

tert-Butylating Reagent

Development of a Triazine-Based *tert*-Butylating Reagent, TriAT-*t*Bu

Kohei Yamada,^[a] Naoko Hayakawa,^[a] Hikaru Fujita,^[a] Masanori Kitamura,^[a] and Munetaka Kunishima^{*[a]}

Abstract: A new *tert*-butylating reagent, 2,4,6-tris(*tert*-butoxy)-1,3,5-triazine (TriAT-tBu) has been developed for the acid-cata-lyzed *tert*-butylation of alcohols and carboxylic acids. The reaction of various alcohols and carboxylic acids with TriAT-tBu in the presence of a catalytic amount of an acid provided the

Introduction

We have recently reported the development of a triazine-based *O*-benzylating reagent, 2,4,6-tris(benzyloxy)-1,3,5-triazine (Tri-BOT)^[1] and a *para*-methoxybenzylating reagent (TriBOT-PM),^[2] which can be considered as the formal trimer of the smallest unit of benzyl imidate (Figure 1). These reagents have several characteristic features: (1) they can be easily synthesized from the corresponding inexpensive alcohols and cyanuric chloride in one step; (2) they are non-hygroscopic solids, non-irritants, and non-allergens and can be stored and handled in air at room temperature; (3) the co-product isocyanuric acid can be easily removed by filtration under standard workup conditions. Our next goal is to demonstrate the possibility of using this concept for designing an alkylating reagent, 2,4,6-tris(alkyloxy)-1,3,5-triazine (TriAT).

smallest unit of benzyl imidate

Figure 1. Concept for the design of TriAT-tBu.

The *tert*-butyl group has been widely employed as a protecting group for hydroxy and carboxy functional groups, because

 [a] Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University Kakuma-machi, Kanazawa 920-1192, Japan E-mail: kunisima@p.kanazawa-u.ac.jp
 http://www.p.kanazawa-u.ac.jp/e/lab/seibutsu.html

Supporting information and ORCID(s) from the author(s) for this article are available on the WWW under http://dx.doi.org/10.1002/ejoc.201600663.

corresponding *tert*-butyl ethers and esters in good to high yields. TriAT-*t*Bu is an air-stable solid synthesized in good yield from inexpensive starting materials, namely, cyanuric chloride, *t*BuOH, and sodium hydride.

deprotection can be readily achieved under acidic conditions with the liberation of isobutene, while *tert*-butyl ethers are tolerated under various reaction conditions.^[3] The traditional methods for preparing *tert*-butyl ethers and esters involve the reaction of a large excess of isobutene or *tert*-butyl 2,2,2-trichloroacetimidate (*tert*-BTCAI) in the presence of an acid catalyst.^[3,4] However, handling and storage of the flammable gaseous isobutene is inconvenient and potentially hazardous, and *tert*-BTCAI is sensitive to moisture and heat.^[5] By analogy with Tri-BOT and TriBOT-PM, a triazine-based *tert*-butylating reagent is expected to solve these problems.

Herein, we report the development of a *tert*-butylating reagent, 2,4,6-tris(*tert*-butoxy)-1,3,5-triazine (TriAT-*t*Bu).^[6]

Results and Discussion

According to the procedure for the synthesis of TriBOT-PM,^[2] TriAT-tBu was synthesized from cyanuric chloride and 3.5 equiv. of tBuONa prepared from tBuOH and sodium hydride, in 81 % yield (Scheme 1). As expected, TriAT-tBu is a non-hygroscopic crystalline solid and stable in air at room temperature for over one year. Irritating or allergenic properties were not observed in our laboratory.^[7]

Scheme 1. Synthesis of TriAT-tBu.

Our investigations began with the *tert*-butylation of hexadecanol (**1a**) with TriAT-*t*Bu using TfOH as an acid catalyst (Table 1). The reaction of **1a** proceeded to give *tert*-butyl ether

2a in 95 % yield (Entry 1). The reaction using Bi(OTf)₃ as a strong Lewis acid afforded the product in an excellent yield (Entry 2), while the use of Sc(OTf)₃ as a mild Lewis acid^[8] necessitated a longer reaction time of 12 h (Entry 3). On the other hand, dropwise addition of TriAT-tBu solution (CH₂Cl₂) in the presence of Sc(OTf)₃ considerably shortened the reaction time (initial concentration of **1a**: 0.14 м; final concentration: 0.1 м; dropwise addition time: 4 h; total reaction time: 5.5 h, vide infra; Entry 4). Reduction of the amount of TriAT-tBu to 1.0 equiv. decreased the yield to 85 % (Entry 5). Compared with the reaction using isobutene (approximately 10 equiv.),^[4a,4b] it can be said that the reaction using 1.6 equiv. of TriAT-tBu is efficient. Unlike benzylation using TriBOT and TriBOT-PM, ethereal solvents (1,4-dioxane, DME, Et₂O) were not effective for the reaction (Entries 6-8). Since the tert-butyl cation was reported to be more stable than the benzyl cation,^[9] we expected that the reaction could be conducted under milder conditions. However, even 20 mol-% of other acids such as H₂SO₄, 10-camphorsulfonic acid (CSA), and LiClO₄ afforded poor to moderate yields (Entries 9–11). We used Sc(OTf)₃ as a standard catalyst for further investigations, because it is a milder^[8] and easy-to-handle reagent.

Table 1. Screening of solvents and acid catalysts for the *tert*-butylation of alcohol **1a**.

	Me OH	TriAT- <i>t</i> Bu (1.6 equiv.) acid catalyst	Me OtBu	
	1a	solvent, r.t.	2a	
Entry	Solvent	Acid catalyst (mol-%)	Time [h]	Yield [%] ^[a]
1	CH ₂ Cl ₂	TfOH (5)	3	95
2	CH_2CI_2	$Bi(OTf)_3$ (5)	3	93 ^[b]
3	CH_2CI_2	$Sc(OTf)_3$ (5)	12	92
4	CH_2CI_2	Sc(OTf) ₃ (5) ^[c]	5.5	93
5	CH_2CI_2	$Sc(OTf)_3$ (5) ^[d]	4	85
6	1,4-dioxane	$Sc(OTf)_3$ (5)	24	32
7	DME	$Sc(OTf)_3$ (5)	24	26
8	Et ₂ O	$Sc(OTf)_3$ (5)	24	51
9	CH_2CI_2	H ₂ SO ₄ (20)	36	51
10	CH_2CI_2	CSA (20) ^[e]	36	12 ^[b]
11	CH_2CI_2	LiClO ₄ (20)	63	59 ^[b]

[a] Isolated yields. [b] NMR yields using an internal standard. [c] Solution of TriAT-tBu was added dropwise over 4 h (additional reaction time: 1.5 h). [d] Solution of TriAT-tBu (1.0 equiv.) was added dropwise over 3 h (additional reaction time: 1 h). [e] TriAT-tBu (1.0 equiv.) was used.

We explored the scope of this newly designed protocol for a variety of alcohols and carboxylic acids to establish the general synthetic applicability of this method (Table 2). The reaction of 3-phenylpropanol (**1b**) gave the corresponding ether **2b** in an excellent yield (Entry 1). Secondary alcohols **1c** and **1d** afforded the *tert*-butyl ethers **2c** and **2d** in 74 % and 67 % yields, respectively (Entries 2, 3), although an excess amount of TriAT-tBu (4 equiv.) was required. A tertiary alcohol was found to be inert to *tert*-butylation (Entry 4). High yields were maintained when base-labile functionalities such as bromoalkyl and acetoxy groups are present in the alcohols (Entries 5, 6). The *tert*-butyldiphenylsilyl group (TBDPS) as a hydroxy protecting group was

tolerated in the reaction, affording the expected product in 95 % yield (Entry 7). Amino protecting groups such as benzyloxycarbonyl (Cbz) and tert-butoxycarbonyl (Boc) groups are compatible with the reaction conditions (Entries 8, 10). When the reaction of an alcohol bearing a Cbz group (1i) was conducted by adding TriAT-tBu in one portion in the presence of TfOH as a catalyst, the reaction was complete in only 2.5 h (Entry 9). However, the reaction of an alcohol having a Boc group (1i) under the same conditions resulted in 61 % vield of tert-butyl ether, perhaps due to the deprotection of the Boc group and the inevitable neutralization of TfOH by the resulting amine (Entry 11). Addition of TriAT-tBu in one portion in the presence of a strong acid catalyst such as TfOH is effective for the tert-butylation of acid-stable alcohols. No racemization occurred during the reaction of 1k (Entry 12). The reaction of para-chlorophenol gave the corresponding tert-butyl ether in 59 % yield (Entry 13). Aliphatic and aromatic carboxylic acids 3a and 3b were also converted into the corresponding tertbutyl esters 4a and 4b in moderate yields (Entries 14, 17) by TriAT-tBu under the same conditions. In the case of carboxylic acids, the yields of the esters were increased when TriAT-tBu was added in one portion rather than dropwise, in the presence of 40 mol-% of sulfuric acid (Entries 15, 18) or 5 mol-% of Bi(OTf)₃ (Entry 16).

Time-course analysis was performed to clarify the reaction profile of the tert-butylation of 1a. The reaction was initiated by the addition of $Sc(OTf)_3$ to a CH_2Cl_2 solution of **1a** (0.1 M) and TriAT-tBu (0.16 M) in an air-tight tube. Aliquots of the reaction mixture were withdrawn at appropriate intervals and analyzed by ¹H NMR spectroscopy using *p*-nitrotoluene as an internal standard (Figure 2).^[10] After the initiation of the reaction, the amount of TriAT-tBu (triangles) decreased rapidly and completely disappeared within 30 min (Figure 2b, Table 3).^[11,12] At this time, the vield of **2a** (squares) was 47 % based on **1a**, and 9.8 % based on the total number (4.8 equiv.) of tert-butyl groups. Other products formed were isobutene (dots) (54 %), N-tert-butylisocyanuric acid (5) (29 %), which was probably generated by N-tert-butylation of TriAT-tBu (the yields in parentheses were calculated based on the number of tert-butyl groups).^[2] Almost all of the tert-butyl groups generated from TriAT-tBu (93 % based on 4.8 equiv. of tert-butyl groups) were successfully monitored, despite the formation of the volatile isobutene. After complete decomposition of TriAT-tBu, the rate of formation of 2a decreased sharply, and it took 10 h to reach 90 % yield of 2a (based on 1a) (Figure 2c). During this time, the isobutene concentration also gradually decreased. Other experiments revealed that the tert-butylation of 1a using isobutene under similar conditions requires a longer time [Equation (1)], while the reaction using 5 does not proceed at all [Equation (2)]. Thus, these results may indicate the reaction mechanism changed after TriAT-tBu had disappeared; during the first 30 min, the highly reactive tert-butyl cation species, which is rapidly liberated from TriAT-tBu, reacts with alcohol 1a to give 2a in competition with elimination to form the stable isobutene; however, once has TriAT-tBu disappeared, the cationic species needs to be regenerated from isobutene. Thus, it is reasonable to assume that suppression of the competing genera-

Table 2. Scope and limitations of alcohols and carboxylic acids for tert-butylation.

	R-OH OF		T- <i>t</i> Bu sol. dropwise DTf) ₃ (5 mol-%)		
	1	3 CH ₂ C	Cl ₂ , r.t.	2 4	
Entry	2 or 4	TriAT- <i>t</i> Bu [equiv.]	Dropwise addition time [h]	Additional reaction time [h]	Yield [%] ^[a]
1	Ph OtBu 2b	1.6	4	1	93
2	OfBu Ph	4	8	1	74
3	OtBu 2d	4	8	1	67
4	OtBu 2e	4	8	1	0
5	B ^r OtBu H12 2f	2.4	6	1	95
6	AcO OfBu	2.4	6	1	95
7	TBDPSO ₆ <i>Ot</i> Bu 2h	3.2	8	2	95
8 ^[b]	CbzHN _{\\ \\ 6} OtBu ₽ i	3.2	16	4	85
9 ^[c,d]	2 i	3.2	-	2.5	90
10 ^[b]	BocHN ↔ O <i>t</i> Bu	3.2	16	3	90
11 ^[c,d]	2j	3.2	-	2.5	61
12	BochN OMe OtBu 2k	3.2	8	4	72 99% ee
13	CI CI CI CI CI	1.6	4	5	59
14	O Ph OtBu 4a	4	8	1	76
15 ^[d,e]	4a	4	-	16	88
16 ^[d,f]	4a	4	-	45 min	81
17	OrBu 4b	3.2	8	1	65
18 ^[d,e]	4b	4	-	16	79

[a] Isolated yield. [b] $Sc(OTf)_3$ (10 mol-%) was used. [c] TfOH (5 mol-%) was used. [d] TriAT-tBu was added in one portion. [e] H_2SO_4 (40 mol-%) was used as an acid catalyst. [f] $Bi(OTf)_3$ (5 mol-%) was used.

tion of isobutene from TriAT-*t*Bu would be effective for reducing the reaction time. Recently, we showed that the nitrogen atom of TriBOT exhibits basic character under strongly acidic conditions.^[13] Thus, in the present system, TriAT-*t*Bu can act as a proton acceptor to promote the generation of isobutene from the *tert*-butyl cation species (Figure 2a). Therefore, maintaining a low concentration of TriAT-*t*Bu using the dilution method would be effective for shortening the reaction time. This consideration

agrees with the fact (Table 1, Entries 3 and 4) that dropwise addition of TriAT-tBu solution shortened the reaction time as compared with a one-portion addition.

(b) Reaction time course (0-30 min)

Figure 2. Reaction profile of the *tert*-butylation using TriAT-tBu.

Table 3. Amount of *tert*-butyl derivatives at 30 min after initiation of the reaction.

[a] Yield based on 1a.

We have developed a new *tert*-butylating reagent based on triazine chemistry. The reactions of several alcohols and carboxylic acids with TriAT-tBu in the presence of an acid catalyst proceeded to give the corresponding *tert*-butyl ethers and esters in good yields. Time-course analysis of the reaction revealed that the *tert*-butyl cation generated in situ from activated TriATtBu is responsible for the rapid formation of the product.

Experimental Section

General: ¹H NMR spectra were recorded with 400 MHz spectrometers. Chemical shifts for ¹H NMR are reported in parts per million (δ) relative to tetramethylsilane as the internal standard. Coupling constant (J) are reported in Hertz [Hz]. The following abbreviations are used for spin multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, br. = broad. ¹³C NMR spectra were recorded with 100 MHz spectrometers. Chemical shifts for ¹³C NMR are reported in parts per million (δ) relative to the solvent (CDCl₃: δ = 77.16; $[D_6]DMSO: \delta = 39.52$ ppm). Analytical thin layer chromatography (TLC) was performed using glass plates precoated with 0.25 mm silica gel impregnated with a fluorescent indicator (254 nm). Flash chromatography was performed using silica gel (spherical, neutral, 40-100 mesh). Chiral HPLC was performed using Daicel CHIRALPAK IA-3. Reagents were of commercial grade and used without any purification unless otherwise noted. High-purity, solvent-grade dichloromethane, THF and diethyl ether were purchased from commercial sources. 1,4-Dioxane and 1,2-dimethoxyethane were purchased from commercial sources and distilled from calcium hydride before use.

General Procedure for the *tert***-Butylation of Alcohol 1 by Using TriAT-tBu:** To a solution of alcohol 1 (0.500 mmol) and $Sc(OTf)_3$ (0.025 mmol) in CH₂Cl₂ (3.5 mL), a solution of TriAT-tBu (237.9 mg, 0.800 mmol) in CH₂Cl₂ (1.36 mL) was added dropwise at room temperature over 4 h. After the dropwise addition was complete, the residual TriAT-tBu in the test tube was rinsed with CH₂Cl₂ (0.14 mL) into the mixture over 1 min. The mixture was stirred for a total of 5.5 h and washed with satd. aqueous NaHCO₃ (60 mL), H₂O (100 mL), and brine (40 mL). The organic layer was dried with MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc) to afford **2**.

2,4,6-Tris(tert-butoxy)-1,3,5-triazine (TriAT-tBu): To a suspension of NaH (60 %, 11.20 g, 280 mmol) in THF (100 mL), tert-butyl alcohol (26.6 mL, 280 mmol) in THF (50 mL) was added dropwise at 0 °C over 30 min. Cyanuric chloride (14.75 g, 80.0 mmol) in THF (50 mL) was added dropwise over 15 min. After stirring at 0 °C for an additional 10 min and at room temperature for 2 h, the mixture was poured into H₂O and ice. The precipitate was filtered, and washed with hexane (100 mL). The precipitate was recrystallized from CH₂Cl₂ to give 2,4,6-tris(tert-butoxy)-1,3,5-triazine (TriAT-tBu, 16.2 g, 68 %) as colorless crystals. The residue and hexane filtrate were combined and recrystallized to give TriAT-tBu (3.1 g, 13 %). M.p. 170 °C (decomp.). ¹H NMR (CDCl₃): δ = 1.61 (s, 27 H) ppm. ¹³C NMR (CDCl₃): δ = 172.0, 82.0, 28.5 ppm. C₁₅H₂₇N₃O₃ (297.40): calcd. C 60.58, H 9.15, N 14.13; found C 60.42, H 9.34, N 14.03. HRMS (DART⁺): calcd. for $C_{15}H_{28}N_3O_3$ [M + H]⁺ 298.2131; found 298.2129. IR (KBr): $\tilde{v} = 3006$, 2985, 2933, 1562, 1392, 1163, 1132, 850, 820, 499, 471 cm⁻¹.

tert-Butyl Hexadecyl Ether (2a): ¹H NMR (CDCl₃): δ = 3.32 (t, *J* = 6.8 Hz, 2 H), 1.51 (m, 2 H), 1.37–1.25 (m, 26 H), 1.18 (s, 9 H), 0.88 (t,

 $J = 7.3 \text{ Hz}, 3 \text{ H}) \text{ ppm.} \ ^{13}\text{C} \text{ NMR} (\text{CDCl}_3): \delta = 72.5, 61.8, 32.1, 30.9, 29.84, 29.83, 29.81, 29.80, 29.7, 29.5, 27.7, 26.4, 22.8, 14.3 ppm. C_{20}\text{H}_{42}\text{O} (298.55): \text{ calcd. C} 80.46, \text{H} 14.18; \text{ found C} 80.06, \text{H} 14.54. \text{HRMS} (\text{DART}^+): \text{ calcd. for } C_{20}\text{H}_{43}\text{O} \text{ [M} + \text{H}]^+ 299.3314; \text{ found} 299.3299. \text{ IR} (\text{CHCl}_3): \tilde{\nu} = 2927, 2854, 1466, 1363, 1182, 1072 \text{ cm}^{-1}.$

tert-Butyl 3-Phenylpropyl Ether (2b):^[14] ¹H NMR (CDCl₃): δ = 7.30–7.24 (m, 2 H), 7.23–7.14 (m, 3 H), 3.36 (t, *J* = 6.4 Hz, 2 H), 2.68 (t, *J* = 7.9 Hz, 2 H), 1.90–1.80 (m, 2 H), 1.19 (s, 9 H) ppm. ¹³C NMR (CDCl₃): δ = 142.4, 128.6, 128.4, 125.8, 72.7, 60.9, 32.6, 32.3, 27.8 ppm. HRMS (DART⁺): calcd. for C₁₃H₂₁O [M + H]⁺ 193.1592; found 193.1573. IR (CHCl₃): $\tilde{\nu}$ = 3041, 2981, 2935, 2871, 1603, 1363, 1074 cm⁻¹.

tert-Butyl 1-Methyl-3-phenylpropyl Ether (2c):^[15] ¹H NMR (CDCl₃): δ = 7.31–7.14 (m, 5 H), 3.68–3.58 (m, 1 H), 2.74–2.54 (m, 2 H), 1.85–1.64 (m, 2 H), 1.19 (s, 9 H), 1.16 (d, *J* = 6.4 Hz, 3 H) ppm. ¹³C NMR (CDCl₃): δ = 142.7, 128.45, 128.43, 125.8, 73.4, 67.1, 40.7, 32.6, 28.8, 23.2 ppm. C₁₄H₂₂O (206.33): calcd. C 81.50, H 10.75; found C 81.14, H 11.03. HRMS (DART⁺): calcd. for C₁₄H₂₃O [M + H]⁺ 207.1749; found 207.1745. IR (CHCl₃): $\tilde{\nu}$ = 3037, 2987, 2966, 2933, 2866, 1603, 1496, 1456, 1365, 1254, 1182, 1126, 815, 467 cm⁻¹.

tert-Butyl Cyclododecyl Ether (2d):^[5j] ¹H NMR (CDCl₃): δ = 3.66–3.55 (m, 1 H), 1.65–1.51 (m, 2 H), 1.47–1.24 (m, 20 H), 1.19 (s, 9 H) ppm. ¹³C NMR (CDCl₃): δ = 73.2, 68.7, 32.1, 28.9, 24.7, 24.2, 23.41, 23.39, 21.2 ppm. HRMS (DART⁺): calcd. for C₁₆H₃₃O [M + H]⁺ 241.2531; found 241.2539. IR (CHCl₃): \tilde{v} = 3035, 2939, 2864, 1471, 1363, 1255, 1184, 1012, 737, 702, 455 cm⁻¹.

12-Bromododecyl *tert*-**Butyl Ether** (**2f**): ¹H NMR (CDCl₃): δ = 3.41 (t, J = 6.9 Hz, 2 H), 3.32 (t, J = 6.9 Hz, 2 H), 1.90–1.80 (m, 2 H), 1.58–1.37 (m, 4 H), 1.37–1.22 (m, 14 H), 1.18 (s, 9 H) ppm. ¹³C NMR (CDCl₃): δ = 72.5, 61.8, 34.2, 33.0, 30.9, 29.74, 29.70, 29.67, 29.6, 28.9, 28.3, 27.7, 26.4 ppm. C₁₆H₃₃BrO (321.34): calcd. C 59.80, H 10.35; found C 59.71, H 10.63. HRMS (DART⁺): calcd. for C₁₆H₃₄BrO [M + H]⁺ 321.1793; found 321.1778. IR (CHCl₃): \tilde{v} = 2985, 2929, 2856, 1466, 1392, 1363, 1234, 1186, 1074, 1018, 908, 870, 746, 561, 453 cm⁻¹.

10-Acetoxy-1-*tert***-butoxydecane (2g):** ¹H NMR (CDCl₃): δ = 4.05 (t, J = 6.9 Hz, 2 H), 3.32 (t, J = 6.9 Hz, 2 H), 2.05 (s, 3 H), 1.67–1.45 (m, 4 H), 1.38–1.24 (m, 12 H), 1.18 (s, 9 H) ppm. ¹³C NMR (CDCl₃): δ = 171.4, 72.5, 64.8, 61.8, 30.8, 29.64, 29.58, 29.4, 28.7, 27.7, 26.4, 26.0, 21.2 ppm. C₁₆H₃₂O₃ (272.43): calcd. C 70.54, H 11.84; found C 70.33, H 11.94. HRMS (DART⁺): calcd. for C₁₆H₃₃O₃ [M + H]⁺ 273.2430; found 273.2447. IR (CHCl₃): $\tilde{\nu}$ = 2931, 2856, 1728, 1465, 1392, 1365, 1072, 800, 742, 679, 430 cm⁻¹.

tert-Butyl 6-(*tert*-Butyldiphenylsilyloxy)hexyl Ether (2h): ¹H NMR (CDCl₃): δ = 7.70–7.64 (m, 4 H), 7.45–7.33 (m, 6 H), 3.65 (t, *J* = 6.4 Hz, 2 H), 3.31 (t, *J* = 6.9 Hz, 2 H), 1.62–1.45 (m, 4 H), 1.42–1.24 (m, 4 H), 1.18 (s, 9 H), 1.04 (s, 9 H) ppm. ¹³C NMR (CDCl₃): δ = 135.7, 134.3, 129.6, 127.7, 72.5, 64.1, 61.7, 32.7, 30.8, 27.7, 27.0, 26.2, 25.9, 19.4 ppm. C₂₆H₄₀O₂Si (412.69): calcd. C 75.67, H 9.77; found C 75.39, H 9.99. HRMS (DART⁺): calcd. for C₂₆H₄₁O₂Si [M + H]⁺ 413.2876; found 413.2899. IR (CHCl₃): $\tilde{\nu}$ = 3072, 2989, 2935, 2810, 1473, 1427, 1363, 1109, 1005, 823, 615, 505 cm⁻¹.

Benzyl *N*-(6-*tert*-Butoxyhexyl)carbamate (2i): ¹H NMR (CDCl₃): δ = 7.38–7.28 (m, 5 H), 5.09 (s, 2 H), 4.73 (br. s, 1 H), 3.31 (t, *J* = 6.6 Hz, 2 H), 3.24–3.11 (m, 2 H), 1.58–1.43 (m, 4 H), 1.40–1.28 (m, 4 H), 1.18 (s, 9 H) ppm. ¹³C NMR (CDCl₃): δ = 156.5, 136.8, 128.6, 128.3, 128.2, 72.6, 66.7, 61.6, 41.2, 30.7, 30.1, 27.7, 26.8, 26.1 ppm. C₁₈H₂₉NO₃ (307.43): calcd. C 70.32, H 9.51, N 4.56; found C 70.27, H 9.80, N 4.52. HRMS (DART⁺): calcd. for C₁₈H₃₀NO₃ [M + H]⁺ 308.2226; found 308.2248. IR (CHCl₃): $\tilde{\nu}$ = 3452, 3006, 2937, 2862, 1716, 1516, 1363, 1257, 1186, 1136, 1076, 924, 800, 661, 445 cm⁻¹.

tert-Butyl *N*-(6-*tert*-Butoxyhexyl)carbamate (2j): ¹H NMR (CDCl₃): δ = 4.53 (br. s, 1 H), 3.32 (t, *J* = 6.4 Hz, 2 H), 3.16–3.01 (m, 2 H), 1.57–1.44 (m, 4 H), 1.44 (s, 9 H), 1.38–1.29 (m, 4 H), 1.18 (s, 9 H) ppm. ¹³C NMR (CDCl₃): δ = 156.1, 79.1, 72.5, 61.6, 40.7, 30.7, 30.1, 28.5, 27.7, 26.8, 26.1 ppm. C₁₅H₃₁NO₃ (273.41): calcd. C 65.89, H 11.43, N 5.12; found C 65.55, H 11.58, N 5.10. HRMS (DART⁺): calcd. for C₁₅H₃₂NO₃ [M + H]⁺ 274.2382; found 274.2396. IR (CHCl₃): \tilde{v} = 3456, 2981, 2937, 2860, 1707, 1508, 1365, 1255, 1171, 1074, 908, 791, 725, 669, 436 cm⁻¹.

Boc-L-Ser(OtBu)OMe (2k): M.p. 41.0–41.6 °C. ¹H NMR (CDCl₃): δ = 5.36 (br. d, 1 H), 4.39 (ddd, *J* = 3.0, 3.0, 9.2 Hz, 1 H), 3.80 (dd, *J* = 3.0, 9.2 Hz, 1 H), 3.74 (s, 3 H), 3.56 (dd, *J* = 3.0, 9.2 Hz, 1 H), 1.46 (s, 9 H), 1.13 (s, 9 H) ppm. ¹³C NMR (CDCl₃): δ = 171.6, 155.8, 79.9, 73.4, 62.2, 54.4, 52.3, 28.4, 27.4 ppm. $C_{13}H_{25}NO_5$ (275.34): calcd. C 56.71, H 9.15, N 5.09; found C 56.73, H 9.32, N 5.05, HRMS (DART⁺): calcd. for $C_{13}H_{26}NO_5$ [M + H]⁺ 276.1811; found 276.1808. IR (CHCl₃): \tilde{v} = 3444, 3041, 2981, 1749, 1709, 1506, 1367, 1350, 1298, 1165, 1101, 1070, 1045, 804, 727, 665, 457 cm⁻¹.

tert-Butyl p-Chlorophenyl Ether (21):^[16] ¹H NMR (CDCl₃): δ = 7.25–7.19 (m, 2 H), 6.95–6.88 (m, 2 H), 1.33 (s, 9 H) ppm. ¹³C NMR (CDCl₃): δ = 154.1, 129.0, 128.7, 125.6, 79.0, 28.9 ppm. HRMS (DART⁺): calcd. for C₁₀H₁₇ClNO [M + NH₄]⁺ 202.0999; found 202.0990. IR (CHCl₃): $\tilde{\nu}$ = 2985, 1487, 1367, 1157, 1093, 1011, 926, 893, 850, 810, 787, 733, 681, 538 cm⁻¹.

tert-Butyl 3-Phenylpropionate (4a):^[14] ¹H NMR (CDCl₃): δ = 7.31–7.23 (m, 2 H), 7.23–7.15 (m, 3 H), 2.91 (t, *J* = 7.8 Hz, 2 H), 2.54 (t, *J* = 7.8 Hz, 2 H), 1.42 (s, 9 H) ppm. ¹³C NMR (CDCl₃): δ = 172.4, 140.9, 128.51, 128.46, 126.2, 80.4, 37.2, 31.3, 28.2 ppm. HRMS (DART⁺): calcd. for C₁₃H₂₂NO₂ [M + NH₄]⁺ 224.1651; found 224.1632. IR (CHCl₃): $\tilde{\nu}$ = 3066, 2987, 2933, 2868, 1722, 1496, 1454, 1369, 1300, 1147, 953, 847, 739, 478 cm⁻¹.

tert-Butyl Benzoate (4b):^[17] ¹H NMR (CDCl₃): δ = 8.02–7.97 (m, 2 H), 7.54–7.49 (m, 1 H), 7.44–7.39 (m, 2 H), 1.60 (s, 9 H) ppm. ¹³C NMR (CDCl₃): δ = 165.9, 132.5, 132.1, 129.5, 128.3, 81.1, 28.3 ppm. HRMS (DART⁺): calcd. for C₁₁H₁₅O₂ [M + H]⁺ 179.1072; found 179.1069. IR (CHCl₃): $\tilde{\nu}$ = 2983, 1707, 1450, 1369, 1315, 1296, 1254, 1167, 1120, 908, 849, 741, 463 cm⁻¹.

N-(*tert*-**Butyl**)**isocyanuric Acid (5):** M.p. 188 °C (decomp.). ¹H NMR (DMSO): δ = 11.10 (br. s, 2 H), 1.58 (s, 9 H) ppm. ¹³C NMR (DMSO): δ = 150.2, 148.4, 60.6, 29.5 ppm. C₇H₁₁N₃O₃ (185.18): calcd. C 45.40, H 5.99, N 22.69; found C 45.36, H 5.85, N 22.55. HRMS (DART⁺): calcd. for C₇H₁₂N₃O₃ [M + H]⁺ 186.0879; found 186.0855. IR (CHCl₃): \tilde{v} = 3219, 3093, 2987, 2945, 2854, 1755, 1714, 1684, 1460, 1396, 1236, 1022, 812, 764, 719, 450 cm⁻¹.

Acknowledgments

This work was partially supported by the Japan Society for the Promotion of Science (JSPS KAKENHI) (grant number 25460012) and by the Adaptable and Seamless Technology Transfer Program through Target-driven R&D (A-STEP AS242Z03610M) from the Japan Science and Technology Agency.

Keywords: Alkylation \cdot *tert*-Butylation \cdot Carbocations \cdot Triazines

a) K. Yamada, H. Fujita, M. Kunishima, *Org. Lett.* **2012**, *14*, 5026–5029; b)
 K. Yamada, S. Yoshida, H. Fujita, M. Kitamura, M. Kunishima, *Eur. J. Org. Chem.* **2015**, *36*, 7997–8002.

- [2] K. Yamada, H. Fujita, M. Kitamura, M. Kunishima, Synthesis 2013, 45, 2989–2997.
- [3] a) T. W. Greene, P. G. M. Wuts, Greene's Protective Groups in Organic Synthesis, 4th ed., Wiley-Interscience, New York, 2006; b) P. J. Kocienski, Protecting Groups, 3rd ed., Thieme, Stuttgart, 2003.
- [4] a) G. W. Anderson, F. M. Callahan, J. Am. Chem. Soc. 1960, 82, 3359–3363;
 b) R. A. Micheli, Z. G. Hajos, N. Cohen, D. R. Parrish, L. A. Portland, W. Sciamanna, M. A. Scott, P. A. Wehrli, J. Org. Chem. 1975, 40, 675–681; c)
 A. Armstrong, I. Brackenridge, R. F. W. Jackson, J. M. Kirk, Tetrahedron Lett. 1988, 29, 2483–2486; d) J. Thierry, C. Yue, P. Potier, Tetrahedron Lett. 1998, 39, 1557–1560.
- [5] Several methods for tert-butylation using other tert-butyl sources were reported, for example: a) P. Chevallet, P. Garrouste, B. Malawska, J. Martinez, Tetrahedron Lett. 1993, 34, 7409-7412; b) S. W. Wright, D. L. Hageman, A. S. Wright, L. D. McClure, Tetrahedron Lett. 1997, 38, 7345-7348; c) G. Bartoli, M. Bosco, M. Locatelli, E. Marcantoni, P. Melchiorre, L. Sambri, Org. Lett. 2005, 7, 427-430; d) G. Bartoli, M. Bosco, A. Carlone, R. Dalpozzo, M. Locatelli, P. Melchiorre, P. Palazzi, L. Sambri, Synlett 2006, 2104-2108; e) G. Bartoli, M. Bosco, A. Carlone, R. Dalpozzo, M. Locatelli, P. Melchiorre, P. Palazzi, L. Sambri, J. Org. Chem. 2006, 71, 9580-9588; f) G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, E. Marcantoni, P. Melchiorre, L. Sambri, Adv. Synth. Catal. 2006, 348, 905-910; g) D. F. Taber, D. A. Gerstenhaber, X. Zhao, Tetrahedron Lett. 2006, 47, 3065-3066; h) H. Vorbrüggen, Synlett 2008, 11, 1603–1617; i) A. Chighine, S. Crosignani, M.-C. Arnal, M. Bradley, B. Linclau, J. Org. Chem. 2009, 74, 4753-4762; j) A. Barge, E. G. Occhiato, C. Prandi, D. Scarpi, S. Tabasso, P. Venturello, Synlett 2010, 812-816; k) N. Mallesha, S. P. Rao, R. Suhas, D. C. Gowda, Tetrahedron Lett. 2012, 53, 641-645; I) A. E. Salvati, C. T. Hubley, P. A. Albiniak, Tetrahedron Lett. 2014, 55, 7133-7135.
- [6] M. Kunishima, H. Fujita, K. Yamada, PCT Int. Appl. WO 2013 073681 A1, 2013.
- [7] TriAT-tBu has been synthesized for other applications: a) E. V. Zappi, J. A. Cagnoni, An. Asoc. Quim. Argent. 1948, 36, 58–67; b) Y. Yasufumi, Jpn.

Kokai Tokkyo Koho, JP 2004 083754 A, **2004**; c) T. Nakamura, Y. Nagata, Jpn. Kokai Tokkyo Koho, JP 2011 057559 A, **2011**; d) M. Sefko, S. Man, S. Radl, PCT Int. Appl. WO 2015 158317 A1, **2015**.

- [8] The deprotection rate of *tert*-butyl 3-phenylpropionate (4a) when using Sc(OTf)₃ was lower than that when using Bi(OTf)₃; see the Supporting Information (Scheme S1).
- [9] J. D. Kim, G. Han, L. S. Jeong, H.-J. Park, O. P. Zee, Y. H. Jung, *Tetrahedron* 2002, 58, 4395–4402.
- [10] Because of concerns regarding the evolution of gaseous isobutene, we did not directly monitor the reaction mixture by ¹H NMR spectroscopy.
- [11] The proton signal of the *tert*-butyl group of TriAT-tBu may include those of DiAT-tBu and MonoAT-tBu and their derivatives. Therefore, it can be recognized that the intensity of this signal indicates the number of the *tert*-butyl groups of reactive *tert*-butoxytriazine derivatives.
- [12] We recently reported that a reaction intermediate DiBOT shows a similar reactivity as TriBOT and that another intermediate MonoBOT exhibits a superior reactivity compared to that of TriBOT. Thus, after TriAT-tBu had disappeared, almost all these intermediates should also be consumed; see ref.^[13]
- [13] H. Fujita, N. Hayakawa, M. Kunishima, J. Org. Chem. 2015, 80, 11200– 11205.
- [14] S. Hanada, A. Yuasa, H. Kuroiwa, Y. Motoyama, H. Nagashima, *Eur. J. Org. Chem.* 2010, 1021–1025.
- [15] S. W. Wright, D. L. Hageman, A. S. Wright, L. D. McClure, *Tetrahedron Lett.* 1997, 38, 7345–7348.
- [16] F. Camps, J. Coll, J. M. Moretó, Synthesis 1982, 186–188.
- [17] C.-T. Chen, J.-H. Kuo, V. D. Pawar, Y. S. Munot, S.-S. Weng, C.-H. Ku, C.-Y. Liu, J. Org. Chem. 2005, 70, 1188–1197.

Received: May 29, 2016 Published Online: ■

tert-Butylating Reagent

K. Yamada, N. Hayakawa, H. Fujita, M. Kitamura, M. Kunishima* 1–7

Development of a Triazine-Based tert-Butylating Reagent, TriAT-tBu

A new *tert*-butylating reagent, 2,4,6tris(*tert*-butoxy)-1,3,5-triazine (TriAT*t*Bu) has been developed for the acidcatalyzed *tert*-butylation of alcohols and carboxylic acids. The reaction of various alcohols and carboxylic acid with TriAT-*t*Bu in the presence of a catalytic amount of an acid provided the corresponding *tert*-butyl ethers and esters in good yields.

DOI: 10.1002/ejoc.201600663