Tetrahedron 65 (2009) 6828-6833

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of the C1–C12 acid fragment of amphidinolide T marine macrolides via SmI₂-mediated enantioselective reductive coupling of aldehydes with a chiral crotonate

Jialu Luo^a, Huoming Li^a, Jinlong Wu^a, Xinglong Xing^b, Wei-Min Dai^{a,b,*}

^a Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, China ^b Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China

ARTICLE INFO

Article history: Received 8 May 2009 Received in revised form 14 June 2009 Accepted 19 June 2009 Available online 24 June 2009

Keywords: Allylation Amphidinolide γ-Butyrolactone Macrolide Samarium

ABSTRACT

A new strategy for enantioselective assembly of the trisubstituted tetrahydrofuran ring has been established for synthesis of the C1–C12 acid fragment of amphidinolide T series marine macrolides. The key steps involve the Sml₂-mediated highly enantioselective reductive coupling of an aldehyde with the (1*S*,2*R*)-*N*-methylephedrine-derived crotonate to form the *cis*-3,4-disubstituted γ -butyrolactone and the subsequent BF₃-mediated 1,3-*anti*-selective allylation of the five-membered-ring oxocarbenium ion with allyltrimethylsilane. The desired C1–C12 acid fragment was obtained in >25% overall yield via a 9-step sequence.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Amphidinolides are a large family of bioactive macrolides from symbiotic marine dinoflagellates *Amphidinium* sp. and the amphidinolide T congeners consist of five structurally related 19-membered macrolides (Fig. 1).^{1.2} They commonly possess a trisubstituted tetrahydrofuran (THF) ring and a C16-*exo*-methylene group. Their structural differences are reflected on the relative position of the α -

Figure 1. Structures of the 19-membered marine macrolides amphidinolide T1, T2, T3, T4, and T5.

* Corresponding author. Tel./fax: +86 (571) 87953128.

E-mail addresses: chdai@ust.hk, chdai@zju.edu.cn (W.-M. Dai).

0040-4020/\$ - see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.06.070

hydroxy ketone subunit at C12 and C13 and the absolute configurations of the C12/C13-hydroxy and the C14-methyl groups. Moreover, amphidinolide T2 is the only homologue which has an extra chiral hydroxy group at C21. Up to date amphidinolide T1 and T3–T5 have been synthesized by Fürstner,³ Ghosh,⁴ Jamison,⁵ Zhao,⁶ and Yadav,⁷ Ring-closing metathesis (RCM),^{3,8} Yamaguchi macrolactonization,^{4,6,7,9} and nickel-catalyzed alkyne–aldehyde reductive macrocyclization⁵ have been applied in the formation of the 19-membered ring macrocycle.¹⁰ Another focus of these total syntheses is on the strategies toward stereoselective assembly of the trisubstituted THF ring. The syn aldol intermediates **1a-c** were prepared by the diastereoselective Brown allylation³ and crotylation,⁵ and the diastereoselective aldol reaction⁴ of the titanium enolate of a chiral propionate (Scheme 1). It was followed by the cyclization reactions of the advanced intermediates derived from **1a–c** to afford the γ -butyrolactone^{4,5} and the lactol **2b**,^{3,5} which could be transformed into the sulfone **2a**.^{3,4} Under the Lewis acid catalysis, the sulfone **2a**, the lactol **2b** and the lactolether $2c^7$ can serve as the precursors of the five-membered-ring oxocarbenium ions to undergo alkylation reactions with allyltrimethylsilane,^{5,7} silyl enol ethers,^{3,4} and allenylsilane or allenylstannane,⁵ resulting in the formation of the C8/C10-trans **3a-c** in a highly stereoselective manner.¹¹ Zhao et al. established an intramolecular O-alkylation of the C10-alkoxide generated in situ from the acetate **4b** which was derived from the *anti*-aldol **4a**.⁶ The desired trisubstituted THF product was obtained with inversion of the configuration at C7.⁶

Iqbal et al. used an intramolecular oxy-Michael addition within **5** to construct the THF ring with a 82:18 diastereomeric ratio.¹² In our previous total synthesis of amphidinolide X and Y, we employed a 5-*endo* epoxide ring-opening cyclization to build up the 1,1,4,5-tetrasubstituted THF subunit.¹³ We report here on synthesis of the C1–C12 acid fragment of amphidinolide T macrolides by utilizing an enantioselective reductive coupling of an aldehyde with the (1*S*,2*R*)-*N*-methylephedrine-derived crotonate^{14–16} to install the requisite absolute configurations at C7 and C8 in the trisubstituted THF ring.

Scheme 1. Stereoselective formation of the trisubstituted THF ring of amphidinolide T macrolides.

2. Results and discussion

The chiral aldehyde (R)-**7**,¹⁷ easily derived from (R)-methyl 3hydroxy-2-methylpropionate 6, and its antipode have been used in diastereoselective reactions such as aldol^{17a,c,d} and crotylation^{17b} and the TBDPS- and Tr-protected analogues¹⁸ have been subjected to the reaction with Takai's (γ -methoxyallyl)chromium reagent. Racemization at the stereogenic center of these aldehydes was not revealed in the above reactions. We initially carried out the Wittig olefination of (R)-7 for the synthesis of the aldehyde **13** (Scheme 2). The iodide **10**,¹⁹ prepared from 1,4-butanediol **8a**, was reacted with PPh₃ in refluxing MeNO₂ for 21 h to give the phosphonium salt (92%), which was deprotonated using KHMDS to form the requisite ylide. The latter, without isolation, reacted with (R)-7 in THF at 0 °C for 1 h, providing the (*Z*)-alkene **11** { $[\alpha]_D^{22}$ +0.77 (*c* 3.80, acetone)} in 86% yield. The optical rotation of 11 is rather lower but we could not realize loss of stereochemistry during the Wittig olefination till 11 was transformed into the known C1–C12 acid fragment **18** { $[\alpha]_D^{20}$ -0.3 (*c* 4.44, CH₂Cl₂); lit.^{5b} [α]_D²³ +8.4 (*c* 4.5, CH₂Cl₂)} (vide infra). At that stage, we decided to prepare the alkene 11 via the Wittig reaction starting from the achiral aldehyde 9^{20} and the chiral iodide **12**.²¹ The alkylation of PPh₃ with **12** was first carried out in refluxing MeNO₂ for 23 h followed by washing the residue with Et₂O, giving a yellow oil with ca. 75% conversion of **12** presumably due to steric hindrance of the iodide 12. When the oil was used for the Wittig reaction with 9 the alkene 11 was produced in 32% yield. Fortunately, under microwave heating²² for 2 h in a closed vial at 140 $^{\circ}$ C in MeNO₂ the iodide **12** was mostly reacted with PPh₃ to form the phosphonium salt. The latter was then deprotonated by KHMDS and the resultant ylide reacted with 9 to furnish the alkene **11** { $[\alpha]_D^{20}$ +29.8 (c 3.75, acetone)} in 86% overall yield from **12**. Hydrogenation of 11 over Pd/C in EtOH (rt, 1 h; 99%) and removal of the TBDPS protection group by TBAF in THF (rt, 1 h; 95%) gave the saturated primary alcohol, which was oxidized to the aldehyde 13 by DMP-NaHCO₃ (rt, 0.5 h; 85%).

With the aldehyde **13** in hand, we next investigated the SmI₂mediated reductive coupling reactions of aldehydes with the

Scheme 2. Preparation of the C1-C7 aldehyde 13.

(1*S*,2*R*)-*N*-methylephedrine-derived crotonate **14** (Table 1).¹⁴ We first performed the known reaction of **14** with cyclohexanecarbaldehyde at different temperatures (Table 1, entries 1–3). The desired *cis*-3,4-disubstituted γ -butyrolactone **15a** was obtained in high diastereomeric selectivity as reported¹⁴ but the yield was low. By applying the conditions we established for the reactions of the crotonates derived from atropisomeric 1-naphthamides,^{15c} **15a** was obtained in 56% yield (entry 3). Use of 3 equiv of Sml₂ was found beneficial in the reaction of octanal as well and the product **15b** was produced in 45% yield (entries 4 and 5). Similarly, the reaction of the chiral aldehyde **13** with **14** afforded the product **15c** in 53–67% after shortening the reaction time to 3 h between –20 to –15 °C on small scales (entry 6). The yield of **15c** dropped slightly to 46% on average for the preparative scales (entry 7). These results suggest that the

Table 1

SMI2-Mediated enantioselective reductive coupling

$$Me_{2}^{N} Me_{1} + CHO_{1} Sml_{2} + CHO_{1} February CHO_{1} February$$

Entry	RCHO	SmI_2 (eq)	<i>T</i> (°C); <i>t</i> (h)	15; Yield (%)
1	CyCHO	2	-78; 1 and then -78 to rt; 2-3	15a ; 34 ^a
2	CyCHO	2	-20 to -15; 6	15a ; 45
3	CyCHO	3	−20 to −15; 6	15a ; 56
4	Octanal	2	−20 to −15; 6	15b; 33
5	Octanal	3	−20 to −15; 6	15b; 45
6	13	3	-20 to -15; 3	15c ; 53–67 ^b
7	13	3	-20 to -15; 3	15c ; 46 ^{c,d}

 $^a\,$ A GC yield of 74% was reported for formation of 15a at $-78\,^\circ C$ and a 71% isolated yield was given for 15a prepared at 0 $^\circ C$ (Ref. 14).

^b For the runs of 0.2–0.25 mmol.

^c Average yield for three runs of ca. 3 mmol of **13**.

^d A 97.1:2.9 diastereomer ratio was obtained by HPLC analysis over a chiral stationary phase (see Supplementary data for details). Sml₂-mediated reductive coupling reaction is sensitive to the reaction conditions. The byproduct of the reaction seems related to the reduced aldehyde but the exact structure has not been deduced yet. Nevertheless, the straight-chain aldehydes gave low yields of 55–59% by GC analysis in Fukuzawa's work.¹⁴ Our results for the reductive coupling reactions of octanal and **13** are consistent with this trend.^{15b,d}

The *cis*-3,4-disubstituted γ -butyrolactone **15** prepared from **14** is expected to have \geq 97:3 cis:trans ratio with \geq 94% ee for the cis isomer according to Fukuzawa's work.¹⁴ Due to lack of stereochemical communication with the remote chirality in the aldehyde **13**, the stereochemical course of the reductive coupling reaction of **13** is controlled by the chiral crotonate **14**, preferentially affording the cis diastereomer **15c**. However, the pair of cis diastereomers of **15c**, being different at the C3 and C4 stereogenic centers on the γ -butyrolactone ring, are not distinguishable by ¹H NMR spectroscopy. By using HPLC analysis over a chiral stationary phase, we were able to estimate a diastereomer ratio of 97.1:2.9 for **15c** (see **Supplementary data**). Moreover, the corresponding *trans* isomers of **15c** were not detected by ¹H NMR spectroscopy, indicating that the reductive coupling of **13** with **14** offers high diastereo-

As depicted in Scheme 3, **15c** was first reduced by Dibal-H at $-78 \degree C$ to give the lactol **16**, which was subjected to the allylation with allyltrimeyhlsilane in the presence of BF₃·OEt₂ at $-78 \degree C.^{5b,7}$ The 3,5-*trans*-2,3,5-trisubstituted THF product **17** was formed in 91% overall yield from **15c**. Under the Lewis acidic conditions, the PMB protecting group was cleaved spontaneously. The primary alcohol **17** was finally oxidized to the known carboxylic acid **18**^{5b} in 90% yield by treating with PDC in DMF-H₂O.²³ All spectral data and optical rotation { $[\alpha]_D^{17}$ +11.9 (*c* 4.3, CH₂Cl₂); lit.^{5b} $[\alpha]_D^{23}$ +8.4 (*c* 4.5, CH₂Cl₂)} of our sample **18** are consistent with those reported by Jamison.^{5b}

Scheme 3. Synthesis the C1–C12 acid fragment 18.

3. Conclusion

In summary, we have established a one-step stereoselective synthesis of the *cis*-3,4-disubstituted γ -butyrolactone **15c** via the Sml₂-mediated reductive coupling of the chiral aldehyde **13** with the know chiral crotonate **14**.¹⁴ The reaction is reproducible on preparative (sub-gram) scales in the average yield of 46%, which is comparable to those multiple-step approaches reported in the literature.^{3–7,10} Improvement over the product yield of the reductive coupling is considered by using the chiral crotonates derived from

other chiral auxiliaries.^{15c,d} Research toward this goal is in progress in our laboratories.

4. Experimental

4.1. General methods

¹H and ¹³C NMR spectra were recorded on a 400 MHz spectrometer in CDCl₃ (400 MHz for ¹H and 100 MHz for ¹³C, respectively) with CHCl₃ as the internal reference. IR spectra were taken on a FTIR spectrophotometer. Mass spectra (MS) were measured by the ⁺ESI or ⁻ESI method at 70 eV. High-resolution mass spectra (HRMS) were measured by the +ESI. Optical rotation data were recorded on a polarimeter with a cylindrical guartz cell (thermostattable, 3.5 mm ID×10 mm). Silica gel plates pre-coated on glass were used for thin-layer chromatography using UV light, or 7% ethanolic phosphomolybdic acid and heating as the visualizing methods. Silica gel and petroleum ether (PE; bp 60-90 °C) were used for flash column chromatography. Yields refer to chromatographically and spectroscopically (¹H NMR) homogeneous materials. Anhydrous Et₂O, THF and PhMe were freshly distilled from sodium benzophenone ketyl under N2. Anhydrous CH2Cl2 and MeNO₂ were freshly distilled from CaH₂. Dess–Martin periodinane (DMP) was prepared according to the literature procedure.²⁴ (1S,2R)-N-Methylephedrinyl crotonate **14** { $[\alpha]_D^{23}$ -2.8 (*c* 1.35, CDCl₃)} was prepared according to Fukuzawa's procedure.¹⁴ The solution of SmI₂ (0.1 M in THF) from a commercial source was used in this work. The reductive coupling reactions using in situ prepared SmI₂ from Sm metal and diiodoethane²⁵ gave similar results. The microwave reactions were carried out in closed pressurized process vials on a technical microwave reactor (EmrysTM creator from Personal Chemistry AB, Uppsala, Sweden) with the reaction temperature measured by an IR sensor. The reaction time is the holding time after reaching the set reaction temperature. Other reagents were obtained commercially and used as received. Ambient temperature ranges from 10–30 °C.

4.2. Preparation of known intermediates

4.2.1. Synthesis of (R)-(-)-3-(4-methoxybenzyloxy)-2-methylpropanal (**7**)¹⁷

To a solution of (S)-(-)-3-(4'-methoxybenzyloxy)-2-methylpropan-1-ol²⁶ (3.88 g, 18.47 mmol) in CH₂Cl₂ (370 mL) at rt was added solid NaHCO₃ (15.5 g, 185 mmol) followed by carefully adding a solution of Dess-Martin periodinane (DMP)²⁴ in CH₂Cl₂ (0.3 M, 74 mL, 22 mmol). The resultant mixture was stirred at room temperature for 0.5 h followed by treating with saturated aqueous Na₂S₂O₃ and NaHCO₃. The reaction mixture was extracted with CH₂Cl₂ (3×200 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluting with 20% EtOAc in PE) to give the aldehyde (*R*)-**7** (3.77 g, 98%) as a colorless oil. R_f =0.56 (20% EtOAc in PE); $[\alpha]_D^{20}$ –27.8 (c 1.9, CHCl₃); lit.^{17d} $[\alpha]_D^{25}$ +29.4 (c 9.06, CH₂Cl₂; ca. 95% purity) for (S)-7; ¹H NMR (400 MHz, CDCl₃) δ 9.71 (s, 1H), 7.24 (d, J=8.0 Hz, 2H), 6.88 (d, J=7.6 Hz, 2H), 4.46 (s, 2H), 3.81 (s, 3H), 3.67-3.58 (m, 2H), 2.69–2.61 (m, 1H), 1.12 (d, J=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.9, 159.2, 129.9, 129.2, 113.8, 72.9, 69.8, 55.2, 46.7, 10.7.

4.2.2. Synthesis of 4-[(tert-butyldiphenylsilyl)oxy]butan-1-ol (**8b**)^{19b,20}

To a solution of 1,4-butanediol **8a** (8.86 mL, 100.0 mmol) and imidazole (8.850 g, 130.0 mmol) in dry CH_2Cl_2 (300 mL) was added *t*-BuPh₂SiCl (52.0 mL, 200.0 mmol) dropwise under a nitrogen atmosphere at room temperature followed by stirring at same

temperature for 4 h. The reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography (eluting with 9% EtOAc in PE) to give, along with the bis-silylated byproduct, the monoalcohol **8b**^{19b,20} (18.50 g, 59%) as a colorless oil. R_{f} =0.17 (9% EtOAc in PE); ¹H NMR (400 MHz, CDCl₃) δ 7.76–7.72 (m, 4H), 7.48–7.39 (m, 6H), 3.76 (t, *J*=6.0 Hz, 2H), 3.68 (t, *J*=6.0 Hz, 2H), 2.68 (br s, 1H), 1.77–1.65 (m, 4H), 1.12 (s, 9H).

4.2.3. Synthesis of 4-(tert-butyldiphenylsilyloxy)butanal (9)²⁰

To a solution of the alcohol **8b** (12.56 g, 40.2 mmol) in CH₂Cl₂ (200 mL) at room temperature was added solid NaHCO₃ (33.80 g, 402 mmol) followed by carefully adding a solution of Dess–Martin periodinane (DMP)²⁴ in CH₂Cl₂ (0.3 M, 160 mL, 48 mmol). The resultant mixture was stirred at room temperature for 0.5 h followed by treating with saturated aqueous Na₂S₂O₃ and NaHCO₃. The reaction mixture was extracted with CH₂Cl₂ (3×50 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluting with 9% EtOAc in PE) to give the aldehyde **9**²⁰ (12.40 g, 99%) as a colorless oil. R_f =0.56 (9% EtOAc in PE); ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 7.67–7.64 (m, 4H), 7.50–7.30 (m, 6H), 3.70 (t, *J*=6.0 Hz, 2H), 2.56 (t, *J*=6.8 Hz, 2H), 1.90 (quintet, *J*=6.4 Hz, 2H), 1.05 (s, 9H).

4.2.4. Synthesis of 4-[(tert-butyldiphenylsilyl)oxy]-1-iodobutane ($\bf 10)^{19}$

To a solution of the alcohol **8b** (2.01 g, 6.43 mmol) in dry CH₂Cl₂ (10 mL) cooled at 0 °C was added Et₃N (1.34 mL 9.65 mmol) and MeSO₂Cl (0.60 mL, 7.7 mmol) under a nitrogen atmosphere. The resultant mixture was allowed to warm to room temperature and was stirred at same temperature for 1 h. The reaction was guenched by adding EtOAc (50 mL). The organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to give the crude mesylate which, without purification, was dissolved in acetone (30 mL) followed by adding solid Nal (9.638 g, 64.3 mmol). The resultant suspension was stirred at reflux for 4 h. The reaction mixture was allowed to cool to room temperature and was then concentrated under reduced pressure. The residue was dissolved in EtOAc (30 mL) and washed with saturated aqueous Na₂S₂O₃. The aqueous layer was extracted with EtOAc (2×30 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluting with PE) to give the iodide 10^{19} (2.357 g, 84% over 2 steps from **8b**) as a colorless oil. $R_{f}=0.52$ (PE); ¹H NMR (400 MHz, CDCl₃) δ 7.69–7.66 (m, 4H), 7.45–7.38 (m, 6H), 3.70 (t, J=6.0 Hz, 2H), 3.21 (t, J=6.8 Hz, 2H), 2.01-1.92 (m, 2H), 1.71–1.63 (m, 2H), 1.07 (s, 9H); 13 C NMR (100 MHz, CDCl₃) δ 135.6 (4×), 133.8 (2×), 129.6 (2×), 127.6 (4×), 62.7, 33.3, 30.1, 26.9, 19.2, 7.01; MS (⁻ESI) *m*/*z* (relative intensity) 423 (M–CH₃, 100).

4.2.5. Synthesis of (R)-(–)-1-[(3'-iodo-2'-methylpropoxy)methyl]-4-methoxybenzene $({\bf 12})^{26}$

To a solution of (*S*)-(–)-3-(4'-methoxybenzyloxy)-2-methylpropan-1-ol²⁶ (6.80 g, 32.3 mmol) in dry PhMe (200 mL) at room temperature was added PPh₃ (21.20 g, 80.9 mmol), imidazole (5.50 g, 80.9 mmol), and I₂ (16.40 g, 64.7 mmol). The resultant mixture was stirred at room temperature for 3 h followed by treating with saturated aqueous Na₂S₂O₃. The reaction mixture was extracted with Et₂O (3×50 mL) and the combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluting with 4% EtOAc in PE) to give the iodide (*R*)-(–)-**12**²⁶ (9.30 g, 90%) as a colorless oil. [α]_D²⁰ –14.1 (c 1.23, acetone) and [α]_D²⁰ –13.5 (c 2.9, CH₂Cl₂); lit.²⁶ [α]_D²⁰ –13.5 (c 1.15, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J*=8.4 Hz, 2H), 6.88 (d, *J*=8.4 Hz, 2H), 4.44 (s, 2H), 3.81 (s, 3H), 3.38–3.24 (m, 4H), 1.74–1.80 (m, 1H), 0.98 (d, *J*=6.8 Hz, 3H).

4.3. Synthesis of (2*S*,3*Z*)-7-[(*tert*-butyldiphenylsilyl)oxy]-1-(4'-methoxybenzyloxy)-2-methylhept-3-ene (11)

4.3.1. The Wittig olefination starting from the iodide **10** and the chiral aldehyde **7** (Method A)

To a solution of the iodide **10** (36.80 g, 84 mmol) in MeNO₂ (200 mL) was added PPh₃ (22.00 g, 84 mmol) followed by stirring at reflux in an oil bath for 21 h. After cooling to room temperature, the reaction mixture was diluted with Et₂O (260 mL). The precipitate was collected by filtration and was washed with Et₂O. The solid was dried under reduced pressure to give the phosphonium salt **10a** (52.90 g, 92%) as a pale yellow solid.

To a solution of the phosphonium salt **10a** (687.0 mg, 1.0 mmol) in dry THF (4 mL) cooled at 0 °C was added KHMDS (0.7 M in toluene, 2.57 mL, 1.8 mmol) dropwise under a nitrogen atmosphere. After stirring at the same temperature for 30 min, a solution of the aldehyde **7** (104.0 mg, 0.5 mmol) in dry THF (2 mL) was added dropwise via a syringe. The resultant mixture was stirred at 0 °C for 1 h and the reaction was quenched by adding water. The reaction mixture was extracted with EtOAc (3×10 mL) and the combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluting with 3% EtOAc in PE) to give **11** (216.0 mg, 86%) as a colorless oil. $[\alpha]_D^{22}$ +0.77 (*c* 3.80, acetone) and $[\alpha]_D^{20}$ +2.09 (*c* 3.0, CHCl₃).

Note. Racemization at the stereogenic carbon of the aldehyde **7** during the Wittig reaction was confirmed after transforming **11** into the target acid **18**.

4.3.2. The Wittig olefination starting from the chiral iodide **12** and the aldehyde **9** (Method B)

A 10 mL pressurized process vial was charged the iodide **12** (160.0 mg, 0.5 mmol) and PPh₃ (197.0 mg, 0.75 mmol) followed by adding MeNO₂ (2 mL). The vial was sealed with a cap containing a silicon septum. The loaded vial was placed into the microwave reactor cavity and, after being heated at 140 °C for 2 h, the iodide **12** was found to be mostly converted. The reaction mixture was concentrated under reduced pressure to give the crude phosphonium salt **12a** which, without purification, was used for the next step.

To a solution of the above phosphonium salt 12a in dry THF (4 mL) cooled at 0 °C was added KHMDS (0.5 M in toluene, 1 mL, 0.5 mmol) dropwise under a nitrogen atmosphere. After stirring at the same temperature for 30 min, a solution of the aldehyde 9 (279.0 mg, 0.9 mmol) in dry THF (2 mL) was added dropwise via a syringe. The resultant mixture was stirred at 0 °C for 2 h and the reaction was quenched by adding water. The reaction mixture was extracted with EtOAc (3×10 mL) and the combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluting with 4% EtOAc in PE) to give 11 (217.0 mg, 86% from **12**) as a colorless oil. $[\alpha]_{D}^{20}$ +29.8 (*c* 3.75, acetone); R_{f} =0.49 (4% EtOAc in PE); IR (film) 2931, 1612, 1513, 1247, 1111 cm⁻¹; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta$ 7.68 (d, J=6.4 Hz, 4H), 7.44–7.36 (m, 6H), 7.25 (d, J=8.4 Hz, 2H), 6.87 (d, J=8.8 Hz, 2H), 5.38 (dt, J=10.4, 7.2 Hz, 1H), 5.19 (dd, *J*=10.8, 9.6 Hz, 1H), 4.45 and 4.41 (ABq, *J*=12.0 Hz, 2H), 3.80 (s, 3H), 3.68 (t, J=6.8 Hz, 2H), 3.31-3.20 (m, 2H), 2.84-2.76 (m, 1H), 2.23-2.09 (m, 2H), 1.67-1.57 (m, 2H), 1.06 (s, 9H), 0.97 (d, J=6.8 Hz, 3H); 13 C NMR (100 MHz, CDCl₃) δ 159.0, 135.5 (4×), 134.0 (2×), 132.9, 130.8, 129.7, 129.5 (2×), 129.0 (2×), 127.6 (4×), 113.7 (2×), 75.0, 72.5, 63.4, 55.2, 32.8, 32.2, 26.8 (3×), 23.9, 19.2, 17.8; MS (⁺ESI) *m*/*z* (relative intensity) 525 (M+Na⁺, 100); HRMS (+ESI) calcd for C₃₂H₄₂O₃SiNa⁺ (M+Na⁺) 525.2795, found 525.2782.

4.4. Synthesis of (*S*)-7-[(*tert*-butyldiphenylsilyl)oxy]-2methylhept-1-yl 4'-methoxybenzyl ether

To a solution of the alkene **11** (239.0 mg, 0.48 mmol) in EtOH (2 mL) was added Pd/C (10% w/w, 50.5 mg, 4.7×10^{-2} mmol Pd). The loaded reaction flask was charged with a hydrogen gas balloon and was then gently evacuated and backfilled with hydrogen gas (repeated for three times). The mixture was vigorously stirred at room temperature for 1 h under a hydrogen atmosphere. The reaction mixture was filtered through a Celite plug with washing by EtOH (10 mL) and the combined filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (eluting with 3% EtOAc in PE) to afford the saturated chiral silyl ether (237.0 mg, 99%) as a colorless oil. $[\alpha]_D^{20} - 21.6$ (*c* 0.66, CH₂Cl₂); *R*_f=0.49 (4% EtOAc in PE); IR (film) 2931, 1613, 1513, 1247, 1111 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J=7.2 Hz, 4H), 7.39–7.34 (m, 6H), 7.25 (d, J=8.0 Hz, 2H), 6.86 (d, J=8.4 Hz, 2H), 4.43 and 4.40 (ABq, J=12.4 Hz, 2H), 3.76 (s, 3H), 3.66 (t, J=6.0 Hz, 2H), 3.28 (dd, J=9.2, 6.0 Hz, 1H), 3.19 (dd, J=9.2, 6.8 Hz, 1H), 1.77-1.66 (m, 1H), 1.61–1.51 (m, 2H), 1.43–1.18 (m, 6H), 1.06 (s, 9H), 0.90 (d, J=6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 135.5 (×4), 134.1 (2×), 130.9, 129.4 (2×), 129.0 (2×), 127.5 (4×), 113.6 (2×), 75.6, 72.5, 63.9, 55.1, 33.6, 33.4, 32.5, 26.8 (3×), 26.7, 26.1, 19.2, 17.1; MS (+ESI) m/z (relative intensity) 522 (M+NH₄⁺, 100), 527 (M+Na⁺, 71); HRMS (+ESI) calcd for C₃₂H₄₄O₃SiNa⁺ (M+Na⁺) 527.2953, found 527.2964.

4.5. Synthesis of (*S*)-7-(4'-methoxybenzyloxy)-6-methylheptan-1-ol

To a solution of the above chiral silvl ether (10.40 g, 20.6 mmol) in THF (200 mL) was added TBAF (1.0 M in THF, 30.9 mL, 30.9 mmol) followed by stirring at room temperature for 1 h. The reaction was then quenched by adding saturated aqueous NH₄Cl. The reaction mixture was extracted with EtOAc (3×200 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluting with 25% EtOAc in PE) to give the chiral alcohol (5.20 g, 95%) as a colorless oil. $[\alpha]_D^{20}$ –7.2 (*c* 0.71, CH₂Cl₂); *R*_f=0.27 (25% EtOAc in PE); IR (film) 3404 (br), 2931, 1613, 1513, 1248, 1090, 1036 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J*=8.0 Hz, 2H), 6.87 (d, *J*=8.4 Hz, 2H), 4.44 and 4.41 (ABq, J=12.4 Hz, 2H), 3.79 (s, 3H), 3.60 (t, J=6.4 Hz, 2H), 3.28 (dd, J=8.8, 6.0 Hz, 1H), 3.20 (dd, J=8.8, 6.4 Hz, 1H), 1.90-1.67 (m, 2H), 1.60-1.50 (m, 2H), 1.47-1.20 (m, 5H), 1.15-1.05 (m, 1H), 0.91 (d, J=6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 130.8, 129.0 (2×), 113.6 (2×), 75.6, 72.5, 62.8, 55.2, 33.5, 33.3, 32.6, 26.6, 25.9, 17.1; MS (+ESI) *m*/*z* (relative intensity) 289 (M+Na⁺, 100); HRMS (+ESI) calcd for C₁₆H₂₆O₃Na⁺ (M+Na⁺) 289.1774, found 289.1776.

4.6. Synthesis of (*S*)-7-(4'-methoxybenzyloxy)-6-methylheptanal (13)

To a solution of the above chiral alcohol (4.00 g, 15.0 mmol) in CH₂Cl₂ (300 mL) at room temperature was added solid NaHCO₃ (12.60 g, 150 mmol) followed by carefully adding a solution of Dess–Martin periodinane¹ in CH₂Cl₂ (0.3 M, 60 mL, 18 mmol). The resultant mixture was stirred at room temperature for 1 h followed by treating with saturated aqueous Na₂S₂O₃ and NaHCO₃. The reaction mixture was extracted with CH₂Cl₂ (3×50 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluting with 25% EtOAc in PE) to give the aldehyde **13** (3.40 g, 85%) as a colorless oil. $[\alpha]_{D}^{20}$ –6.7 (*c* 0.95, CH₂Cl₂); *R*_f=0.62 (25% EtOAc in PE); IR (film) 2933, 1724, 1612, 1513, 1247, 1092, 1035 cm⁻¹; ¹H NMR (400 MHz,

CDCl₃) δ 9.75 (s, 1H), 7.25 (d, *J*=8.8 Hz, 2H), 6.87 (d, *J*=9.2 Hz, 2H), 4.43 and 4.40 (ABq, *J*=12.4 Hz, 2H), 3.80 (s, 3H), 3.27 (dd, *J*=8.8, 6.4 Hz, 1H), 3.21 (dd, *J*=8.8, 6.8 Hz, 1H), 2.41 (td, *J*=7.2, 1.6 Hz, 2H), 1.78–1.68 (m, 1H), 1.66–1.56 (m, 2H), 1.50–1.22 (m, 3H), 1.17–1.07 (m, 1H), 0.90 (d, *J*=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.7, 159.0, 130.8, 129.1 (2×), 113.7 (2×), 75.4, 72.6, 55.2, 43.8, 33.3, 33.2, 26.4, 22.3, 17.0; MS (⁻ESI) *m/z* (relative intensity) 263 (M–H, 100); HRMS (⁺ESI) calcd for C₁₆H₂₄O₃Na⁺ (M+Na⁺) 287.1618, found 287.1628.

4.7. General procedure for Sml₂-mediated reductinve coupling reactions of aldehydes with the chiral crotonate 14

To a solution of the chiral crotonate 14^{14} (59.0 mg, 0.24 mmol), the aldehyde (0.20 mmol), and *t*-BuOH (0.24 mmol) in THF (1 mL) cooled at $-20 \,^{\circ}$ C under a nitrogen atmosphere was added a THF solution of Sml₂ (0.40 or 0.60 mmol). The resultant mixture was stirred at $-20 \,^{\circ}$ C for 3–6 h. The reaction was quenched with saturated aqueous NH₄Cl and extracted with EtOAc (3×10 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (eluting with 25% EtOAc in PE) to give the γ -butyrolactones **15a–c**. The yields of **15a–c** are found in Table 1 of the main text.

4.7.1. (4S,5S)-5-Cyclohexyl-4-methyldihydrofuran-2(3H)-one (**15a**)^{14,15c}

A white solid; ¹H NMR (400 MHz, CDCl₃) δ 4.00 (dd, *J*=10.0, 4.8 Hz, 1H), 2.70 (dd, *J*=16.4, 6.8 Hz, 1H), 2.56–2.50 (m, 1H), 2.17 (d, *J*=16.8 Hz, 1H), 2.02 (br d, *J*=12.8 Hz, 1H), 1.80–1.55 (m, 4H), 1.30–0.80 (m, 6H), 0.97 (d, *J*=7.2 Hz, 3H).

4.7.2. (4S,5S)-5-Heptyl-4-methyldihydrofuran-2(3H)-one (15b)

A colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 4.45–4.37 (m, 1H), 2.67 (dd, *J*=17.2, 8.0 Hz, 1H), 2.62–2.50 (m, 1H), 2.17 (dd, *J*=16.8, 3.2 Hz, 1H), 1.70–1.40 (m, 3H), 1.40–1.20 (m, 9H), 0.99 (d, *J*=6.8 Hz, 3H), 0.86 (t, *J*=6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.9, 83.7, 37.5, 33.0, 31.7, 29.8, 29.4, 29.1, 25.8, 22.6, 14.0, 13.8.

4.7.3. (4S,5S,5'S)-5-[6'-(4"-Methoxybenzyloxy)-5'-methylhexyl]-4methyldihydrofuran-2(3H)-one (**15c**)

A colorless oil. $[\alpha]_D^{17} - 31.2$ (*c* 2.7, CH₂Cl₂); *R*_f=0.46 (25% EtOAc in PE); IR (film) 2934, 1777, 1514, 1248, 1171, 1093, 1035 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J*=6.8 Hz, 2H), 6.88 (d, *J*=8.8 Hz, 2H), 4.42 (s, 2H), 4.45–4.39 (m, 1H), 3.80 (s, 3H), 3.27 and 3.22 (Abqd, *J*=8.8, 6.4 Hz, 2H), 2.68 (dd, *J*=17.2, 8.0 Hz, 1H), 2.61–2.53 (m, 1H), 2.19 (dd, *J*=17.2, 4.0 Hz, 1H), 1.78–1.60 (m, 2H), 1.54–1.25 (m, 6H), 1.16–1.07 (m, 1H), 1.00 (d, *J*=6.8 Hz, 3H), 0.91 (d, *J*=6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.9, 159.1, 130.8, 129.1 (×2), 113.7 (×2), 83.6, 75.6, 72.6, 55.3, 37.5, 33.5, 33.4, 33.0, 29.8, 26.7, 26.2, 17.1, 13.8; MS (+ESI) *m/z* (relative intensity) 357 (M+Na⁺, 100); HRMS (+ESI) calcd for C₂₀H₃₀O₄Na⁺ (M+Na⁺) 357.2036, found 357.2037.

4.8. A preparative scale synthesis of 15c

To a solution of Sml₂ in THF (0.1 M, 89.0 mL, 8.9 mmol) cooled at -20 to -15 °C, was added a solution of the chiral crotonate **14**¹⁴ (885.0 mg, 3.58 mmol), the aldehyde **13** (789.0 mg, 2.98 mmol) and *t*-BuOH (0.34 mL, 3.62 mmol) in THF (5 mL) via a syringe under a nitrogen atmosphere. The resultant mixture was stirred at -20 to -15 °C for 3 h and the reaction was quenched with saturated aqueous NH₄Cl. The reaction mixture was extracted with EtOAc (3×50 mL) and the combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (eluting with 16% EtOAc in PE) to give the γ -butyrolactone **15c** (463.0 mg, 46%).

4.9. Synthesis of (2*S*,2′*S*,3′*S*,5′*R*)-6-(5′-allyl-3′methyltetrahydrofuran-2′-yl)-2-methylhexanol (17)⁷

To a solution of **15c** (500.0 mg, 1.50 mmol) in dry CH_2CI_2 (15 mL) cooled at -78 °C was added dropwise a solution of diisobutylaluminum hydride in hexane (1 M, 1.8 mL, 1.8 mmol) followed by stirring for 1 h at the same temperature. The reaction was quenched by carefully adding EtOAc (10 mL) and the mixture was allowed to warm to 0 °C. Saturated aqueous sodium potassium tartrate was added and the resultant mixture was diluted with Et₂O (50 mL) with vigorous stirring. The organic layer was separated and the aqueous layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to give the crude lactol **16**.

To a solution of the above crude lactol **16** and allyltrimethylsilane (0.48 mL, 3.0 mmol) in dry CH_2Cl_2 (30 mL) cooled at -78 °C was added BF₃·OEt₂ (0.57 mL, 4.5 mmol) via a syringe. The resultant mixture was stirred for 2 h at -78 °C and allowed to warm to room temperature slowly. The reaction was quenched by saturated NaHCO3 and the reaction mixture was extracted with CH₂Cl₂ (3×25 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtrated, and concentrated under reduced pressure. The residue was purified by column chromatography (eluting with 20% EtOAc in PE) to give the alcohol **17** (328.0 mg, 91%) as a colorless oil. $[\alpha]_D^{20}$ –10.9 (c 2.7, CH₂Cl₂); lit.⁷ $[\alpha]_D^{25}$ –6.0 (c 1.0, CHCl₃); R_f=0.28 (25% EtOAc in PE); IR (film) 3391 (br), 2933, 1464, 1091, 1043 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.83–5.73 (m, 1H), 5.06 (br d, *J*=18.0 Hz, 1H), 5.02 (br d, *I*=10.0 Hz, 1H), 4.09 (quintet, *I*=6.8 Hz, 1H), 3.86–3.80 (m, 1H), 3.48 and 3.39 (ABad, *I*=10.8, 6.0 Hz, 2H), 2.35–2.28 (m, 1H), 2.23–2.14 (m, 2H), 1.94-1.80 (br s, 1H), 1.78-1.65 (m, 2H), 1.65-1.53 (m, 2H), 1.50-1.21 (m, 6H), 1.15-1.04 (m, 1H), 0.89 (d, J=6.8 Hz, 3H), 0.88 (d, *I*=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.0, 116.7, 81.3, 75.9, 68.2, 41.0, 39.2, 35.8, 35.7, 33.0, 30.3, 27.1, 26.8, 16.6, 13.9; MS (+CI) m/z (relative intensity) 199 (M–C₃H₅⁺, 100), 241 (M+H⁺, 10); HRMS (⁺ESI) calcd for C₁₅H₂₈O₂Na⁺ (M+Na⁺) 263.1982, found 263.1988.

4.10. Synthesis of (2*S*,2'*S*,3'*S*,5'*R*)-6-(5'-allyl-3'methyltetrahydrofuran-2'-yl)-2-methylhexanoic acid (18)^{5b}

To a solution of the alcohol 17 (335.0 mg, 1.4 mmol) in DMF (14 mL) was added 28 drops of water. Then, pyridinium dichromate (3.41 g, 9.0 mmol) was added and the resultant mixture was stirred overnight at room temperature.²⁴ The reaction mixture was directly transferred to a silica gel column followed by eluting with 25% EtOAc in PE to give the pure acid 18 (228.0 mg) and a mixed fraction with DMF and pyridine. The latter was dissolved in EtOAc and washed with 5% aqueous HCl for twice. The organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give an additional 91.0 mg of the acid **18**. The acid **18** was obtained (319.0 mg, 90%) as a colorless oil. $[\alpha]_D^{20}$ +11.9 (*c* 4.3, CH₂Cl₂); lit.^{5b} $[\alpha]_{D}^{23}$ +8.4 (c 4.5, CH₂Cl₂); R_{f} =0.25 (25% EtOAc in PE); IR (film) 3076, 2937, 1705, 1464, 1235, 1091 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.84–5.74 (m, 1H), 5.07 (dd, *J*=17.6, 2.0 Hz, 1H), 5.03 (d, *J*=10.2 Hz, 1H), 4.11 (quintet, J=6.8 Hz, 1H), 3.87-3.82 (m, 1H), 2.49-2.40 (m, 1H), 2.37-2.29 (m, 1H), 2.27-2.14 (m, 2H), 1.80-1.63 (m, 3H), 1.53-1.22 (m, 7H), 1.16 (d, J=7.2 Hz, 3H), 0.89 (d, J=7.2 Hz, 3H) (The acidic proton is not seen.); ¹³C NMR (100 MHz, CDCl₃) δ 182.7, 135.0, 116.8, 81.3, 76.0, 40.9, 39.3, 39.2, 35.8, 33.5, 30.2, 27.3, 26.5, 16.8, 14.0; MS (⁻ESI) *m*/*z* (relative intensity) 253 (M–H, 100), 254 (M, 11); HRMS (⁺ESI) calcd for C₁₅H₂₆O₃Na⁺ (M+Na⁺) 277.1774, found 277.1776.

Acknowledgements

The Laboratory of Asymmetric Catalysis and Synthesis is established under the Cheung Kong Scholars Program of The Ministry of Education of China. This work is supported in part by the research grants from The National Natural Science Foundation of China (Grant No. 20772107), Zhejiang University, and Zhejiang University Education Foundation. The authors thank Prof. T. F. Jamison of MIT, USA for providing a copy of the ¹³C NMR spectrum of the acid **18**, and Lijie Sun for his assistance on the HPLC analysis of **15c**.

Supplementary data

Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2009.06.070.

References and notes

- For reviews, see: (a) Kobayashi, J.; Tsuda, M. Nat. Prod. Rep. 2004, 21, 77–93; (b) Kobayashi, J.; Kubota, T. J. Nat. Prod. 2007, 70, 451–460; (c) Kobayashi, J. J. Antibiot. 2008, 61, 271–284.
- For isolation and structures of amphidinolide T1–T5, see: (a) Tsuda, M.; Endo, T.; Kobayashi, J. J. Org. Chem. 2000, 65, 1349–1352; (b) Kobayashi, J.; Kubota, T.; Endo, T.; Tsuda, M. J. Org. Chem. 2001, 66, 134–142; (c) Kubota, T.; Endo, T.; Tsuda, M.; Shiro, M.; Kobayashi, J. Tetrahedron 2001, 57, 6175–6179.
- (a) Fürstner, A.; Aïssa, C.; Riveiros, R.; Ragot, J. Angew. Chem., Int. Ed. 2002, 41, 4763–4766; (b) Aïssa, C.; Riveiros, R.; Ragot, J.; Fürstner, A. J. Am. Chem. Soc. 2003, 125, 15512–15520.
- 4. Ghosh, A. K.; Liu, C. J. Am. Chem. Soc. 2003, 125, 2374-2375.
- (a) Colby, E. A.; O'Brien, K. C.; Jamison, T. F. J. Am. Chem. Soc. 2004, 126, 998–999;
 (b) Colby, E. A.; O'Brien, K. C.; Jamison, T. F. J. Am. Chem. Soc. 2005, 127, 4297–4307; For synthesis of C13–C22 fragment of amphidinolide T2, see: O'Brien, K. C.; Colby, E. A.; Jamison, T. F. Tetrahedron 2005, 61, 6243–6248.
- 6. Deng, L.-S.; Huang, X.-P.; Zhao, G. J. Org. Chem. 2006, 71, 4625-4635.
- 7. Yadav, J. S.; Reddy, C. S. Org. Lett. 2009, 11, 1705-1708.
- For selective reviews on RCM, see: (a) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413–4450; (b) Fürstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012–3043; (c) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18–29; (d) Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4592–4633; (e) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199–2238; (f) Grubbs, R. H. Tetrahedron 2004, 60, 7117–7140; (g) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4490–4527; (h) Gradillas, A.; Pérez-Castells, J. Angew. Chem., Int. Ed. 2006, 45, 6086–6101; (i) Schrodi, Y.; Pederson, R. L. Aldrichimica Acta 2007, 40, 45–52; (j) Hoveyda, A. H.; Zhugralin, A. R. Nature 2007, 450, 243–251; Also see: Handboox of Metathesis; Grubbs, R. H., Ed.; Wiley–VCH: Weinheim, 2003; Vols. 1–3.
- For a review on macrolactonization, see: Parenty, A.; Moreau, X.; Campagne, J.-M. Chem. Rev. 2006, 106, 911–939.
- For a comparative analysis, see: Colby, E. A.; Jamison, T. F. Org. Biomol. Chem. 2005, 3, 2675–2684.
- (a) Larsen, C. H.; Ridgway, B. H.; Shaw, J. T.; Woerpel, K. A. J. Am. Chem. Soc. 1999, 121, 12208–12209; (b) Schmitt, A.; Reissig, H.-U. Synlett 1990, 40–42.
- For synthesis of C1–C12 fragment of amphidinolide T1, see: Abbineni, C.; Sasmal, P. K.; Mukkanti, K.; Iqbal, J. Tetrahedron Lett. 2007, 48, 4259–4262.
- (a) Chen, Y.; Jin, J.; Wu, J.; Dai, W.-M. Synlett **2006**, 1177–1180; (b) Jin, J.; Chen, Y.; Li, Y.; Wu, J.; Dai, W.-M. Org. Lett. **2007**, 9, 2585–2588; (c) Dai, W.-M.; Chen, Y.; Jin, J.; Wu, J.; Lou, J.; He, Q. Synlett **2008**, 1737–1741.
- Fukuzawa, S.; Seki, K.; Tatsuzawa, M.; Mutoh, K. J. Am. Chem. Soc. 1997, 119, 1482–1483.
 For Sml₂-mediated enantioselective synthesis of cis-3,4-disubstituted γ-butyrolactones, see: (a) Kerrigan, N. J.; Hutchison, P. C.; Heightman, T. D.; Procter, D. J. Chem. Commun. 2003, 1402–1403; (b) Kerrigan, N. J.; Hutchison, P. C.; Heightman, T. D.; Procter, D. J. Org. Biomol. Chem. 2004, 2, 2476–2482; (c) Zhang, Y.; Wang, Y.; Dai, W.-M. J. Org. Chem. 2006, 71, 2445–2455; (d) Vogel, J. C.; Butler, R.; Procter, D. J. Tetrahedron 2008, 64, 11876–11883.
- For reviews, see: (a) Molander, G. A.; Harries, C. R. Chem. Rev. 1996, 96, 307– 338; (b) Krief, A.; Laval, A.-M. Chem. Rev. 1999, 99, 745–778; (c) Edmonds, D. J.; Johnston, D.; Procter, D. J. Chem. Rev. 2004, 104, 3371–3403; (d) Gopalaiah, K.; Kagan, H. B. New J. Chem. 2008, 32, 607–637.
- (a) Smith, A. B., III; Qiu, Y.; Jones, D. R.; Kobayashi, K. J. Am. Chem. Soc. 1995, 117, 12011–12012; (b) Scheidt, K.A.; Bannister, T.D.; Tasaka, A.; Wendt, M.D.; Savall, B. M.; Fegley, G.J.; Roush, W.R. J. Am. Chem. Soc. 2002, 124, 6981–6990; For the (S)enantiomer, see: (c) Mulzer, J.; Mantoulidis, A. Tetrahedron Lett. 1996, 37, 9179– 9182; (d) Walkup, R. D.; Kahl, J. D.; Kane, R. R. J. Org. Chem. 1998, 63, 9113–9116.
- (a) Guan, Y.; Wu, J.; Sun, L.; Dai, W.-M. J. Org. Chem. 2007, 72, 4953–4960; (b) Toshima, K.; Jyojima, T.; Yamaguchi, H.; Noguchi, Y.; Yoshida, T.; Murase, H.; Nakata, M.; Matsumura, S. J. Org. Chem. 1997, 62, 3271–3284.
- (a) Lakanen, J. R.; Pegg, A. E.; Coward, J. K. J. Med. Chem. **1995**, 38, 2714–2727; (b) Pérez, M.; Canoa, P.; Gómez, G.; Terán, C.; Fall, Y. Tetrahedron Lett. **2004**, 45, 5207–5209.
- 20. Freeman, F.; Kim, D. S. H. L. J. Org. Chem. 1992, 57, 1722-1727.
- (a) Heckrodt, T. J.; Mulzer, J. Synthesis 2002, 1857–1866; (b) Bailey, W. F.; Punzalan, E. R. J. Org. Chem. 1990, 55, 5404–5406.
- (a) Kiddle, J. J. Tetrahedron Lett. 2000, 41, 1339–1341; (b) Dai, W.-M.; Wu, A.; Wu, H. Tetrahedron: Asymmetry 2002, 13, 2187–2191.
- 23. Williams, D. R.; Meyer, K. G. J. Am. Chem. Soc. 2001, 123, 765-766.
- (a) Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899; (b) Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537–4538.
- 25. Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102, 2693-2698.
- 26. Heckrodt, T. J.; Mulzer, J. Synthesis 2002, 1857-1866.