.5 mmol), and MeOH (5 ml); r.t. for 24 h; *GP* 3A. Yield: 50 mg (31%). Pale-yellow solid. M.p. 175–177°. IR (KBr): 3419, 3216, 3028, 2959, 1703, 1664, 1600, 1539, 1494, 1452, 1430, 1370, 1325, 1305, 1264, 1212, 1153, 1114, 1085, 1011, 1000, 936, 871, 851, 768, 729, 701, 658, 614. ¹H-NMR ((D₆)DMSO): 4.31 (*dd*, J = 6.5, 13.4, H_a–C(5)); 4.41–4.47 (*m*, H–C(4)); 4.83 (*dd*, J = 9.6, 13.4, H_b–C(5)); 5.05 (*s*, CH₂); 7.29–7.41 (*m*, 5 arom. H); 7.50–7.59 (*m*, 3 arom. H); 7.73 (*s*, H–C(1')); 7.82 (*d*, J = 8.0, HN–C(4)); 8.26–8.35 (*m*, 2 arom. H); ¹³C-NMR ((D₆)DMSO): 50.2; 61.5; 65.6; 127.8; 127.9; 128.4; 128.8; 129.6; 131.2; 131.5; 133.3; 136.9; 156.0; 181.6. ESI-MS: 324

²) H₂O (50 ml) was added to induce precipitation.

 $([M+H]^+)$. HR-ESI-MS: 324.1346 $([M+H]^+, C_{18}H_{18}N_3O_3^+; calc. 324.1343)$. Anal. calc. for $C_{18}H_{17}N_3O_3$ (323.35): C 66.86, H 5.30, N 13.00; found: C 66.61, H 5.42, N 13.13.

6.2. (2Z,3RS,4RS)-2-Benzylidene-4-[[(benzyloxy)carbonyl]amino]-5-oxo-3-propylpyrazolidin-2ium-1-ide (**9b**). Prepared from **5b** (0.277 g, 1 mmol), **6f** (0.122 ml, 1.2 mmol), and MeOH (5 ml); reflux for 12 h; *GP* 3*A*. Yield: 210 mg (58%). Yellow solid. M.p. 177–181°. IR (KBr): 3184, 3055, 2960, 2874, 1718, 1656, 1591, 1569, 1557, 1456, 1438, 1362, 1326, 1268, 1156, 1096, 1036, 1006, 758, 737, 689. ¹H-NMR ((D₆)DMSO): 0.93 (t, J = 7.1, Me); 1.37–1.47 (m, 2 H, Pr); 1.84–1.95, 2.05–2.18 (2m, 1:1, 2 H, Pr); 4.12 (dd, J = 4.1, 8.4, H-C(4)); 4.49 (dt, J = 4.1, 8.5, H-C(5)); 5.05 (s, CH_2); 7.19–7.40 (m, 5 arom. H); 7.54– 7.56 (m, 3 arom. H); 7.79 (s, H-C(1')); 7.89 (d, J = 8.4, HN-C(4)); 8.34–8.36 (m, 2 arom. H). ¹³C-NMR ((D₆)DMSO): 13.6; 17.4; 35.4; 55.5; 65.6; 73.4; 127.8; 127.9; 128.4; 128.7; 129.7; 131.5; 131.6; 133.2; 136.9; 155.9; 180.1. ESI-MS: 366 ([M + H]⁺). HR-ESI-MS: 366.1804 ([M + H]⁺, C₂₁H₂₄N₃O₃⁺; calc. 366.1818). Anal. calc. for C₂₁H₂₃N₃O₃·1/6 H₂O (368.43): C 68.46, H 6.38, N 11.41; found: C 69.02, H 6.34, N 11.50.

6.3. (2Z,4RS)-2-Benzylidene-4-{[(benzyloxy)carbonyl]amino}-3,3-dimethyl-5-oxopyrazolidin-2ium-1-ide (**9e**). Prepared from **5d** (1.32 g, 5 mmol), **6f** (0.61 ml, 6 mmol), and MeOH (25 ml); reflux fot 3 h; *GP* 3*A*. Yield: 1.35 g (77%). Pale-yellow solid. M.p. 200–204°. IR (KBr): 3549, 3466, 3412, 3311, 3048, 2975, 2958, 1720, 1699, 1666, 1593, 1570, 1541, 1453, 1418, 1399, 1377, 1360, 1327, 1304, 1277, 1239, 1214, 1083, 1069, 1050, 984, 908, 758,3 694, 676, 648. ¹H-NMR ((D₆)DMSO): 1.42, 1.75 (2*s*, 1 : 1, 2 Me); 4.37 (*d*, *J* = 8.9, H–C(4)); 5.07, 5.12 (2*d*, 1 : 1, *J* = 12.6, CH₂); 7.31–7.39 (*m*, 5 arom. H); 7.54 (*m*, 3 arom. H); 7.83 (*d*, *J* = 8.8, HN–C(4)); 7.87 (*s*, H–C(1')); 8.39 (*dd*, *J* = 2.9, 6.8, 2 arom. H). ¹³C-NMR ((D₆)DMSO): 23.5; 27.0; 59.8; 65.8; 75.0; 127.8; 127.9; 128.4; 128.7; 129.9; 131.6; 131.7; 132.0; 136.9; 156.9; 178.5. ESI-MS: 352 ([*M* + H]⁺). HR-ESI-MS: 352.1659 ([*M* + H]⁺, C₂₀H₂₂N₃O⁺₃; calc. 352.1661). Anal. calc. for C₂₀H₂₁N₃O₃ (351.40): C 68.36, H 6.02, N 11.96; found: C 68.08, H 5.77, N 11.75.

6.4. (2Z,4RS)-4-{[(Benzyloxy)carbonyl]amino]-2-(2,6-dichlorobenzylidene)-3,3-dimethyl-5-oxopyrazolidin-2-ium-1-ide (**9f**). Prepared from **5d** (527 mg, 2 mmol), **6l** (0.42 g, 2.4 mmol), and MeOH (40 ml); reflux for 4.5 h; *GP* 3A. Yield: 508 mg (60%). Pale-yellow solid. M.p. 195–199°. IR (KBr): 3284, 3038, 2979, 2935, 1730, 1702, 1679, 1587, 1538, 1498, 1455, 1432, 1397, 1373, 1348, 1311, 1279, 1234, 1392, 1108, 1082, 1058, 1013, 930, 879, 816, 774, 734, 965. ¹H-NMR (CDCl₃): 1.60, 2.05 (2*s*, 1 : 1, 2 Me); 4.52 (*d*, J = 4.3, H–C(4)); 5.12, 5.16 (2*d*, 1 : 1, J = 12.3, CH₂); 5.53 (*d*, J = 3.4, NH); 7.30–7.40 (*m*, 8 H, Ph, C₆H₃); 7.35 (*s*, H–C(1')). ¹³C-NMR (CDCl₃): 24.6; 27.0; 61.3; 67.5; 77.8; 127.8; 128.1; 128.2; 128.2; 128.3; 128.4; 128.4; 128.8; 132.2; 134.8; 136.1; 157.5; 179.0. ESI-MS: 420 ([M + H]⁺). HR-ESI-MS: 420.0879 ([M + H]⁺, C₂₀H₂₀Cl₂N₃O₃⁺; calc. 420.0876). Anal. calc. for C₂₀H₁₉Cl₂N₃O₃ (420.29): C 57.15, H 4.56, N 10.00; found: C 56.88, H 4.40, N 9.96.

6.5. (3RS,4RS)-4-[[(Benzyloxy)carbonyl]amino]-5-oxo-3-phenyl-2-(propan-2-ylidene)pyrazolidin-2-ium-1-ide (**9g**). Prepared from **5f** (0.31 g, 1 mmol), **6d** (1 ml), and MeOH (4 ml); r.t. for 24 h; *GP* 3B, AcOEt/EtOH 5 :1. Yield: 0.30 g (86%). White solid. M.p. 176–177°. IR (KBr): 3458, 3202, 3030, 2978, 2923, 1724, 1674, 1607, 1566, 1498, 1489, 1454, 1438, 1372, 1357, 1298, 1267, 1152, 1124, 1094, 1063, 1024, 778, 764, 732, 708, 694, 654. ¹H-NMR ((D₆)DMSO): 1.96, 2.31 (2s, 1:1, Me); 3.90 (dd, J = 2.7, 8.0, H–C(4)); 5.04, 5.08 (2d, 1:1, J = 12.5, CH₂); 5.70 (br. *s*, H–C(5)); 7.24–7.47 (*m*, 10 arom. H); 8.11 (d, J = 8.0, NH). ¹³C-NMR ((D₆)DMSO): 20.8; 22.3; 62.7; 65.7; 73.5; 125.3; 127.9; 127.9; 128.4; 128.4; 129.4; 136.8; 137.7; 151.9; 156.1; 176.7. ESI-MS: 352 ([M + H]⁺). HR-ESI-MS: 352.1644 ([M + H]⁺, C₂₀H₂₂N₃O₃⁺; calc. 352.1661). Anal. calc. for C₂₀H₂₁N₃O₃·1/4 H₂O (355.90): C 67.49, H 6.09, N 11.81; found: C 67.49, H 6.07, N 11.72.

6.6. $(2Z_3RS_4RS)$ -4-[[(Benzyloxy)carbonyl]amino]-5-oxo-3-phenyl-2-(3,4,5-trimethoxybenzylidene)pyrazolidin-2-ium-1-ide (9i). Prepared from 5f (0.31 g, 1 mmol), 6k (236 mg, 1.2 mmol), and EtOH (4 ml); reflux for 1 h; *GP* 3*A*. Yield: 385 mg (79%). Pale-yellow solid. M.p. 159–163°. IR (KBr): 3411, 3027, 3007, 2970, 2940, 1715, 1662, 1595, 1504, 1456, 1427, 1375, 1334, 1272, 1249, 1159, 1128, 1041, 1002, 778, 743, 697, 643. ¹H-NMR (CDCl₃): 3.86, 3.91 (2*s*, 2 : 1, 3 Me); 4.53 (br. *t*, *J* = 5.4, H–C(4)); 5.08 (*s*, CH₂); 5.55 (br. *d*, *J* = 5.4, H–C(5)); 6.06 (br. *s*, NH); 6.75 (*s*, H–C(1')); 720–7.54 (*m*, 12 H, Ph, C₆H₂). ¹³C-NMR (CDCl₃): 56.6; 60.6; 61.3; 67.4; 79.6; 106.9; 109.8; 124.0; 127.6; 128.2; 128.4; 128.7; 129.9; 136.2; 136.5; 142.3; 153.2; 153.8; 179.3; 191.3. ESI-MS: 490 ([*M* + H]⁺). HR-ESI-MS: 490.1969 ([*M* + H]⁺, C₂₇H₂₈N₃O₆⁺; calc. 490.1973). Anal. calc. for C₂₇H₂₇N₃O₆·1/3 H₂O (459.52): C 65.44 H, 5.63, N 8.48; found: C 65.27, H 5.87, N 8.50. 6.7. (3RS,4RS)-4-{[(Benzyloxy)carbonyl]amino}-3-(3-nitrophenyl)-5-oxo-2-[(²H₆)propan-2-ylidene]pyrazolidin-2-ium-1-ide (**9k**). A mixture of **5g** (178 mg, 0.5 mmol) and (D₆)acetone **6m** (1 ml) was stirred at r.t. for 24 h. The precipitate was collected by filtration to give **9k**. Yield: 151 mg (75%). White solid. M.p. 200–204°. ¹H- and ¹³C-NMR spectra could not be recorded due to insolubility of the product in various solvents including (D₆)DMSO. IR (KBr): 3087, 3032, 3002, 2969, 1697, 1669, 1615, 1527, 1456, 1419, 1351, 1307, 1260, 1219, 1166, 1110, 1084, 1068, 1038, 978, 958, 923, 895, 828, 810, 781, 758, 739, 716, 701, 685, 670. ESI-MS: 403 ([M+H]⁺). HR-ESI-MS: 403.1875 ([M+H]⁺, C₂₀H₁₄D₆N₄O⁺₅; calc. 403.188).

7. Synthesis of Benzyl [(4RS,5RS)-1-Benzyl-3-oxo-5-(propan-2-yl)pyrazolidin-4-yl]carbamate (10e). A stirred suspension of 9c (0.744 g, 2 mmol) in MeOH (8 ml) was stirred at 0° for 10 min. Then, NaBH₄ (0.115 g, 3 mmol) was added slowly (portionwise), and the mixture was stirred at 0° for 2 h and at r.t. for 2 h. H₂O (30 ml) was added, and the product was extracted with CH₂Cl₂ (5 × 20 ml). The combined org. phases were dried (Na₂SO₄), filtered, and the filtrate was evaporated *in vacuo* to give 10e. Yield: 0.692 g (93%). White solid. M.p. 138–142°. IR (KBr): 3267, 3065, 3035, 2959, 2872, 1725, 1693, 1687, 1558, 1550, 1542, 1497, 1455, 1275, 1261, 1172, 1027, 732, 698, 669. ¹H-NMR ((D₆)DMSO): 0.78, 0.83 (2d, 1:1, J = 6.8, 3 H, ¹Pr); 1.66 (*sept.*, J = 6.5, 1 H, ¹Pr); 2.78 (t, J = 6.0, H–C(5)); 3.84, 3.92 (2d, 1:1, J = 12.9, CH₂); 3.95 (*dd*, J = 6.6, 8.8, H–C(4)); 5.02 (s, CH₂); 7.26–7.38 (m, 10 arom. H); 7.96 (d, J = 8.7, NH); 9.63 (s, H–N(2)). ¹³C-NMR ((D₆)DMSO): 17.3; 18.3; 29.9; 53.6; 63.4; 65.6; 72.1; 127.4; 127.8; 127.9; 128.2; 128.4; 129.4; 136.8; 137.0; 155.8; 169.0. ESI-MS: 368 ([M + H]⁺). HR-ESI-MS: 368.1964 ([M + H]⁺, C₂₁H₂₆N₃O₃; calc. 368.1974). Anal. calc. for C₂₁H₂₅N₃O₃ (367.44): C 68.64, H 6.86, N 11.44; found: C 68.39, H 6.49, N 11.46.

8. General One-Pot Procedure for the Synthesis of 1,5-Disubstituted (4RS,5RS)-4-{[(Benzyloxy)carbonyl]amino}pyrazolidin-3-ones **10** (GP 4). A mixture of **5** (1 mmol), MeOH (5 ml), **6** (1.2 mmol), and CF₃COOH (2 drops) was stirred at r.t. for 10 min. Then, NaBH₄ (0.046 g, 1.2 mmol) or NaBH₃CN (0.076 g, 1.2 mmol) was added, and the mixture was stirred at r.t. or under reflux for 3-100 h.

Workup A: General Procedure 4A (GP 4A). The precipitate was collected by filtration and washed with $Et_2O(5 \text{ ml})$ to give **10**.

Workup B: General Procedure 4B (GP 4B). Volatile components were evaporated *in vacuo*, and the residue was purified by CC (AcOEt/hexanes). Fractions containing the product were combined and evaporated *in vacuo* to give **10**.

8.1. *Benzyl* [(4RS)-3-*Oxo-1-(propan-2-yl)pyrazolidin-4-yl]carbamate* (10a). Prepared from 5a (3.81 g, 16 mmol), 6d (20 ml), and NaBH₄ (850 mg, 22.5 mmol); r.t. for 48 h; *GP* 4A. Yield: 5.81 mg (90%). Pale-yellow solid. M.p. 132–135°. IR (KBr): 3554, 3418, 3308, 3064, 2980, 2811, 1682, 1617, 1548, 1530, 1454, 1390, 1368, 1340, 1291, 1279, 1242, 1176, 1081, 1064, 1026, 1009, 902, 875, 845, 783, 755, 739, 697. ¹H-NMR ((D₆)DMSO): 0.97, 1.00 (2d, 1:1, J = 6.3, Me_2 CH); 2.74, 2.85 (2 br. *s*, 1:1, CH₂); 3.50 (*dd*, J = 10.9, 8.6, H–C(4)); 4.31–4.42 (br. *m*, Me₂CH); 5.04 (*s*, CH₂); 7.27–7.41 (*m*, 5 arom. H); 7.61 (*d*, J = 8.6, NH); 9.60 (*s*, H–N(2)). ¹³C-NMR ((D₆)DMSO): 19.5; 20.2; 51.2; 53.8; 572; 66.0; 128.3; 128.3; 128.8; 137.4; 156.5; 171.5. ESI-MS: 278 ([M +H]⁺). HR-ESI-MS: 278.1499 ([M +H]⁺, C₁₄H₁₉N₃O₃⁺; calc. 278.1499). Anal. calc. for C₁₄H₁₉N₃O₃ (277.32): C 60.63, H 6.91, N 15.15; found: C 60.60, H 7.06, N 15.09.

8.2. *Benzyl* [(4RS,5RS)-1-*Butyl-3-oxo-5-(propan-2-yl)pyrazolidin-4-yl]carbamate* (10b). Prepared from **5c** (0.277 g, 1 mmol), **6b** (0.108 ml, 1.2 mmol), and NaBH₃CN (0.150 g, 2.4 mmol); r.t. for 100 h; *GP* 4B (AcOEt/hexanes 1:1). Yield: 67 g (21%). Pale-yellow solid. M.p. 129–133°. IR (KBr): 3549, 3418, 3318, 3161, 3039, 2963, 2935, 2872, 1725, 1690, 1616, 1540, 1456, 1294, 1246, 1054, 777, 732, 694, 668. ¹H-NMR ((D₆)DMSO): 0.85, 0.90 (2d, 1:1, J = 6.5, Me_3 CH); 0.88 (t, J = 7.1, MeCH₂); 1.20–1.49 (m, 2 CH₂); 1.79 (*sept.*, J = 6.5, Me_2 CH); 2.55–2.75 (m, CH₂); 2.63 (*dd*, J = 5.3, 7.6, H–C(5)); 3.92 (t, J = 8.3, H–C(4)); 5.05 (s, CH₂); 7.29–7.40 (m, 5 arom. H); 7.84 (d, J = 8.8, HN–C(4)); 9.63 (s, H–N(2)). ¹³C-NMR ((D₆)DMSO): 170; 18.2; 18.4; 20.2; 29.6; 30.6; 36.6; 54.8; 67.2; 74.6; 128.2; 128.3; 128.6; 136.2; 145.6; 156.0. ESI-MS: 334 ([M + H]⁺). HR-ESI-MS: 334.2131 ([M + H]⁺, C₁₈H₂₈N₃O₃⁺; calc. 334.2131). Anal. calc. for C₁₈H₂₇N₃O₃·1/5 H₂O (297.03): C 64.15, H 8.19, N 12.47; found: C 64.13, H 8.19, N 12.53.

8.3. *Benzyl* [(4RS,5RS)-1-(2-*Methylpropyl*)-3-oxo-5-(*propan-2-yl*)*pyrazolidin-4-yl*]*carbamate* (**10c**). Prepared from **5c** (0.277 g, 1 mmol), **6c** (0.108 ml, 1.2 mmol), and NaBH₃CN (0.150 g, 2.4 mmol); r.t. for 24 h; *GP 4B* (AcOEt/hexanes 1:1). Yield: 160 mg (48%). Pale-yellow solid. M.p. 168–172°. IR (KBr): 3465, 3412, 3314, 3154, 3036, 2963, 2933, 2877, 1726, 1684, 1615, 1543, 1469, 1458, 1389, 1295, 1286,

1248, 1052, 778, 739, 730, 694. ¹H-NMR ((D₆)DMSO): 0.82, 0.87, 0.89, 0.91 (4*d*, 1 : 1 : 1 : 1, J = 6.7, 12 H, ⁱPr, ⁱBu); 1.72–1.85 (m, 2 H, ⁱPr, ⁱBu); 2.30 (dd, J = 10.7, 11.8, 1 H, CH₂); 2.48 (dd, J = 4.1, 11.8, 1 H, CH₂); 2.61 (dd, J = 5.3, 7.9, H–C(5)); 3.94 (t, J = 8.4, H–C(4)); 5.05 (s, CH₂); 7.28–7.40 (m, 5 arom. H); 7.87 (d, J = 8.9, NH); 9.69 (s, H–N(2)). ¹³C-NMR ((D₆)DMSO): 17.4; 18.4; 20.3; 20.7; 25.7; 29.6; 53.3; 65.5; 68.2; 73.2; 127.8; 127.9; 128.4; 137.0; 155.8; 168.9. ESI-MS: 334 ([M + H]⁺). HR-ESI-MS: 334.2125 ([M + H]⁺, C₁₈H₂₈N₃O[±]; calc. 334.2131).

8.4. *Benzyl* [(4R\$,5R\$)-3-*Oxo-1,5-di*(*propan-2-yl*)*pyrazolidin-4-yl*]*carbamate* (**10d**). Prepared from **5c** (0.554 g, 2 mmol), **6d** (2 ml), and NaBH₃CN (0.150 g, 2.4 mmol); r.t. for 24 h; *GP* 4A. Yield: 136 g (92%). Brownish solid. M.p. 171–176°. IR (KBr): 3413, 3363, 2968, 3183, 3180, 3082, 3070, 3058, 3035, 2968, 2937, 2929, 2900, 2873, 1711, 1690, 1632, 1617, 1524, 1469, 1456, 1389, 1373, 1339, 1284, 1263, 1235, 1049, 1036, 774, 755, 748, 700, 617, 608, 600. ¹H-NMR ((D₆)DMSO): 0.86, 0.89, 0.95, 0.99 (4d, 1:1:1:1, $J = 6.5, 2 Me_2$ CH); 1.74, 2.89 (*2sept.*, 1:1, $J = 6.5, 2 Me_2$ CH); 2.82 (t, J = 5.8, H-C(5)); 3.90 (dd, J = 6.1, 8.6, H-C(4)); 5.03, 5.07 ($2d, 1:1, J = 12.7, CH_2$); 7.30–7.39 (m, 5 arom. H); 7.92 (d, J = 8.6, NH); 9.56 (s, H-N(2)). ¹³C-NMR ((D₆)DMSO): 17.3; 17.4; 18.3; 20.9; 30.7; 53.5; 55.4; 65.5; 69.4; 127.7; 127.9; 128.4; 137.0; 155.8; 168.7. ESI-MS: 320 ([M + H]⁺). HR-ESI-MS: 320.1983 ([M + H]⁺, $C_{17}H_{26}N_3O_3^+$; calc. 320.1974). Anal. calc. for $C_{17}H_{25}N_3O_3 \cdot H_2O$ (337.41): C 60.51, H 8.07, N 12.45; found: C 60.44, H 7.61, N 12.77.

8.5. Benzyl [(4RS,5RS)-1-Benzyl-3-oxo-5-(propan-2-yl)pyrazolidin-4-yl]carbamate (10e). Prepared from 5c (0.277 g, 1 mmol), 6f (0.122 ml, 1.2 mmol), and NaBH₄ (75 mg, 1.2 mmol); r.t. for 12 h; *GP* 4B (AcOEt/hexanes 3:1). Yield: 207 mg (56%). White solid. For physical, anal., and spectroscopic data for 10e, see above.

8.6. *Benzyl* [(4RS)-1-*Benzyl-5,5-dimethyl-3-oxopyrazolidin-4-yl]carbamate* (**10f**). Prepared from **5d** (0.263 g, 1 mmol), **6f** (0.122 ml, 1.2 mmol), and NaBH₄ (38 mg, 1.2 mmol); r.t. for 24 h; *GP* 4B, first FC, then MPLC (AcOEt/hexanes 3 : 1). Yield: 186 mg (53%). White solid. M.p. 116–120°. IR (KBr): 3406, 3318, 3059, 3033, 2972, 1717, 1698, 1541, 1454, 1371, 1353, 1282, 1253, 1092, 1081, 1062, 1022, 730, 698, 668. ¹H-NMR ((D₆)DMSO): 1.02, 1.20 (2*s*, 1 : 1, 2 Me); 3.88 (*s*, CH₂); 4.42 (*d*, *J* = 9.3, H–C(4)); 5.06, 5.11 (2*d*, 1 : 1, *J* = 12.5, CH₂); 7.23–7.39 (*m*, 10 arom. H); 7.66 (*d*, *J* = 9.3, HN–C(4)); 9.40 (*s*, H–N(2)). ¹³C-NMR ((D₆)DMSO): 19.8; 23.5; 56.0; 59.1; 65.3; 65.7; 126.9; 127.8; 127.9; 128.1; 128.4; 128.8; 136.9; 138.2; 156.8; 171.1. ESI-MS: 354 ([*M* + H]⁺). HR-ESI-MS: 354.1808 ([*M* + H]⁺, C₂₀H₂₄N₃O₃⁺; calc. 354.1818). Anal. calc. for C₂₀H₂₃N₃O₃ (353.41): C 67.97, H 6.56, N 11.89; found: C 67.96, H 6.26, N 11.85.

8.7. *Benzyl* [(4R\$,5R\$)-1-*Butyl-3-oxo-5-phenylpyrazolidin-4-yl]carbamate* (**10g**). Prepared from **5f** (311 mg, 1 mmol), **6b** (0.108 ml, 1.2 mmol), and NaBH₃CN (150 mg, 2.4 mmol); reflux for 3 h; *GP 4B* (AcOEt/hexanes 1:1). Yield: 232 mg (63%). White solid. M.p. 136–140°. IR (KBr): 3450, 3335, 3063, 3036, 2950, 2869, 2843, 1713, 1688, 1533, 1497, 1468, 1455, 1381, 1358, 1312, 1253, 1078, 1050, 784, 456, 706, 697. ¹H-NMR ((D₆)DMSO): 0.75 (t, J = 7.3, Me); 1.15, 1.26 (2tq, 1:1, J = 7.4, 7.4, CH₂); 1.40 (tt, J = 7.2, 7.2, CH₂); 2.39 (td, J = 7.3, 12.5, 1 H, CH₂); 2.55 (td, J = 8.1, 12.5, 1 H, CH₂); 3.75 (d, J = 11.4, H–C(5)); 4.11 (dd, J = 9.0, 11.4, H–C(4)); 4.97, 5.00 (2d, 1:1, J = 12.7, 1 H, CH₂); 7.26–7.40 (m, 10 arom. H); 7.85 (d, J = 9.0, NH); 9.92 (s, H–N(2)). ¹³C-NMR ((D₆)DMSO): 13.6; 19.6; 28.5; 30.7; 57.4; 65.5; 72.0; 127.6; 127.7; 127.8; 128.0; 128.4; 128.6; 136.9; 138.3; 155.9; 168.2. ESI-MS: 368 ([M + H]⁺). HR-ESI-MS: 368.1960 ([M + H]⁺, C₂₁H₂₆N₃O₃⁺; calc. 368.1974). Anal. calc. for C₂₁H₂₅N₃O₃ (367.44): C 68.64, H 6.86, N 11.44; found: C 68.57, H 6.95, N 11.40.

8.8. *Benzyl* [(4RS,5RS)-1-(2-*Methylpropyl*)-3-oxo-5-phenylpyrazolidin-4-yl]carbamate (**10h**). Prepared from **5f** (311 mg, 1 mmol), **6b** (0.091 ml, 1.2 mmol), and NaBH₃CN (150 mg, 2.4 mmol); reflux for 5 h; *GP* 4B (AcOEt/hexanes 1:1). Yield: 289 mg (78%). White solid. M.p. 140–145°. IR (KBr): 3458, 3279, 3258, 3154, 3036, 2959, 2932, 2872, 2831, 1724, 1691, 1545, 1497, 1454, 1387, 1365, 1260, 1180, 1060, 758, 735, 701. ¹H-NMR ((D₆)DMSO): 0.73, 0.81 (2d, 1:1, J = 6.8, 2 Me); 0.95 (m, 1 H, ⁱBu); 2.17 (dd, J = 10.6, 11.9, 1 H, ⁱBu}; 2.30 (dd, J = 4.3, 11.9, 1 H, ⁱBu}; 3.73 (d, J = 11.4, H-C(5)); 4.08 (dd, J = 9.0, 11.4, H-C(4)); 4.97, 4.99 (2d, 1:1, $J = 12.7, CH_2$); 7.26–7.41 (m, 10 arom. H); 7.86 (d, J = 9.0, NH); 9.94 (s, H–N(2)). ¹³C-NMR ((D₆)DMSO): 20.3; 20.6; 25.4; 60.0; 65.5; 66.1; 72.2; 127.6; 127.7; 127.8; 128.2; 128.4; 128.6; 136.9; 138.2; 155.9; 168.3. ESI-MS: 368 ([M + H]⁺). HR-ESI-MS: 368.1964 ([M + H]⁺, C₂₁H₂₆N₃O⁺₃; calc. 368.1974).

8.9. *Benzyl* [(4RS,5RS)-3-Oxo-5-phenyl-1-(propan-2-yl)pyrazolidin-4-yl]carbamate (10i). Prepared from **5f** (311 mg, 1 mmol), **6d** (1 ml), and NaBH₃CN (150 mg, 2.4 mmol); reflux for 24 h; *GP* 4A. Yield:

74 mg (21%). White solid. M.p. 182–186°. IR (KBr): 3475, 3385, 3064, 3038, 2978, 1726, 1698, 1635, 1518, 1454, 1391, 1376, 1346, 1285, 1230, 1199, 1155, 1038, 752, 699, 635, 546. ¹H-NMR ((D₆)DMSO): 0.95, 0.96 (2d, 1:1, J = 6.5, 2 Me); 2.76 (*sept.*, J = 6.5, Me₂CH); 3.99–4.04 (m, H–C(4), H–C(5)); 5.00 (s, CH₂); 7.30–7.41 (m, 10 arom. H); 7.88 (dd, J = 8.3, NH); 9.73 (s, H–N(2)). ¹³C-NMR ((D₆)DMSO): 15.6; 20.6; 53.5; 60.5; 65.5; 67.6; 127.3; 127.6; 127.8; 128.4; 128.6; 136.9; 139.8; 155.9; 167.5. ESI-MS: 354 ([M + H]⁺). HR-ESI-MS: 354.1817 ([M + H]⁺, C₂₀H₂₄N₃O₃⁺; calc. 354.1818). Anal. calc. for C₂₀H₂₃N₃O₃·1/2 H₂O (362.43): C 66.28, H 6.67, N 11.59; found: C 66.20, H 6.36, N 11.53.

8.10. *Benzyl* [(4RS,5RS)-1-*Benzyl-3-oxo-5-phenylpyrazolidin-4-yl*]*carbamate* (**10j**). Prepared from 5f (1.555 g, 5 mmol), **6f** (0.610 ml, 6 mmol), and NaBH₄ (0.190 g, 5 mmol); r.t. for 2 h; *GP* 4B (AcOEt). Yield: 1.91 g (95%). White solid. M.p. 178–182°. IR (KBr): 3442, 3331, 1717, 1691, 1539, 1497, 1455, 1352, 1352, 1254, 1057, 756, 696. ¹H-NMR ((D₆)DMSO): 3.60, 3.89 (2*d*, 1:1, *J* = 13.9, CH₂); 3.93 (*d*, *J* = 10.7, H–C(5)); 4.16 (*dd*, *J* = 9.2, 10.7, H–C(4)); 4.99 (*s*, CH₂); 6.90–7.50 (*m*, 15 arom. H); 7.93 (*d*, *J* = 9.2, NH); 9.86 (*s*, H–N(2)). ¹³C-NMR ((D₆)DMSO): 59.9; 60.0; 65.5; 70.4; 127.4; 127.6; 127.6; 127.8; 128.1; 128.3; 128.4; 128.6; 129.3; 135.7; 136.9; 137.9; 156.0; 168.2. ESI-MS: 402 ([*M* + H]⁺). HR-ESI-MS: 402.1805 ([*M* + H]⁺, C₂₄H₂₄N₃O₃⁺; calc. 402.1818). Anal. calc. for C₂₄H₂₃N₃O₃ (401.46): C 71.80, H 5.77, N 10.47; found: C 71.60, H 5.51, N 10.72.

9. General Procedure for the Synthesis of 1,2,5-Trisubstituted (4RS,5RS)-4-{[(Benzyloxy)carbonyl]amino}pyrazolidin-3-ones 12 (GP 5). A mixture of 10 (1 mmol), anh. DMF (5 ml), K_2CO_3 (138 mg, 1 mmol), and 11 (1-8 mmol) was stirred under Ar for 24-96 h. Volatile components were evaporated *in* vacuo, and the residue was purified by CC (AcOEt/hexanes). Fractions containing the product were combined and evaporated *in* vacuo to give 12.

9.1. *Benzyl* [(3RS,4RS)-1-*Methyl*-5-oxo-2,3-di(propan-2-yl)pyrazolidin-4-yl]carbamate (**12a**). Prepared from **10d** (319 mg, 1 mmol) and **11a** (227 µl, 3.3 mmol); 96 h; CC (AcOEt/hexanes 1:2). Yield: 204 mg (61%). Pale-yellow solid. M.p. 107–111°. IR (KBr): 3243, 3063, 3035, 2978, 2964, 2928, 2892, 2873, 1709, 1665, 1587, 1526, 1487, 1456, 1430, 1402, 1386, 1378, 1362, 1349, 1339, 1301, 1258, 1214, 1156, 1134, 1111, 1096, 1082, 1056, 1017, 996, 972, 960, 916, 903, 861, 837, 791, 779, 761, 737, 701, 663. ¹H-NMR ((D₆)DMSO): 0.88–0.99 (*m*, 3 Me); 1.09 (*d*, J = 6.7, Me); 1.78–1.88 (*m*, Me₂CH); 2.96 (br. *s*, H–C(3)); 3.00 (*s*, Me–C(1)); 3.25 (*sept.*, J = 6.7, Me₂CH); 4.11 (*d*, J = 2.9, H–C(4)); 5.09, 5.15 (2*d*, 1:1, J = 12.1, CH₂); 5.11 (br. *s*, NH, overlapped by the signal for CH₂); 7.30–7.39 (*m*, 5 arom. H). ¹³C-NMR ((D₆)DMSO): 17.1; 17.2; 18.5; 20.0; 31.4; 33.2; 52.6; 55.7; 65.5; 67.2; 128.3; 128.6; 136.2; 156.1; 168.2. ESI-MS: 334 ([M +H]⁺). HR-ESI-MS: 334.2125 ([M +H]⁺, C₁₈H₂₈N₃O₃⁺; calc. 334.2125). Anal. calc. for C₁₈H₂₇N₃O₃ (333.21): C 64.84, H 8.16, N 12.60; found: C 65.05, H 8.42, N 12.60.

9.2. *Benzyl* [(3RS,4RS)-1-*Benzyl*-5-oxo-2,3-di(propan-2-yl)pyrazolidin-4-yl]carbamate (**12b**). Prepared from **10d** (319 mg, 1 mmol) and **11b** (119 µl, 1.3 mmol); 72 h; CC (AcOEt/hexanes 1:2). Yield: 182 mg (45%). Yellow solid. M.p. 112–115°. IR (KBr): 3235, 3090, 3066, 3036, 2976, 2958, 2890, 2874, 1699, 1662, 1521, 1496, 1448, 1385, 1369, 1346, 1325, 1303, 1264, 1218, 1167, 1160, 1128, 1117, 1098, 1084, 1058, 1046, 1019, 997, 966, 916, 902, 862, 824, 784, 752, 737, 698, 678. ¹H-NMR ((D₆)DMSO): 0.81, 0.69 (2d, 1:1, J = 4.7, 2 Me); 0.85, 1.04 (2d, 1:1, J = 6.6, 2 Me); 1.44–1.57 (m, Me₂CH); 2.81 (d, J = 5.0, H–C(3)); 3.26 (*sept.*, J = 6.4, Me₂CH); 4.16 (d, J = 5.0, H–C(4)); 4.34, 4.78 (2d, 1:1, J = 14.7, CH₂); 5.09, 5.16 (2d, 1:1, J = 12.0, CH₂); 5.17; 65.1; 67.4; 128.0; 128.5; 128.5; 128.7; 129.2; 136.2; 136.2; 156.0; 168.4. ESI-MS: 410 ([M + H]⁺). HR-ESI-MS: 410.2438 ([M + H]⁺, C₂₄H₃₂N₃O₃⁺; calc. 410.2438). Anal. calc. for C₂₄H₃₁N₃O₃ (409.52): C 70.39, H 7.63, N 10.26; found: C 70.39, H 7.85, N 10.25.

9.3. *Ethyl* [(3RS,4RS)-4-{[(Benzyloxy)carbonyl]amino]-5-oxo-2,3-di(propan-2-yl)pyrazolidin-1yl]acetate (12c). Prepared from 10d (319 mg, 1 mmol) and 11c (118 µl, 1.3 mmol); 48 h; CC (AcOEt/ hexanes 1:2). Yield: 307 mg (76%). Colorless semisolid. M.p. 81 – 83°. IR (KBr): 3302, 3053, 3032, 2970, 2906, 2863, 1745, 1720, 1677, 1535, 1474, 1455, 1435, 1417, 1383, 1372, 1328, 1291, 1233, 1196, 1179, 1149, 1120, 1107, 1072, 1051, 1027, 989, 965, 949, 933, 909, 874, 856, 842, 801, 777, 757, 734, 705, 654. ¹H-NMR ((D₆)DMSO): 0.95 (d, J = 5.4, Me); 0.98 – 1.04 (m, 2 Me); 1.08 (d, J = 6.8, Me); 1.27 (t, J = 7.2, MeCH₂); 1.80 – 1.90 (m, Me₂CH); 2.87 (d, J = 3.2, H–C(3)); 3.16 (*sept*, J = 6.5, Me₂CH); 4.05, 4.23 (2d, 1:1, J = 17.0, CH₂); 4.13 – 4.26 (m, MeCH₂, H–C(4)); 5.10, 5.16 (2d, 1:1, J = 12.1, CH₂); 5.22 (br. s, NH); 7.30 – 7.44 (m, 5 arom. H). ¹³C-NMR ((D₆)DMSO): 14.3; 17.3; 18.6; 18.7; 20.2; 32.6; 47.1; 53.6; 55.4; 61.8; 66.6; 67.5; 128.4; 128.5; 128.8; 136.1; 155.9; 167.7; 169.5. ESI-MS: 406 ([M + H]⁺). HR-ESI-MS: 406.2336 $([M+H]^+, C_{21}H_{32}N_3O_5^+; \text{calc. 406.2336})$. Anal. calc. for $C_{21}H_{31}N_3O_5$ (405.49): C 62.20, H 7.71, N 10.36); found: C 62.36, H 7.76, N 10.46.

9.4. tert-*Butyl* [(3RS,4RS)-4-{[(Benzyloxy)carbonyl]amino]-5-oxo-2,3-di(propan-2-yl)pyrazolidin-1-yl]acetate (**12d**). Prepared from **10d** (319 mg, 1 mmol) and **11d** (192 µl, 1.3 mmol); 48 h; CC (AcOEt/ hexanes 1:2). Yield: 228 mg (53%). Colorless oil. IR (NaCl): 3282, 3034, 2971, 2936, 2875, 1720, 1678, 1530, 1455, 1390, 1368, 1334, 1298, 1249, 1222, 1152, 1046, 1027, 982, 941, 920, 846, 803, 774, 752, 735, 697. ¹H-NMR ((D₆)DMSO): 0.94 (d, J = 5.3, Me); 1.01 (d, J = 6.4, 2 Me); 1.08 (d, J = 6.8, Me); 1.46 (s, t-Bu); 1.81 – 1.90 (m, Me₂CH); 2.85 (d, J = 4.9, H–C(3)); 3.15 (*sept.*, J = 6.7, Me₂CH); 3.95, 4.12 (2d, 1:1, J = 16.8, CH₂); 4.21 (d, J = 4.9, H–C(4)); 5.09, 5.15 (2d, 1:1, J = 12.2, CH₂); 5.28 (d, J = 6.6, NH); 7.30 – 7.38 (m, 5 arom. H). ¹³C-NMR ((D₆)DMSO): 17.5; 18.6; 18.7; 20.1; 28.2; 32.5; 48.0; 53.6; 55.5; 66.6; 67.4; 82.5; 128.4; 128.4; 128.7; 136.2; 155.9; 166.7; 169.3. ESI-MS: 434 ([M + H]⁺). HR-ESI-MS: 434.2647 ([M + H]⁺, C₂₃H₃₆N₃O⁺₃; calc. 434.2649).

9.5. *Benzyl* [(4R\$,5R\$)-1-*Benzyl*-2-*methyl*-3-*oxo*-5-(*propan*-2-*yl*)*pyrazolidin*-4-*yl*]*carbamate* (12e). Prepared from **10e** (928 mg, 2.5 mmol) and **11a** (568 µl, 8.25 mmol); 72 h; CC (AcOEt/hexanes 1:1). Yield: 661 mg (70%). White solid. M.p. 113–115°. IR (KBr): 3230, 3052, 3031, 3009, 2964, 2950, 2931, 2894, 2872, 1707, 1660, 1586, 1544, 1496, 1458, 1389, 1365, 1351, 1324, 1305, 1271, 1245, 1217, 1177, 1159, 1136, 1111, 1095, 1083, 1043, 1026, 1002, 991, 979, 919, 863, 820, 808, 767, 751, 719, 700, 646, 620. ¹H-NMR ((D₆)DMSO): 0.80–0.94 (*m*, 2 Me); 1.65–1.82 (*m*, Me₂CH); 2.95 (*dd*, J = 2.5, 5.2, H–C(5)); 3.07 (*s*, Me–C(2)); 3.89, 4.05 (2*d*, 1:1, CH₂), 3.99 (*dd*, J = 2.5, 7.5, H–C(4)); 4.12 (*d*, J = 7.2, NH); 5.08 (*s*, CH₂); 7.18–7.24, 7.30–7.43 (2*m*, 1:4, 10 arom. H). ¹³C-NMR ((D₆)DMSO): 17.4; 18.7; 30.6; 32.1; 55.6; 60.2; 67.1; 69.9; 128.1; 128.3; 128.6; 128.7; 128.9; 130.4; 135.2; 136.4; 155.8; 168.4. ESI-MS: 382 ([M + H]⁺, C₂₂H₂₈N₃O[±]₃; calc. 382.2125). Anal. calc. for C₂₂H₂₇N₃O₃ (381.47): C 69.27, H 7.13, N 11.02; found: C 69.40, H 7.35, N 11.25.

9.6. *Benzyl* [(4RS,5RS)-1,2-*Dibenzyl-3-oxo-5-(propan-2-yl)pyrazolidin-4-yl]carbamate* (**12f**). Prepared from **10e** (367 mg, 1 mmol) and **11b** (119 µl, 1 mmol); 72 h; CC (AcOEt/hexanes 1:3). Yield: 334 mg (73%). White solid. M.p. 150–153°. IR (KBr): 3249, 3083, 3061, 3029, 3010, 2974, 2947, 2923, 2891, 2868, 1956, 1725, 1657, 1542, 1495, 1454, 1422, 1384, 1367, 1344, 1319, 1238, 1176, 1157, 1137, 1120, 1085, 1049, 1028, 1008, 989, 970, 958, 938, 913, 868, 846, 812, 766, 751, 730, 700, 666, 617. ¹H-NMR ((D₆)DMSO): 0.50 (*d*, *J* = 4.8, Me); 0.72 (br. *s*, Me); 1.29–1.40 (*m*, Me₂CH); 2.79 (*d*, *J* = 7.2, H–C(5)); 3.91, 3.97 (2*d*, 1:1, *J* = 13.2, CH₂); 3.99 (*d*, *J* = 7.2, H–C(4)); 4.28, 4.97 (2*d*, 1:1, CH₂); 4.29 (*s*, HN–C(4)); 5.07 (*s*, CH₂); 7.12–7.15, 7.29–7.44 (2*m*, 1:14, 15 arom. H). ¹³C-NMR ((D₆)DMSO): 18.3; 18.5; 31.3; 47.3; 5.9; 60.8; 67.1; 70.5; 128.1; 128.2; 28.3; 128.4; 128.6; 128.7; 128.8; 129.3; 130.4; 135.4; 136.1; 136.4; 155.8; 168.8. ESI-MS: 458 ([*M* + H]⁺). HR-ESI-MS: 458.2435 ([*M* + H]⁺, C₂₈H₃₂N₃O₃⁺; 458.2438). Anal. calc. for C₂₈H₃₁N₃O₃ (457.24): C 73.50, H 6.83, N 9.18; found: C 73.32, H 7.02, N 9.20.

9.7. *Ethyl* [(3R\$,4R\$)-2-Benzyl-4-{[(benzyloxy)carbonyl]amino]-5-oxo-3-(propan-2-yl)pyrazolidin-1-yl]acetate (**12g**). Prepared from **10e** (367 mg, 1 mmol) and **11c** (118 µl, 1.3 mmol); 24 h; CC (AcOEt/hexanes 1:3). Yield: 437 mg (97%). Colorless semisolid. IR (KBr): 3216, 3049, 3025, 2995, 2975, 2958, 2940, 2873, 1756, 1728, 1665, 1604, 1549, 1496, 1480, 1455, 1430, 1392, 1371, 1347, 1248 1201, 1159, 1134, 1119, 1069, 1045, 1026, 989, 970, 954, 939, 926, 903, 863, 847, 816, 769, 732, 697, 679. ¹H-NMR ((D₆)DMSO): 0.89 (d, J = 5.8, Me); 0.94 (br. s, Me); 1.25 (t, J = 7.1, $MeCH_2$); 1.76–1.87 (m, Me₂CH); 2.88 (br. s, H–C(3)); 3.87, 4.30 (2d, 1:1, J = 17.0, CH₂); 3.95, 4.01 (2d, 1:1, J = 13.4, CH₂); 4.10–4.20 (m, MeCH₂, H–C(4)); 4.53 (br. s, NH); 5.09 (s, CH₂); 7.23–7.28, 7.30–7.40 (2m, 1:4, 10 arom. H). ¹³C-NMR ((D₆)DMSO): 14.3; 18.6; 19.1; 31.1; 46.3; 55.3; 61.6; 61.8; 67.2; 71.9; 128.2; 128.4; 128.5; 128.7; 128.9; 130.1; 135.7; 136.3; 155.8; 167.6; 170.0. ESI-MS: 454 ([M + H]⁺). HR-ESI-MS: 454.2337 ([M + H]⁺, C₂₅H₃₂N₃O₅; calc. 454.2336). Anal. calc. for C₂₅H₃₁N₃O₅ (453.53): C 66.21, H 6.89, N 9.27; found: C 66.23, H 7.13, N 9.18.

9.8. *Benzyl* [(4RS,5RS)-1-*Benzyl-2-methyl-3-oxo-5-phenylpyrazolidin-4-yl]carbamate* (12h). Prepared from 10j (402 mg, 1 mmol) and 11a (227 μl, 3.3 mmol), 48 h, CC: AcOEt/hexanes 1:3. Yield: 210 mg (50%). Colorless oil. IR (NaCl): 3291, 3060, 3030, 2923, 2853, 2154, 1682, 1605, 1538, 1496, 1481, 1454, 1425, 1397, 1369, 1344, 1293, 1253, 1210, 1189, 1106, 1056, 1029, 993, 916, 872, 780, 752, 730, 713, 696, 659. ¹H-NMR ((D₆)DMSO): 3.05 (*s*, Me); 3.98, 4.09 (2*d*, 1:1, *J* = 14.4, CH₂); 4.20 (br. *s*, H–C(5)); 4.26 (br. *t*, *J* = 7.3, H–C(4)); 4.98 (br. *s*, NH); 5.08 (*s*, CH₂); 7.22–7.38, 7.44–7.48 (2*m*, 13:2, 15 H, Ph). ¹³C-NMR ((D₆)DMSO): 31.9; 59.5; 60.6; 67.4; 69.5; 127.4; 128.2; 128.3; 128.4; 128.7; 128.8; 128.9;

129.3; 136.1; 136.2; 138.4; 156.1; 167.5. ESI-MS: 416 ($[M + H]^+$). HR-ESI-MS: 416.1966 ($[M + H]^+$, C₂₅H₂₆N₃O₃; calc. 416.1969).

10. General Procedure for Preparation of Amines 13–15 (GP 6). A mixture of 5, 10, or 12 (1 mmol), EtOH (20 ml), and 10% Pd/C (50–100 mg) was hydrogenated (3.5 bar of H₂) at r.t. for 1–17 h. The catalyst was removed by filtration, washed with EtOH (2×5 ml), and the combined filtrate was evaporated *in vacuo* to give 13, 14, or 15, resp.

10.1. (*4*R\$,5R\$)-*4*-*Amino*-5-(*propan*-2-*yl*)*pyrazolidin*-3-one (**13**). Prepared from **5c** (1.37 g, 4.95 mmol), EtOH (50 ml), and 10% Pd/C (200 mg); 2.5 h. Yield: 707 mg (100%). White solid. M.p. 118–122°. IR (KBr): 3355, 3283, 2966, 2872, 2858, 1726, 1684, 1601, 1507, 1471, 1385, 1334, 1311, 1213, 1174, 1112, 1042, 983, 962, 947, 910, 869, 846, 712, 668. ¹H-NMR ((D₆)DMSO): 0.90, 0.97 (2*d*, 1 : 1, *J* = 6.8, 2 Me); 1.75 (*sept.*, *J* = 6.8, Me₂CH); 2.64 (*t*, *J* = 8.7, H–C(5)); 3.10 (*d*, *J* = 9.7, H–C(4)); 3.34 (br. *s*, NH₂); 4.84 (br. *s*, H–N(1)); 9.12 (*s*, H–N(2)).¹³C-NMR ((D₆)DMSO): 19.5; 19.5; 30.3; 56.5; 71.9; 177.2. ESI-MS: 144 ([*M*+H]⁺). HR-ESI-MS: 144.1133 ([*M*+H]⁺, C₆H₁₄N₃O⁺; calc. 144.1059). Anal. calc. for C₆H₁₃N₃O (143.19): C 50.33, H 9.15, N 29.35; found: C 50.37, H 8.94, N 25.52.

10.2. (*4*R\$,5R\$)-*4*-*Amino-1*,5-*di*(*propan-2-yl*)*pyrazolidin-3-one* (**14a**). Prepared from **10d** (500 mg, 1.57 mmol), EtOH (40 ml), 10% Pd/C (90 mg), 3.5 h. Yield: 289 mg (100%). Brown semisolid. IR(NaCl): 3367, 3348, 3286, 3140, 2966, 2934, 2871, 1669, 1461, 1387, 1368, 1343, 1329, 1180, 1154, 1126, 1086, 1062, 1026, 956, 938, 922, 891, 865, 846, 826, 793, 713, 656. ¹H-NMR (CDCl₃): 0.95, 0.97 (2*d*, 1 : 1, *J* = 7.0, 2 Me); 1.08, 1.12 (2*d*, 1 : 1, *J* = 6.4, 2 Me); 1.67 (br. *s*, NH₂); 1.78 (*sept.*, *J* = 6.9, Me₂CH); 2.78 (*dd*, *J* = 4.3, 5.8, H–C(5)); 2.94 (*sept.*, *J* = 6.3, Me₂CH); 3.27 (*d*, *J* = 4.2, H–C(4)); 8.18 (br. *s*, H–N(2)). ¹³C-NMR (CDCl₃): 17.7; 18.0; 18.6; 20.9; 32.2; 55.8; 57.3; 72.5; 174.4. ESI-MS: 186 ([*M*+H]⁺). HR-ESI-MS: 186.1601 ([*M*+H]⁺, C₉H₂₀N₃O⁺; calc. 186.1601).

10.3. (*4*RS,5RS)-*4*-*Amino-1-benzyl-5-(propan-2-yl)pyrazolidin-3-one* (**14b**). Prepared from **10e** (205 mg, 0.56 mmol), EtOH (20 ml), 10% Pd/C (10 mg); 17 h. Yield: 105 mg (90%). Brown oil. IR (NaCl): 3025, 2960, 2931, 2895, 2868, 1681, 1602, 1588, 1575, 1494, 1467, 1455, 1434, 1393, 1382, 1366, 1349, 1317, 1303, 1262, 1179, 1134, 1082, 1066, 1029, 975, 899, 854, 833, 740, 698, 643. ¹H-NMR ((D₆)DMSO): 0.79, 0.81 (2*d*, 1 : 1, *J* = 6.9, 2 Me); 1.62 (*sept.*, *J* = 6.6, Me₂CH); 2.62 (*t*, *J* = 5.3, H–C(5)); 3.04 (*d*, *J* = 5.0, H–C(4)); 3.83, 3.96 (2*d*, *J* = 13.0, CH₂); 7.22 – 7.40 (*m*, 5 arom. H); 9.40 (*s*, H–N(2)); NH₂ exchanged. ¹³C-NMR (CDCl₃): 18.4; 18.8; 30.6; 55.4; 64.7; 75.7; 128.2; 128.8; 129.6; 136.2; 173.6. ESI-MS: 234 ([*M* + H]⁺). HR-ESI-MS: 234.16 ([*M* + H]⁺, C₁₃H₂₀N₃O⁺; calc. 234.1601).

10.4. (4RS,5RS)-4-Amino-1-benzyl-2-methyl-5-(propan-2-yl)pyrazolidin-3-one (**15a**). Prepared from **12e** (551 mg, 1.44 mmol), EtOH (20 ml), 10% Pd/C (100 mg), 1 h. Yield: 345 mg (97%). Brown oil. IR (NaCl): 3360, 3293, 3087, 3062, 3031, 2985, 2931, 2872, 1667, 1603, 1495, 1466, 1454, 1427, 1394, 1365, 1297, 1261, 1205, 1066, 1028, 1005, 971, 916, 880, 842, 795, 754, 726, 699, 636. ¹H-NMR ((D₆)DMSO): 0.83, 0.84 (2d, 1:1, J = 6.7, 2 Me); 1.45 (br. *s*, NH₂); 1.60–1.69 (*dsept*, $J = 1.3, 6.6, Me_2CH$); 2.77 (*dd*, J = 2.8, 5.5, H-C(5)); 3.03 (*s*, Me); 3.16 (d, J = 2.8, H-C(4)); 3.98, 4.09 (2d, 1:1, $J = 13.4, CH_2$); 7.28–7.43 (*m*, 5 arom. H).¹³C-NMR ((D₆)DMSO): 17.7; 18.4; 30.5; 32.2; 56.4; 60.6; 71.3; 128.3; 128.8; 130.3; 135.7; 172.4. ESI-MS: 248 ([M + H]⁺). HR-ESI-MS: 248.1769 ([M + H]⁺, C₁₄H₂₂N₃O⁺; calc. 248.1685).

10.5. (4RS,5RS)-4-Amino-1-benzyl-2-methyl-5-phenylpyrazolidin-3-one (**15b**). Prepared from **12h** (100 mg, 0.24 mmol), EtOH (20 ml), 10% Pd/C (10 mg); 1 h. Yield: 63 mg (94%). Purple oil. IR (NaCl): 3369, 3304, 3086, 3062, 3030, 3006, 2922, 2860, 1685, 1602, 1495, 1475, 1454, 1423, 1394, 1365, 1305, 1285, 1250, 1199, 1157, 1096, 1070, 1028, 1002, 967, 909, 851, 790, 729, 698, 643. ¹H-NMR ((D₆)DMSO): 1.87 (br. *s*, NH₂); 2.98 (*s*, J = 6.8, Me); 3.54 (d, J = 9.7, H–C(4)); 3.71 (d, J = 9.7, H–C(5)); 3.83, 4.10 (2d, 1:1, J = 14.6, CH₂); 7.23 – 7.45 (m, 10 arom. H). ¹³C-NMR ((D₆)DMSO): 32.0; 59.1; 60.7; 73.4; 127.8; 128.4; 128.6; 129.0; 129.0; 136.5; 138.4; 170.9. ESI-MS: 282 ([M + H]⁺). HR-ESI-MS: 282.16 ([M + H]⁺, C₁₇H₂₀N₃O⁺; calc. 282.1601).

11. General Procedure for the Preparation of 1,5-Disubstituted (4RS,5RS)-4-Alkylaminopyrazolidin-3-ones **16** (GP 7). A mixture of **10** (1 mmol), MeOH (10 ml), carbonyl compound **6** (1 mmol), 1M aq. HCl (2 drops), and 10% Pd/C (30 mg) was hydrogenated (3.5 bar of H_2) at r.t. 4–13 h. The catalyst was removed by filtration, washed with MeOH (2 × 5 ml), and the combined filtrate was evaporated *in vacuo* to give **16**. 11.1. (4RS)-1-(Propan-2-yl)-4-(propan-2-ylamino)pyrazolidin-3-one (16a). Prepared from 10a (277mg, 1 mmol) and 6 [4] (10 ml, excess), 5 h. Yield: 185 mg (100%). Reddish solid. M.p. 60–64°. IR (KBr): 3418, 2973, 2834, 1694, 1470, 1387, 1338, 1179, 1065, 1014, 901, 838, 771, 657. ¹H-NMR (CDCl₃): 0.97, 0.99, 1.00, 1.02 (4d, 1:1:1:1, J = 6.4, 4 Me); 1.91 (s, NH); 2.73 (br. s, H_a –C(5)); 2.89–2.98 (sept., J = 6.4, Me_2CH); 3.16 (s, H_b –C(5)); 3.52 (dd, J = 10.5, 7.9, H–C(4)); 3.60 (br. s, Me_2CH); 9.59 (s, H–N(2)). ¹³C-NMR (CDCl₃): 19.3; 20.0; 22.7; 22.9; 48.5; 56.1; 57.5; 57.9; 173.8. ESI-MS: 186 ($[M + H]^+$). HR-ESI-MS: 186.1592 ($[M + H]^+$, $C_9H_{20}N_3O^+$; calc. 186.1601).

11.2. (4R\$,5R\$)-4-(Butylamino)-1,5-di(propan-2-yl)pyrazolidin-3-one (16b). Prepared from 10d (250 mg, 0.78 mmol) and 6b (98 µl, 1 mmol), 9 h. Yield: 227 mg (100%). Yellow oil. IR (NaCl): 3176, 2932, 2959, 2873, 1689, 1467, 1385, 1368, 1203, 1166, 1104, 1006, 838, 798, 768, 665. ¹H-NMR ((D₆)DMSO): 0.83–0.90 (m, Me_2 CH, MeCH₂); 0.96, 0.98 (2d, 1:1, J = 6.4, Me_2 CH); 1.25–1.42 (m, 2 CH₂); 1.56 (*sept.*, Me₂CH); 1.76 (br. *s*, NH); 2.51–2.59, 2.60–2.68 (2m, 1:1, CH₂); 2.79 (dd, J = 2.4, 5.9, H–C(5)); 2.81 (br. d, J = 2.4, H–C(4)); 2.95 (*sept.*, J = 6.3, Me₂CH); 9.41 (s, H–N(2)). ¹³C-NMR ((D₆)DMSO): 13.7; 16.4; 18.2; 19.4; 19.9; 20.8; 31.7; 35.9; 47.5, 56.9, 61.6, 69.6, 172.7. ESI-MS: 252 ([M + H]⁺). HR-ESI-MS: 242.2227 ([M + H]⁺, C₁₃H₂₈N₃O⁺; calc. 242.2227).

11.3. (*4*R\$,5R\$)-*1*,5-*Di*(*propan-2-yl*)-4-(*propan-2-ylamino*)*pyrazolidin-3-one* (**16c**). Prepared from **10d** (319 mg, 1 mmol) and **6d** (10 ml); 5 h. Yield: 227 mg (100%). Yellow oil. IR (NaCl): 3174, 3062, 2965, 2873, 1689, 1469, 1384, 1366, 1321, 1167, 1022, 944, 856. ¹H-NMR ((D₆)DMSO): 0.87 (*d*, *J* = 6.7, *Me*₂CH); 0.96, 0.98, 0.99, 1.00 (4*d*, 1:1:1:1, *J* = 6.4, 2 *Me*₂CH); 1.55 (br. *s*, NH); 1.58 (*sept.*, *J* = 6.4, Me₂CH); 2.78 (*dd*, *J* = 2.1, 5.8, H–C(5)); 2.92 (*d*, *J* = 2.1, H–C(4)); 2.93 – 3.00 (*m*, 2 Me₂CH); 9.40 (*s*, HN–C(4)). ¹³C-NMR ((D₆)DMSO): 18.1; 18.4; 19.4; 20.8; 22.9; 22.9; 31.8; 46.3; 56.8; 58.8; 70.3; 137.2. ESI-MS: 228 ([*M* + H]⁺). HR-ESI-MS: 228.2069 ([*M* + H]⁺, C₁₂H₂₆N₃O⁺; cale. 228.207).

11.4. (*4*R\$,5R\$)-*4*-(*Cyclohexylamino*)-*1*,5-*di*(*propan-2-yl*)*pyrazolidin-3-one* (**16d**). Prepared from **10d** (319 mg, 1 mmol) and **6e** (0.1036 ml, 1 mmol); 6 h. Yield: 286 mg (100%). Yellow oil. IR (NaCl): 3168, 3066, 2928, 2688, 1450, 1385, 1369, 1324, 1126, 1016, 948, 890, 846, 802. ¹H-NMR ((D₆)DMSO): 0.87, 0.96, 0.98 (3*d*, 2 : 1: 1, *J* = 6.6, 2 *Me*₂CH); 0.94 – 1.00 (*m*, 1 H, C₆H₁₁); 1.08 – 1.25 (*m*, 3 H, C₆H₁₁); 1.51 – 1.61 (*m*, 3 H, C₆H₁₁, Me₂CH); 1.62 – 1.69 (*m*, 2 H, C₆H₁₁); 1.82 – 1.90 (*m*, 2 H, C₆H₁₁); 2.56 – 2.65 (*m*, 1 H, C₆H₁₁); 2.78 (*dd*, *J* = 2.3, 5.9, H–C(5)); 2.96 (*sept.*, *J* = 6.3, Me₂CH); 2.98 – 3.01 (*m*, H–C(4)); 3.34 (*s*, NH); 9.39 (*s*, H–N(2)). ¹³C-NMR ((D₆)DMSO): 18.2; 18.4; 19.3; 20.8; 24.6; 24.7; 25.8; 31.8; 33.2; 33.3; 54.1; 56.9; 58.3; 70.4; 173.2. ESI-MS: 287 ([*M* + H]⁺). HR-ESI-MS: 267.2311 ([*M* + H]⁺, C₁₅H₃₀N₃O⁺; calc. 268.2383).

11.5. (*4*R\$,5R\$)-*1*,5-*Di*(*propan-2-yl*)-4-(*propylamino*)*pyrazolidin-3-one* (**16e**). Prepared from **10d** (319 mg, 1 mmol) and **6n** (89 µl, 1.2 mmol); 5 h. Yield: 218 mg (96%). Dark-red oil. IR (NaCl): 3186, 2961, 2873, 1688, 1464, 1385, 1325, 1129, 948, 880, 794. ¹H-NMR ((D₆)DMSO): 0.82–0.89 (*m*, *Me*CH₂, *Me*₂CH); 0.96, 0.98 (2*d*, 1:1, J = 6.4, *Me*₂CH); 1.36–1.46 (*m*, CH₂); 1.56 (*sept.*, Me₂CH); 1.78 (br. *s*, HN–C(4)); 2.47–2.56, 2.57–2.66 (2*m*, 1:1, CH₂); 2.79 (*dd*, J = 2.2, 5.9, H–C(5)); 2.82 (br. *s*, H–C(4)); 2.96 (*sept.*, J = 6.4, Me₂CH); 9.41 (*s*, H–N(2)). ¹³C-NMR ((D₆)DMSO): 18.1; 18.2; 19.3; 20.8; 31.6; 31.8; 35.9; 47.4; 56.8; 61.6; 69.6; 172.7. ESI-MS: 228 ([M + H]⁺). HR-ESI-MS: 228.207 ([M + H]⁺, C₁₂H₂₆N₃O⁺; calc. 228.207).

11.6. (*4*R\$,5R\$)-*4*-(*Pentan-2-ylamino*)-*1*,5-*di*(*propan-2-yl*)*pyrazolidin-3-one* (**16f**). Prepared from **10d** (319 mg, 1 mmol) and **6o** (5 ml, excess); 13 h. Yield: 192 mg (75%), 2 : 1 mixture of diastereoisomers. Red oil. IR (NaCl): 3177, 3066, 2960, 2931, 2872, 1690, 1467, 1384, 1370, 1326, 1155, 1069, 1006, 946, 767, 692. ¹H-NMR (CDCl₃): major isomer: 0.84–0.92 (*m*, *Me*₂CH, *Me*CH₂); 1.01–1.06 (*m*, *Me*₂CH, 3 H of pentyl); 1.20–1.43 (*m*, 2 CH₂); 1.59–1.71 (*m*, Me₂CH); 2.70 (*sext.*, J = 6.2, 1 H, CH₂); 2.80 (*dd*, J = 2.0, 6.0, H–C(5)); 2.97 (br. *tq*, J = 3.4, 6.3, 1 H, CH₂); 3.05 (*sept.*, J = 6.4, Me₂CH); 3.17 (br. *d*, J = 1.8, H–C(4)); 9.09 (br. *s*, H–N(2)); minor isomer: 0.84–0.92 (*m*, *Me*₂CH, *Me*CH₂); 1.01–1.06 (*m*, *Me*₂CH, 3 H of pentyl); 1.20–1.43 (*m*, 2 CH₂); 1.59–1.71 (*m*, Me₂CH); 2.70 (*sext.*, J = 6.4, Me₂CH); 3.17 (br. *d*, J = 1.8, H–C(4)); 9.09 (br. *s*, H–N(2)); minor isomer: 0.84–0.92 (*m*, *Me*₂CH, *Me*CH₂); 1.01–1.06 (*m*, *Me*₂CH, 3 H of pentyl); 1.20–1.43 (*m*, 2 CH₂); 1.59–1.71 (*m*, Me₂CH); 2.70 (*sext.*, J = 6.4, Me₂CH); 2.80 (*dd*, J = 2.0, 6.0, H–C(5)); 2.97 (br. *tq*, J = 3.4, 6.3, 1 H, CH₂); 3.05 (*sept.*, J = 6.4, Me₂CH); 2.80 (*dd*, J = 2.0, 6.0, H–C(5)); 2.97 (br. *tq*, J = 3.4, 6.3, 1 H, CH₂); 3.05 (*sept.*, J = 6.4, Me₂CH); 3.13 (br. *d*, J = 2.2, H–C(4)); 9.09 (br. *s*, H–N(2)). ¹³C-NMR (CDCl₃): major isomer: 14.3; 18.4; 18.8; 19.3; 19.4; 20.4; 20.9; 32.2; 40.0; 50.8; 57.9; 59.6; 71.1; 174.7; minor isomer: 14.3; 18.2; 18.7; 19.2; 19.2; 20.7; 20.9; 32.4; 39.5; 50.3; 57.8; 59.3; 71.6; 174.6. ESI-MS: 256 ([*M*+H]⁺). HR-ESI-MS: 256.238 ([*M*+H]⁺, C₁₄H₃₀N₃O⁺; calc. 256.2383).

11.7. (*4*RS,5RS)-*4*-(*Cyclopentylamino*)-*1*,5-*di*(*propan-2-yl*)*pyrazolidin-3-one* (**16***g*). Prepared from **10d** (319 mg, 1 mmol) and **6p** (89 µl, 1 mmol); 12 h. Yield: 234 mg (99%). Dark oil. IR (NaCl): 3180, 3066, 2958, 2871, 1689, 1571, 1466, 1385, 1368, 1324, 1203, 1169, 1012, 958, 888, 830, 799. ¹H-NMR ((D₆)DMSO): 0.86, 0.87 (2*d*, 1:1, J = 6.7, Me_2 CH); 0.96, 0.98 (2*d*, 1:1, J = 6.3, Me_2 CH); 1.24–1.33, 1.40–1.50 (2*m*, 1:1, CH₂); 1.53–1.63 (*m*, CH₂, Me₂CH); 1.69–1.81 (*m*, CH₂, C₅H₉); 2.04–2.10 (*m*, NH); 2.81 (*dd*, J = 5.9, 2.2, H–C(5)); 2.86 (*d*, J = 2.2, H–C(4)); 2.95 (*sept.*, J = 6.3, Me₂CH); 3.27 (*quint.*, J = 6.5, 1 H, C₅H₉); 9.40 (*s*, H–N(2)). ¹³C-NMR ((D₆)DMSO): 18.2; 18.4; 19.8; 20.8; 22.7; 31.8; 32.6; 32.7; 37.8; 56.8; 57.7; 60.1; 70.0; 173.0. ESI-MS: 254 ([*M*+H]⁺). HR-ESI-MS: 254.223 ([*M*+H]⁺, C₁₄H₂₈N₃O⁺; calc. 254.2227).

11.8. (4R\$,5R\$)-4-(Cycloheptylamino)-1,5-di(propan-2-yl)pyrazolidin-3-one (**16h**). Prepared from **10d** (319 mg, 1 mmol) and **6q** (0.168 ml, 1.4 mmol); 13 h. Yield: 281 mg (100%). Yellow oil. IR (NaCl): 3171, 3062, 2965, 2926, 2855, 1688, 1463, 1385, 1368, 1324, 1125, 1016, 950, 825, 772, 688. ¹H-NMR ((D₆)DMSO): 0.86, 0.87 (2d, 1:1, J = 6.7, Me₂CH); 0.96, 0.98 (2d, 1:1, J = 6.3, Me₂CH); 1.26–1.39 (m, 4 H, C₇H₁₄); 1.42–1.65 (m, 4 CH₂, C₇H₁₄, Me₂CH); 1.75–1.85 (m, NH); 2.77 (dd, J = 2.3, 6.0, H–C(5)); 2.80–2.86 (m, 1 H, C₇H₁₄); 2.92 (d, J = 2.3, H–C(4)); 2.96 (sept., J = 6.3, Me₂CH); 9.39 (s, H–N(2)). ¹³C-NMR (CDCl₃): 18.3; 18.6; 19.2; 20.9; 24.1; 24.2; 28.2; 28.4; 32.3; 34.7; 35.3; 56.9; 57.8; 59.2; 71.5; 174.5. ESI-MS: 282 ([M +H]⁺). HR-ESI-MS: 282.2541 ([M +H]⁺, C₁₆H₃₂N₃O⁺; calc. 282.254).

11.9. (4RS,5RS)-1,5-Di(propan-2-yl)-4- $[(tetrahydrofuran-3-ylmethyl)amino]pyrazolidin-3-one (16i). Prepared from 10d (319 mg, 1 mmol) and 6r (50% aq. soln., 0.227 ml, 1.3 mmol); 4 h. Yield: 269 mg (100%); 1:1 mixture of diastereoisomers. Yellow oil. IR (NaCl): 3232, 2966, 2872, 1686, 1468, 1386, 1369, 1325, 1204, 1156, 1130, 1076, 912, 801, 762. ¹H-NMR (CDCl₃): diastereoisomer 1: 0.93, 0.95 (2d, 1:1, <math>J = 6.8, Me_2$ CH); 1.06 – 1.10 $(m, Me_2$ CH); 1.53 – 1.66 $(m, 1 \text{ H}, \text{CH}_2)$; 1.70 $(sept., J = 6.7, Me_2$ CH); 2.00 – 2.08 $(m, 1 \text{ H}, \text{CH}_2)$; 2.29 – 2.45 $(m, 2 \text{ H}, \text{NH}, \text{CH}_2)$; 2.58 $(dd, J = 8.6, 11.0, 1 \text{ H}, \text{CH}_2)$; 2.77 – 2.85 $(m, 1 \text{ H}, \text{CH}_2)$; 2.83 (dd, J = 2.6, 6.1, H-C(5)); 3.02 $(sept., J = 6.4, Me_2$ CH); 3.09 (br. d, J = 2.6, H-C(4)); 3.50 $(dd, J = 5.9, 8.7, 1 \text{ H}, \text{CH}_2)$; 2.29 – 2.45 $(m, 2 \text{ H}, \text{NH}, \text{CH}_2)$; 2.65 $(dd, J = 7.6, 11.2, 1 \text{ H}, \text{CH}_2)$; 2.77 – 2.85 $(m, 1 \text{ H}, \text{CH}_2)$; 2.30 – 3.90 $(m, 3 \text{ H}, \text{CH}_2)$; 2.65 $(dd, J = 7.6, 11.2, 1 \text{ H}, \text{CH}_2)$; 2.77 – 2.85 $(m, 1 \text{ H}, \text{CH}_2)$; 2.83 (dd, J = 2.6, 6.1, H-C(5)); 3.02 $(sept., J = 6.4, Me_2$ CH); 3.09 (br. d, J = 2.6, H-C(4)); 3.50 $(2d, 1:1, J = 6.8, Me_2$ CH); 1.06 – 1.10 $(m, Me_2$ CH); 1.53 – 1.66 $(m, 1 \text{ H}, \text{CH}_2)$; 1.70 $(sept., J = 6.7, Me_2$ CH); 2.00 – 2.08 $(m, 1 \text{ H}, \text{CH}_2)$; 2.29 – 2.45 $(m, 2 \text{ H}, \text{NH}, \text{CH}_2)$; 2.65 $(dd, J = 7.6, 11.2, 1 \text{ H}, \text{CH}_2)$; 2.77 – 2.85 $(m, 1 \text{ H}, \text{CH}_2)$; 2.83 (dd, J = 2.6, 6.1, H-C(5)); 3.02 $(sept., J = 6.4, Me_2$ CH); 3.12 (br. d, J = 2.6, H-C(4)); 3.54 $(dd, J = 5.9, 8.7, 1 \text{ H}, \text{CH}_2)$; 3.70 – 3.90 $(m, 3 \text{ H}, \text{CH}_2)$; H–N(2) exchanged. ¹³C-NMR (CDCl₃): diastereoisomer 1: 18.3; 18.5; 18.9; 21.0; 30.5; 32.3; 39.8; 51.3; 57.7; 62.1; 67.8; 70.6; 71.8; 173.6; diastereoisomer 2: 18.4; 18.5; 18.9; 21.0; 30.6; 32.3; 39.8; 52.0; 57.8; 62.4; 67.9; 70.7; 72.2; 173.7. ESI-MS: 270 ($[M + \text{H}]^+$). HR-ESI-MS: 270.2176 ($[M + \text{H}]^+, \text{C}_{14}\text{H}_{28}\text{N}$

12. Synthesis of N-[(4RS,5RS)-3-Oxo-5-(propan-2-yl)pyrazolidin-4-yl]-1,1'-biphenyl-4-carboxamide (17). A mixture of **20a** (153 mg, 0.77 mmol), DMF (5 ml), Et₃N (0.107 ml, 0.77 ml), and BPC (303 mg, 0.77 mmol) was stirred under Ar at r.t. for 2 h. Then, Et₃N (0.107 ml, 0.77 ml) and amine **13** (110 mg, 0.77 mmol) were added, and the mixture was stirred at r.t. for 12 h. Volatile components were evaporated *in vacuo*, and the residue was purified by FC (first AcOEt to elute the less-polar impurities, then AcOEt/ MeOH 20:1, to elute the product). Fractions containing the product were combined and evaporated *in vacuo*. The residue was triturated with CH₂Cl₂ (5 ml), and the precipitate was collected by filtration to give **17**. Yield: 26 mg (10%). White solid. M.p. 221–223°. IR (KBr): 3266, 3067, 2955, 2922, 2867, 1724, 1640, 1607, 1561, 1536, 1499, 1482, 1448, 1426, 1403, 1388, 1364, 1313, 1294, 1277, 1258, 1194, 1179, 1108, 1077, 1006, 977, 912, 852, 819, 808, 767, 744, 728, 693. ¹H-NMR ((D₆)DMSO): 0.89, 0.92 (2d, 1:1, *J* = 6.6, *Me*₂CH); 1.78–1.90 (*m*, Me₂CH); 3.16 (*dd*, *J* = 8.8, 10.4, H–C(5)); 4.62 (*dd*, *J* = 9.2, 10.7, H–C(4)); 5.05 (br. *s*, H–N(1)); 7.40–8.06 (*m*, 9 arom. H); 8.76 (*d*, *J* = 9.0, NH); 9.34 (*s*, H–N(2)). ¹³C-NMR ((D₆)DMSO): 18.7; 19.8; 21.2; 24.7; 30.3; 126.6; 126.9; 127.9; 128.3; 129.0; 130.0; 132.9; 139.1; 165.7; 167.2. ESI-MS: 324 ([*M* + H]⁺). HR-ESI-MS: 324.1706 ([*M* + H]⁺, C₁₉H₂₂N₃O⁺₂; calc. 324.1707).

13. General Procedure for the Synthesis of 4-[(Phenylacetyl)amino]pyrazolidin-3-ones 18 and 19 (GP 8). A mixture 14a or 15a (1 mmol), anh. CH₂Cl₂ (5 ml), 20b (141 mg, 1.04 mmol), and EEDQ (270 mg, 1.09 mmol) was stirred under Ar for 24 h. Volatile components were evaporated *in vacuo*, and the residue was purified by CC (AcOEt/hexanes 1:1). Fractions containing the product were combined and evaporated *in vacuo* to give 18 or 19.

13.1. N-[(4RS,5RS)-3-Oxo-1,5-di(propan-2-yl)pyrazolidin-4-yl]-2-phenylacetamide (18). Prepared from 14a (168 mg, 0.91 mmol). Yield: 229 mg (83%). White solid. M.p. 155-160°. IR (KBr): 3374, 3239,

3187, 3061, 2970, 2871, 1714, 1691, 1660, 1639, 1603, 1556, 1495, 1468, 1455, 1442, 1384, 1366, 1333, 1311, 1283, 1162, 1148, 1071, 1013, 883, 770, 733, 695. ¹H-NMR ((D₆)DMSO): 0.81, 0.88 (2*d*, 1:1, J = 6.8, Me_2 CH); 0.98, 0.99 (2*d*, 1:1, J = 6.1, Me_2 CH); 1.76 (*dsept.*, J = 1.5, 6.6, Me_2 CH); 2.73 (t, J = 5.1, H–C(5)); 2.89 (*sept.*, J = 6.3, Me_2 CH); 3.44, 3.48 (2*d*, 1:1, J = 13.8, CH₂); 4.09 (*dd*, J = 5.1, 7.8, H–C(4)); 7.20–7.33 (m, 5 arom. H); 8.69 (d, J = 7.9, NH); 9.68 (s, H–N(2)). ¹³C-NMR ((D₆)DMSO): 17.7; 18.0; 18.0; 20.8; 30.9; 42.0; 52.2; 55.8; 69.8; 126.3; 128.2; 128.9; 136.2; 169.4; 169.7. ESI-MS: 304 ([M + H]⁺). HR-ESI-MS: 304.2017 ([M + H]⁺, C₁₇H₂₆N₃O₂⁺; calc. 304.2020). Anal. calc. for C₁₇H₂₅N₃O₂·1/8 H₂O (305.65): C 66.80, H 8.33, N 13.75; found: C 66.61, H 8.45, N 13.85.

13.2. N-[(4RS,5RS)-1-Benzyl-2-methyl-3-oxo-5-(propan-2-yl)pyrazolidin-4-yl]-2-phenylacetamide (19). Prepared from 15a (257 mg, 1.04 mmol). Yield: 288 mg (82%). Yellow solid. M.p. 141–145°. IR (KBr): 3260, 3206, 3060, 3031, 2960, 2928, 2870, 1660, 1603, 1585, 1543, 1494, 1464, 1454, 1429, 1405, 1386, 1368, 1355, 1343, 1332, 1311, 1296, 1282, 1215, 1160, 1127, 1099, 1064, 1030, 1005, 982, 930, 918, 899, 845, 808, 753, 731, 718, 698, 671, 623, 611. ¹H-NMR (CDCl₃): 0.80, 0.82 (2d, 1:1, $J = 6.8, Me_2$ CH); 1.76 (*dsept.*, $J = 1.6, 6.8, Me_2$ CH); 2.85 (*dd*, J = 2.5, 5.1, H-C(5)); 3.03 (*s*, Me); 3.35, 3.39 (2d, 1:1, $J = 19.0, CH_2$); 3.81, 3.86 (2d, 1:1, $J = 13.6, CH_2$); 4.18 (*dd*, J = 2.4, 7.1, H-C(4)); 5.11 (*d*, J = 7.0, NH); 7.10–7.14, 7.21–7.38 (2m, 1:4, 10 arom. H). ¹³C-NMR (CDCl₃): 17.3; 18.9; 30.5; 32.1; 43.4; 54.7; 60.5; 69.8; 127.4; 128.4; 128.8; 129.0; 129.4; 130.4; 134.8; 135.4; 168.8; 170.7. ESI-MS: 366 ([M + H]⁺). HR-ESI-MS: 366.2175 ([M + H]⁺, C₂₂H₂₈N₃O₂⁺; calc. 366.2176). Anal. calc. for C₂₂H₂₇N₃O₂ · 1/6 H₂O (368.47): C 72.30, H 7.45, N 11.50; found: C 71.96, H 7.47, N 11.49.

12. X-Ray Crystal-Structure Analysis of Compounds 9k, 10f, and 12e (Figs. 3-5 and Table 4)³). For X-ray crystal-structure determination, the crystals of the compounds 9k, 10f, and 12e were mounted on the tip of glass fibres and transferred to the goniometer head. Diffraction data for 10f were collected on a Nonius Kappa CCD diffractometer using monochromated MoK_{α} radiation at 150 K by using Nonius Collect software [32]. Data reduction and integration were performed with the software package DENZO-SMN [33]. Diffraction data for 9k and 12e were collected on SuperNova X-ray single-crystal diffractometer equipped with Atlas detector using monochromated MoK_a radiation at r.t.; in this case, the data reduction and integration were performed with the software package CrysAlis PRO [34]. The coordinates of all of the non-H-atoms were found via direct methods using the SIR97 or Superflip structure solution programs [35][36]. A full-matrix least-squares refinement on F^2 magnitudes with anisotropic displacement parameters for all non-H-atoms using SHELXL-97 was employed [37]. All Hatoms were initially located in difference Fourier maps. All H-atoms attached to C-atom were subsequently treated as riding atoms in geometrically idealized positions with C-H bond lengths of 0.96 Å for Me, 0.97 Å for CH₂, 0.98 Å for CH, and 0.93 Å for aromatic C–H bonds. The corresponding displacement parameters $U_{iso}(H)$ were 1.5-times higher than those of the carrier Me C-atoms and 1.2times higher than all other H-bearing C-atoms. H-Atoms attached to N-atoms and (possibly) taking part in H-bonding were found in the difference electron-density maps and refined isotropically with the constraint Uiso(H) = 1.2 U_{iso}(N). When the obtained N–H distances were too long, the appropriate bond length restraints were used (N-H with lengths of 0.87(2) Å). Crystal data, data collection, and structure refinement for compounds 9k, 10f, and 12e are compiled in Table 4. Figures depicting the structures were drawn by ORTEP3 [38].

³) CCDC-930454-930456 contain the supplementary crystallographic data for 9k, 10f, and 12e, resp. These data can be obtained free of charge from the *Cambridge Crystallographic Data Centre via* www.ccdc.cam.ac.uk/data_request/cif.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9k	10f	18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Empirical formula	$C_{20}H_{20}N_4O_5$	C ₂₀ H ₂₃ N ₃ O ₃	C ₂₂ H ₂₇ N ₃ O ₂
$\begin{array}{cccccccc} Crystal habit, color & prism, colorless & platelet, colorless & prism, colorless \\ Crystal system & monoclinic & monoclinic & monoclinic \\ Crystal dimensions [mm] & 0.30 \times 0.15 \times 0.10 & 0.50 \times 0.25 \times 0.02 & 0.30 \times 0.15 \times 0.10 \\ Temp. [K] & 150(2) & 150(2) & 293(2) \\ Space group & P12_1/n 1 & P12_1/c 1 & C12/c 1 \\ Z & 4 & 4 & 8 \\ Unit cell parameters: & & & \\ a [Å] & 15.5657(5) & 11.3943(2) & 28.3750(7) \\ b [Å] & 8.2240(2) & 18.5977(4) & 8.8964(2) \\ c [Å] & 15.9538(5) & 9.6578(2) & 16.2347(4) \\ \beta [°] & 110.316(4) & 112.2710(10) & 90.413(2) \\ \end{array}$	M _r	396.40	353.41	365.47
$\begin{array}{cccc} \mbox{Crystal system} & monoclinic & monoclinic & monoclinic \\ \mbox{Crystal dimensions [mm]} & 0.30 \times 0.15 \times 0.10 & 0.50 \times 0.25 \times 0.02 & 0.30 \times 0.15 \times 0.10 \\ \mbox{Temp. [K]} & 150(2) & 150(2) & 293(2) \\ \mbox{Space group} & P12_1/n 1 & P12_1/c 1 & C12/c 1 \\ Z & 4 & 4 & 8 \\ \mbox{Unit cell parameters:} & & & \\ & a [Å] & 15.5657(5) & 11.3943(2) & 28.3750(7) \\ & b [Å] & 8.2240(2) & 18.5977(4) & 8.8964(2) \\ & c [Å] & 15.9538(5) & 9.6578(2) & 16.2347(4) \\ & \beta [^\circ] & 110.316(4) & 112.2710(10) & 90.413(2) \\ \end{array}$	Crystal habit, color	prism, colorless	platelet, colorless	prism, colorless
$\begin{array}{cccc} \mbox{Crystal dimensions [mm]} & 0.30 \times 0.15 \times 0.10 & 0.50 \times 0.25 \times 0.02 & 0.30 \times 0.15 \times 0.10 \\ \mbox{Temp. [K]} & 150(2) & 150(2) & 293(2) \\ \mbox{Space group} & P12_1/n 1 & P12_1/c 1 & C12/c 1 \\ \mbox{Z} & 4 & 4 & 8 \\ \mbox{Unit cell parameters:} & & & & & \\ \mbox{a [Å]} & 15.5657(5) & 11.3943(2) & 28.3750(7) \\ \mbox{b [Å]} & 8.2240(2) & 18.5977(4) & 8.8964(2) \\ \mbox{c [Å]} & 15.9538(5) & 9.6578(2) & 16.2347(4) \\ \mbox{β [°]} & 110.316(4) & 112.2710(10) & 90.413(2) \\ \end{array}$	Crystal system	monoclinic	monoclinic	monoclinic
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Crystal dimensions [mm]	$0.30 \times 0.15 \times 0.10$	$0.50 \times 0.25 \times 0.02$	$0.30 \times 0.15 \times 0.10$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Temp. [K]	150(2)	150(2)	293(2)
	Space group	$P12_1/n \ 1$	$P12_{1}/c$ 1	C12/c 1
Unit cell parameters: a [Å]15.5657(5)11.3943(2)28.3750(7) b [Å]8.2240(2)18.5977(4)8.8964(2) c [Å]15.9538(5)9.6578(2)16.2347(4) β [°]110.316(4)112.2710(10)90.413(2)	Z	4	4	8
a [Å]15.5657(5)11.3943(2)28.3750(7) b [Å]8.2240(2)18.5977(4)8.8964(2) c [Å]15.9538(5)9.6578(2)16.2347(4) β [°]110.316(4)112.2710(10)90.413(2)	Unit cell parameters:			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a [Å]	15.5657(5)	11.3943(2)	28.3750(7)
c [Å]15.9538(5)9.6578(2)16.2347(4) β [°]110.316(4)112.2710(10)90.413(2)	$b\left[\mathring{A}\right]$	8.2240(2)	18.5977(4)	8.8964(2)
β [°] 110.316(4) 112.2710(10) 90.413(2)	c [Å]	15.9538(5)	9.6578(2)	16.2347(4)
	β[°]	110.316(4)	112.2710(10)	90.413(2)
$V[Å^3]$ 1915.24(10) 1893.89(7) 4098.11(17)	$V[Å^3]$	1915.24(10)	1893.89(7)	4098.11(17)
$D_{\rm r}$ (Mg m ⁻³) 1.375 1.239 1.185	$D_{\rm x} ({\rm Mg}{\rm m}^{-3})$	1.375	1.239	1.185
Radiation type MoK_a MoK_a MoK_a	Radiation type	MoK _a	MoK_a	MoK _a
μ [mm ⁻¹] 0.101 0.085 0.077	$\mu [\mathrm{mm}^{-1}]$	0.101	0.085	0.077
Diffractometer SuperNova, Dual, Nonius Kappa CCD SuperNova, Dual,	Diffractometer	SuperNova, Dual,	Nonius Kappa CCD	SuperNova, Dual,
Cu at zero, Atlas Cu at zero, Atlas		Cu at zero, Atlas		Cu at zero, Atlas
Scan type ω ω ω	Scan type	ω	ω	ω
Absorption correction multi-scan multi-scan multi-scan	Absorption correction	multi-scan	multi-scan	multi-scan
Total reflections measured 11172 34551 19555	Total reflections measured	11172	34551	19555
Independent reflections 4394 4349 4705	Independent reflections	4394	4349	4705
Observed reflections 3331 3215 3419	Observed reflections	3331	3215	3419
Criterion for obs. $F^2 > 2.0 \sigma(F^2)$ $F^2 > 2.0 \sigma(F^2)$ $F^2 > 2.0 \sigma(F^2)$	Criterion for obs.	$F^2 > 2.0 \sigma(F^2)$	$F^2 > 2.0 \sigma(F^2)$	$F^2 > 2.0 \sigma(F^2)$
reflections	reflections			
<i>Rint</i> 0.0281 0.045 0.0283	Rint	0.0281	0.045	0.0283
θ Range [°] 2.83-27.48 1.93-27.51 2.87-27.48	θ Range [°]	2.83-27.48	1.93-27.51	2.87 - 27.48
h Range -20-12 -14-14 -36-36	h Range	-20 - 12	-14 - 14	-36 - 36
k Range -10-10 -24-24 -11-11	k Range	-10 - 10	-24-24	-11-11
<i>l</i> Range -20-20 -12-12 -21-21	<i>l</i> Range	-20-20	-12-12	-21-21
Refinement on F^2 F^2 F^2	Refinement on	F^2	F^2	F^2
R (on F_{obs}), wR (on F_{obs}), S 0.0457, 0.1118, 1.030 0.0579, 0.1451, 1.150 0.0574, 0.1552, 1.039	R (on F_{obs}), wR (on F_{obs}), S	0.0457, 0.1118, 1.030	0.0579, 0.1451, 1.150	0.0574, 0.1552, 1.039
Total contributing 4394 4349 4705	Total contributing	4394	4349	4705
reflections	reflections			
No. of parameters 268 246 251	No. of parameters	268	246	251
H-Atom treatment C-bonded treated C-bonded treated C-bonded treated	H-Atom treatment	C-bonded treated	C-bonded treated	C-bonded treated
as riding, N-bonded as riding, N-bonded as riding, N-bonded		as riding, N-bonded	as riding, N-bonded	as riding, N-bonded
refined isotropically refined isotropically refined isotropically		refined isotropically	refined isotropically	refined isotropically
$(\Delta/\sigma)_{\rm max}; (\Delta/\sigma)_{\rm ave}$ < 0.001; < 0.001 < 0.001; < 0.001; < 0.001; < 0.001	$(\Delta/\sigma)_{\rm max}; (\Delta/\sigma)_{\rm ave}$	< 0.001; < 0.001	< 0.001; < 0.001	< 0.001; < 0.001
$ \rho_{\text{max}}; \rho_{\text{min}} [e \text{\AA}^{-3}] $ 0.251; -0.209 0.530; -0.499 0.319; -0.242	$ ho_{ m max}; ho_{ m min}$ [eÅ ⁻³]	0.251; -0.209	0.530; -0.499	0.319; -0.242

Table 4. Crystallographic Data for Compounds 9k, 10f, and 18

REFERENCES

- [1] H. Dorn, Chem. Heterocycl. Compd. USSR 1981, 3.
- [2] R. M. Claramunt, J. Elguero, Org. Proc. Prep. Int. 1991, 23, 273.
- [3] L. Yet, 'Pyrazoles', in 'Comprehensive Heterocyclic Chemistry III', Eds. A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor, Vol. 4, Ed. J. Joule, Elsevier Science, Oxford, 2008, p. 1; and refs. cit. therein; J. Elguero, 'Pyrazoles', in 'Comprehensive Heterocyclic Chemistry II', Eds.

A. R. Katritzky, C. W. Rees, E. F. V. Scriven, Vol. 3, Ed. I. Shinkai, Elsevier Science, Oxford, 1996, p. 1; and refs. cit. therein; B. Stanovnik, J. Svete, in 'Pyrazoles', in 'Science of Synthesis, Houben-Weyl Methods of Organic Transformations', Vol. 12, Ed. R. Neier, Georg Thieme, Stuttgart, 2002, p. 15, and refs. cit. therein.

- [4] J. Svete, '(4R*,5R*)-4-Benzoylamino-5-phenylpyrazolidin-3-one A Useful Building Block in the Synthesis of Functionalized Pyrazoles', in 'Stereochemistry Research Trends', Eds. M. A. Horvat, J. H. Golob, Nova Science Publishers, New York, 2008, p. 129; and refs. cit. therein.
- [5] K. Meier, Bild Ton 1970, 23, 85.
- [6] B. J. Whittle, Acta Obstet. Gyn. Scand., Suppl. 1979, 87, 21.
- [7] R. J. Ternansky, S. E. Draheim, Tetrahedron 1992, 48, 777; and refs. cit. therein.
- [8] M. P. Sibi, L. M. Stanley, X. Nie, L. Venkatraman, M. Liu, C. P. Jasperse, J. Am. Chem. Soc. 2007, 129, 395.
- [9] H. Nakano, N. Tsugawa, K. Takahashi, Y. Okuyama, R. Fujita, *Tetrahedron* 2006, 62, 10879.
- [10] M. P. Sibi, T. Soeta, J. Am. Chem. Soc. 2007, 129, 4522.
- [11] C.-H. Lin, K.-S. Yang, J.-F. Pan, K. Chen, Tetrahedron Lett. 2000, 41, 6815.
- [12] R. Shintani, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 10778.
- [13] L. Pezdirc, B. Stanovnik, J. Svete, *Aust. J. Chem.* 2009, *62*, 1661.
 [14] M. Keller, A. S. S. Sido, P. Pale, J. Sommer, *Chem. Eur. J.* 2009, *15*, 2810.
- [15] S. R. Snavely, G. R. Hodges, Ann. Intern. Med. **1984**, 101, 92.
- [16] M. R. Holdiness, Med. Toxicol. 1987, 2, 33.
- [17] S. G. Hofmann, A. T. Sawyer, A. Asnaani, Curr. Pharm. Design 2012, 18, 5659.
- [18] C. R. Pawlak, F.-S. Chen, F.-Y. Wu, Y.-J. Ho, Kaohsiung J. Med. Sci. 2012, 28, 407.
- [19] S. Zupančič, J. Svete, B. Stanovnik, J. Heterocycl. Chem. 1999, 36, 607.
- [20] A. Novak, J. Bezenšek, U. Grošelj, A. Golobič, B. Stanovnik, J. Svete, Arkivoc 2011, (vi), 18.
- [21] N. Tamura, Y. Matsushita, K. Yoshioka, M. Ochiai, Tetrahedron 1988, 44, 3231.
- [22] L. N. Jungheim, S. K. Sigmund, J. Org. Chem. 1987, 52, 4007.
- [23] U. Schmidt, H. Griesser, V. Lietenberger, A. Lieberknecht, R. Mangold, R. Meyer, B. Riedl, Synthesis 1992, 487.
- [24] A. Novak, A. Testen, J. Bezenšek, U. Grošelj, M. Hrast, M. Kasunič, S. Gobec, B. Stanovnik, J. Svete, *Tetrahedron* 2013, 69, 6648.
- [25] H. Barreteau, A. Kovač, A. Boniface, M. Sova, S. Gobec, D. Blanot, FEMS Microbiol. Rev. 2008, 32, 168.
- [26] P. A. Lanzetta, L. J. Alvarez, P. S. Reinach, O. A. Candia, Anal. Biochem. 1979, 100, 95.
- [27] I. Photaki, J. Am. Chem. Soc. 1963, 85, 1123.
- [28] U. Schmidt, A. Lieberknecht, J. Wild, Synthesis 1984, 53.
- [29] a) F. Effenberger, J. Kühlwein, C. Baumgartner, *Liebigs Ann. Chem.* 1994, 1069; b) F. Effenberger, J. Kühlwein, K. Drauz, *Liebigs Ann. Chem.* 1993, 1295; c) T. A. Stammers, M. J. Burk, *Tetrahedron Lett.* 1999, 40, 3325.
- [30] H. W. Krause, H.-J. Kreuzfeld, U. Schmidt, C. Dobler, M. Michalik, S. Taudien, C. Fischer, *Chirality* 1996, 8, 173.
- [31] C. Becker, B. Dembofsky, R. Jacobs, J. Kang, C. Ohnmacht, J. Rosamond, A. B. Shenvi, T. Simpson, J. Woods, WO 2004031154; CAN140:339634; K. Hudson, N. Laing, P. Lewis, WO 2007104933; CAN147:386252.
- [32] Collect Software, Nonius, BV, Delft, The Netherlands, 2000.
- [33] Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307.
- [34] CrysAlis PRO, Oxford Diffraction Ltd., Yarnton, Oxfordshire, England, 2011.
- [35] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115.
- [36] L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 786.
- [37] G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112.
- [38] L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565.

Received April 22, 2013