

A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

Accepted Article

Title: Closing the loop for hydrogen storage: Facile regeneration of NaBH4 from its hydrolytic product

Authors: Yongyang Zhu, Liuzhang Ouyang, Hao Zhong, Jiangwen Liu, Hui Wang, Huaiyu Shao, Zhenguo Huang, and Min Zhu

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201915988 Angew. Chem. 10.1002/ange.201915988

Link to VoR: http://dx.doi.org/10.1002/anie.201915988 http://dx.doi.org/10.1002/ange.201915988

WILEY-VCH

RESEARCH ARTICLE

Closing the loop for hydrogen storage: Facile regeneration of NaBH₄ from its hydrolytic product

Yongyang Zhu,^[a] Liuzhang Ouyang,*^[a, b] Hao Zhong,^[a] Jiangwen Liu,^[a] Hui Wang,^[a] Huaiyu Shao,*^[c] Zhenguo Huang,*^[d] and Min Zhu^[a]

[a]	Y. Zhu, Prof. L. Ouyang, Dr. H. Zhong, Prof. J. Liu, Prof. H. Wang, Prof. M. Zhu
	School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials
	South China University of Technology
	Guangzhou, 510641, People's Republic of China
	E-mail: meouyang@scut.edu.cn
[b]	Prof. L. Ouyang
	China-Australia Joint Laboratory for Energy & Environmental Materials
	Key Laboratory of Fuel Cell Technology of Guangdong Province
	Guangzhou, 510641, People's Republic of China
[C]	Prof. H. Shao
	Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering (IAPME), Department of Physics and Chemistry,
	Faculty of Science and Technology
	University of Macau
	Macau SAR, China
	E-mail: hshao@um.edu.mo
[d]	Prof. Z. Huang
	School of Civil and Environmental Engineering
	University of Technology Sydney
	Sydney, NSW, 2007, Australia
	E-mail: zhenguo.huang@uts.edu.au
	Supporting information for this article is given via a link at the end of the document.

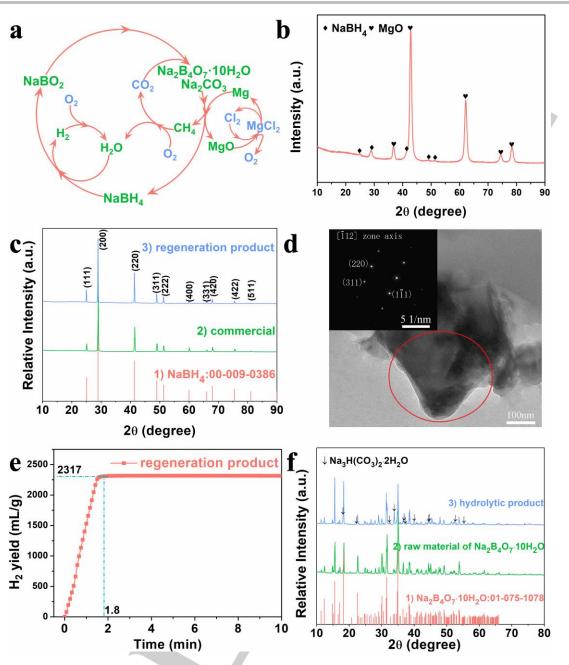
Abstract: Sodium borohydride (NaBH₄) is among the most studied hydrogen storage materials since it is able to deliver high purity H₂ at room temperature with controllable kinetics via hydrolysis, but its regeneration from the hydrolytic product has been challenging. Herein we report a facile method to regenerate NaBH₄ with high yield and low costs. The hydrolytic product NaBO₂ in aqueous solution reacts with CO₂ forming Na₂B₄O₇·10H₂O and Na₂CO₃, both of which are ball milled with Mg under ambient conditions to form NaBH₄ with a high yield close to 80 %. Compared with previous studies, this new approach avoids expensive reducing agent such as MgH₂, bypasses the energy-intensive dehydration procedure to remove water from Na₂B₄O₇·10H₂O, and does not require high-pressure H₂ gas, therefore leading to much reduced costs. This method is expected to effectively close the loop of NaBH₄ regeneration and hydrolysis, enabling a wide deployment of NaBH₄ for hydrogen storage.

Introduction

Hydrogen has been deemed as an ideal energy carrier due to its high energy density by weight, high abundance, and environmental friendliness.^[1] However, wide utilization of hydrogen energy has been hampered by a few barriers with one of them associated with storage. Due to its low energy density by volume, hydrogen has been conventionally compressed or liquefied to improve the density. However, these physical processes cause large energy penalty and special care is always required when operating under high pressure or cryogenic conditions. Materials-based hydrogen storage has therefore received strong attention since it has attractive features such as higher capacity, better safety, and milder operation conditions.

Sodium borohydride (NaBH₄) is among the most studied candidates as a hydrogen storage material. NaBH₄ can release hydrogen via hydrolysis with good controllability, high hydrogen purity, high gravimetric hydrogen storage capacity and environmentally benign by-products.^[2] The hydrolysis of NaBH₄ is typically expressed by the following reaction:

$$\begin{split} & \text{NaBH}_4 + (2+x)H_2O \rightarrow \text{NaBO}_2 \cdot xH_2O + 4H_2 \ (1) \end{split}$$ The spent fuel is normally hydrated sodium metaborate (NaBO_2 \cdot xH_2O).^{[3]} The regeneration of NaBH_4 from the hydrolytic product so far has featured high costs and low yields.


 $NaBO_2$ in aqueous solution reacts with CO_2 in air forming $Na_2B_4O_7 \cdot 10H_2O$ and $NaCO_3$ according to the following reaction:

 $4NaBO_2 \cdot xH_2O + CO_2 + (10-4x) H_2O \rightarrow Na_2B_4O_7 \cdot 10H_2O + Na_2CO_3$ (2)

 $Na_2B_4O_7 \cdot 10H_2O$ is the main constituent of naturally abundant borax mineral. It is therefore highly appealing to develop a simple, efficient and affordable approach to generate $NaBH_4$ from $Na_2B_4O_7 \cdot 10H_2O$.

Currently, two types of raw materials, H_2 (H°) and metal hydride (H⁻) have been used as hydrogen sources in the (re)generation of NaBH₄. For example, NaBH₄ can be synthesized by annealing Na₂B₄O₇ with Na and SiO₂ under high pressure H₂ (over 3 MPa) at elevated temperature (400–500°C).^[4] This method is of high cost because the reaction conditions are harsh and a considerable amount of sodium metal is needed. Recently, the preparation of NaBH₄ has been carried out by annealing the dehydrated borax (Na₂B₄O₇) with low-cost magnesium (Mg) at a high temperature (550°C) and high H₂

RESEARCH ARTICLE

Figure 1. (a) A closed system of NaBH₄ hydrolysis and regeneration; (b) XRD pattern of products obtained via ball milling a mixture of Mg, Na₂B₄O₇·10H₂O, and Na₂CO₃ in 24.75:1:1 molar ratio for 20 h at 1000 CPM; (c) XRD patterns of standard PDF card of NaBH₄, commercial and synthesized NaBH₄; (d) TEM image and SAED pattern of synthesized NaBH₄; (e) Hydrolysis curve of the regenerated NaBH₄ in an aqueous solution loaded with 2 wt% CoCl₂; (f) XRD patterns of standard PDF card of Na₂B₄O₇·10H₂O, raw Na₂B₄O₇·10H₂O, and compounds obtained after hydrolytic aqueous solution naturally dried up in air.

pressure (2.5MPa).^[5] However, this process is also energy intensive and dangerous. The process can be further optimized by ball milling Na₂B₄O₇ ^[6] and NaBO₂ ^[7] with magnesium hydrides (MgH₂) with a maximum yield of 78% and 76%, respectively. The use of expensive MgH₂, however, makes mass production by these methods less feasible. It should also note that high energy is required to obtain Na₂B₄O₇ by dehydrating Na₂B₄O₇ · 10H₂O at approximately 600°C and NaBO₂·xH₂O at temperatures over 350°C, respectively.^{ft} The hydrolytic by-product of NaBH₄ can exist in the form of NaBO₂·xH₂O (x=2, 4), from a NaBO₂ aqueous

solution via drying treatment of < $110^{\circ}C$.^[8] Researchers tried ball milling NaBO₂·*x*H₂O (*x*=2, 4) with Mg-based alloys (e.g. Mg₂Si, Mg-Al alloy) with/without Mg at room temperature under Argon atmosphere.^[9] The yield can be above 74%, but Mg-containing alloys are more expensive than Mg and more by-products (stable metal oxides for example) are formed during ball milling.^[9] Therefore, Mg instead of alloys should be used as a reducing agent.

Herein, we present a new method where H+ in the coordinate water in $Na_2B_4O_7 \cdot xH_2O$ (x=5, 10) can be directly used as a

RESEARCH ARTICLE

hydrogen source to prepare NaBH4. In the new procedure, a mixture of Na₂B₄O₇·xH₂O (x=5, 10) and Na₂CO₃ is obtained by exposing NaBO₂ aqueous solution to CO₂ and then drying at a temperature of < 54°C. Ball milling the mixture with Mg at room temperature and under atmospheric pressure Argon leads to the formation of NaBH₄ with a high yield of 78.9%. Compared with the literature procedures (Table S1) that require dehydrated Na₂B₄O₇/NaBO₂, MgH₂, high pressure H₂, and/or high temperatures, this new method utilizes low-cost materials and operates under mild reaction conditions, which allows for facile scalable manufacturing and ultimately closes the loop of NaBH₄ regeneration and hydrolysis.

Results and Discussion

Regeneration and hydrolysis cycle

One key challenge in utilizing NaBH₄ for hydrogen storage lies in its regeneration. Herein we developed a facile procedure to regenerate NaBH₄ from its CO₂ treated hydrolytic product (Figure 1a). NaBH₄ can be successfully synthesized by ball milling a mixture of Mg, Na₂B₄O₇·10H₂O, and Na₂CO₃ at ambient condition. Figure 1b shows XRD qualitative analysis of the powders after 20h milling of a mixture of Mg, Na₂B₄O₇·10H₂O, nod Na₂CO₃ and Na₂CO₃ in a mole ratio of 24.75:1:1. The diffraction peaks are indexed to NaBH₄ and MgO.

NaBH₄ was isolated from the as-milled product, and its identity and morphology were studied using XRD, FTIR, NMR, SEM, and TEM. XRD pattern of commercial NaBH₄ (Figure 1c(2)) show ten peaks at 25.1°, 28.9°, 41.4°, 49.0°, 51.3°, 60.0°, 66.0°, 68.0°, 75.5°, and 81.0°, corresponding to (111), (200), (220), (311), (222), (400), (331), (420), (422), and (511) of NaBH₄ (ICDD 00-009-0386), respectively. The synthesized NaBH₄ displays the same XRD pattern as the commercial NaBH₄ (Figure 1c(3)). The FTIR bands of 2200-2400 and 1125 cm⁻¹ correspond to the B-H stretching and deformation of pure NaBH₄, respectively^[10], in good agreement with the those of commercial NaBH₄ (Figure S2a). The XRD and FTIR results are also consistent with the previous studies on NaBH₄ synthesis.^[7a, 9c, 10c, 11] The BH₄ anion is further confirmed by NMR analysis (Figure S2b).[12] Similar to commercial NaBH4, the synthesized NaBH4 exists in cubic particles with sizes of several microns (Figure S3). Selected area electron diffraction (SAED) pattern also indicates the success in obtaining crystalline NaBH₄ (Figure 1d and Figure S4).

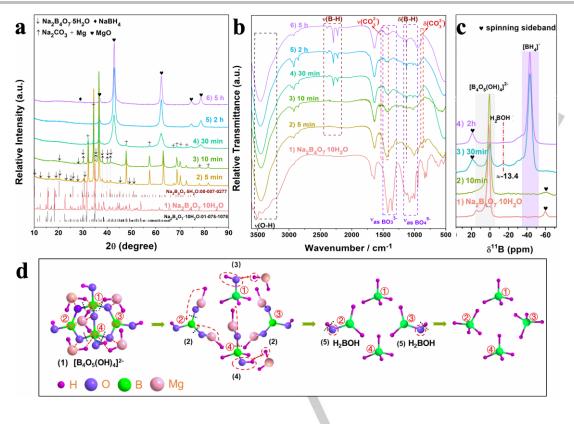
According to the results obtained from various techniques (XRD, FTIR, NMR, SEM, and TEM), we can conclude that high quality NaBH₄ with crystallography and microstructure similar to commercial NaBH₄ was successfully synthesized by directly ball milling Na₂B₄O₇·10H₂O and Na₂CO₃ with Mg in Ar at room temperature. The synthesis conditions are very mild compared with the previous studies in which NaBH₄ was produced via NaBO₂ reacting with Mg at 350°C under 7 MPa H₂^[13] or Na₂B₄O₇ reacting with Mg at 550°C under 2.5 MPa H₂.^[5]

For a closed-loop application, hydrogen evolution performance of the regenerated NaBH₄ is particularly important. Figure 1e shows the hydrogen production curve of prepared NaBH₄, which showed rapid hydrolytic H₂ evolution that produced 2317 mL/g H₂ in 1.8 min. After the hydrolytic aqueous solution was naturally dried up in air, solid Na₂B₄O₇·10H₂O (ICDD ref. 01-

075-1078) powers were obtained, as evidenced by XRD patterns (Figure 1f) and FTIR spectra (Figure S5). Another set of characteristic diffraction peaks can be indexed to $Na_3H(CO_3)_2 \cdot 2H_2O$ which is composed of Na_2CO_3 and $NaHCO_3$. The transformation of Na_2CO_3 into $NaHCO_3$ occurs in the following reaction:

Na₂CO₃ (aq) + CO₂ +H₂O \rightarrow 2NaHCO₃ (3)

NaHCO₃ can be avoided by regulating the exposure of the hydrolytic aqueous solution to air. This is supported by experiments that only Na₂B₄O₇·10H₂O and Na₂CO₃ can be obtained by tuning the exposure of NaBO₂ aqueous solution to CO₂ (Figure S6).


We illustrate a pathway to close the cycle of NaBH₄ hydrolysis and regeneration (Figure 1a). Comparing with the literature methods, current procedure features low-cost starting materials, mild reactions at room temperature, and requiring no high pressure H₂. The energy efficiency of regeneration can be estimated by systematic modeling, which is beyond the scope of the current work. One important step in the complete cycle is the reformation of Mg metal. Although electrochemical process of extracting Mg is energy intensive, it is widely adopted industrially. The direct use of hydrated sodium tetraborate avoids an energy intensive process of drying Na₂B₄O₇·xH₂O at over 600°C to obtain Na₂B₄O₇. In addition, by directly using the hydrate, H⁺ in Na₂B₄O₇·xH₂O serves as a hydrogen source for NaBH₄ regeneration, without the need of any external H₂ source. This process therefore reduces costs and energy consumption associated with hydrogen production. Apart from H₂, another commonly used hydrogen source in the literature is MgH₂.^[6-7] This hydride is fabricated by a high-temperature (over 300°C) reaction between Mg and H₂, and H₂ is produced by a separate process. Therefore, the current work presents a promising cycle pathway for large-scale application of NaBH₄ as a hydrogen carrier.

Reaction mechanism

To understand the reaction, Na₂B₄O₇·10H₂O, Na₂CO₃, and Mg mixtures were ball milled for relatively short periods. The XRD diffraction peaks of Na₂B₄O₇·10H₂O become invisible after 5 min milling, along with the appearance of diffraction peaks of Na₂B₄O₇·5H₂O (Figure 2a), in agreement with FTIR results (Figure 2b(2) and Figure S7). The actual formula of Na2B4O7.5H2O and Na2B4O7.10H2O are Na2B4O5(OH)4.3H2O and Na₂B₄O₅(OH)₄·8H₂O, respectively, according to the chemical structures.^[14] Hydrogen can be detected in this period from the MS of the gas atmosphere (Figure S8). After 10 min of ball milling, the intensity of diffraction peaks of Na₂B₄O₇·5H₂O decreases significantly. As the milling increases to 30 min, XRD diffraction peaks of MgO become highly visible while those of Na₂B₄O₇·5H₂O and Na₂CO₃ almost disappear. Although the diffraction peaks of NaBH₄ are invisible, the B-H group can be detected by FTIR (Figure 2b(4)). The absorption bands of BO_{3³⁻} (1500-1300 cm⁻¹) and BO₄⁵⁻ (1150-950 cm⁻¹) originally present in [B₄O₅(OH)₄]²⁻, and of CO32- (1450-1400 cm-1, 877 cm-1) originally present in Na2CO3 become very weak and then vanish completely from the spectra (Figure 2b). As the milling time reaches 5 h, the (200) diffraction peak of NaBH₄ appears.

Considering the observation of $Na_2B_4O_7 \cdot 5H_2O$ and H_2 after 5 min, the first step of the reaction is assumed as follows:

RESEARCH ARTICLE

Figure 2. (a) XRD patterns and (b) FTIR spectra of commercial Na₂B₄O₇·10H₂O and products obtained after ball milling Mg, Na₂B₄O₇·10H₂O, and Na₂CO₃ mixtures (in 18:1:1 molar ratio) at 1200 CPM for different durations; (c) Solid-state ¹¹B NMR spectra of commercial Na₂B₄O₇·10H₂O and products obtained after ball milling for different durations; (d) Proposed reaction mechanism between Mg, Na₂CO₃, and Na₂B₄O₇·10H₂O to form NaBH₄.

$$\begin{split} \text{Na}_2\text{B}_4\text{O}_7{\cdot}\,10\text{H}_2\text{O} &\to \text{Na}_2\text{B}_4\text{O}_7{\cdot}\,5\text{H}_2\text{O}\,+\,5\text{H}_2\text{O}\,\,(4) \\ &\quad 2\text{H}_2\text{O}\,+\,\text{Mg}\,\to\,\text{Mg}(\text{OH})_2\,+\text{H}_2\,(5) \end{split}$$

Under the experiment conditions, the following reactions will subsequently occur as large amounts of magnesium still exist: ^[10b, 15]

$$Mg + Mg(OH)_2 \rightarrow 2MgO + H_2 (6)$$
$$H_2 + Mg \rightarrow MgH_2 (7)$$

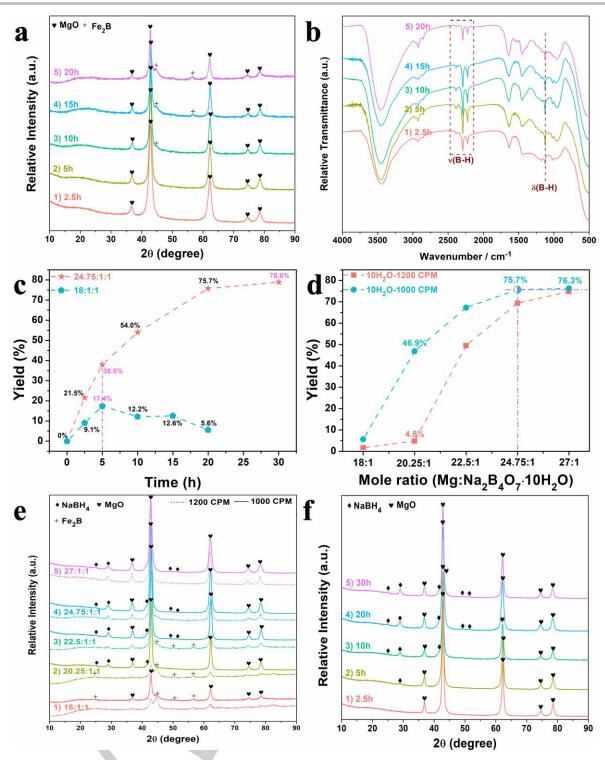
With increasing milling time, NaBH₄, MgO, and also CH₄ (Figure S8 and Figure S9) were observed which is associated with this reaction:

$$\label{eq:2.1} \begin{split} Na_2B_4O_7{\cdot}5H_2O + Na_2CO_3 + 15MgH_2 &\to 4NaBH_4 + 15MgO + CH_4 \\ &+ 10H_2 \ (8) \end{split}$$

The overall reaction equation is therefore can be expressed in the following equation:

 $Na_{2}B_{4}O_{7} \cdot 10H_{2}O + Na_{2}CO_{3} + 20Mg \rightarrow 4NaBH_{4} + 20MgO + CH_{4}$ (9)

This reaction is calculated to be favourable in thermodynamics $(\Delta G^{o}_{298k} = -1326.18 \text{ kJ/mol of NaBH}_4).$


In this closed-loop regeneration (Figure 1a), CH_4 can be collected and converted to CO_2 , which is then used to produce Na_2CO_3 . Mg can be regenerated via the commercial method, where MgO is first converted to MgCl₂ and Mg is obtained by electrolysis of MgCl₂.

 MgH_2 was not observed in this study, probably because it was consumed *in-situ* due to its high activity. This is in agreement with a previous study where MgH_2 was proposed as an intermediate during NaBH₄ regeneration via ball milling NaB(OH)₄ and Mg.^[10b] It should be noted that MgH₂ could form via a reaction between Mg and H₂ in the presence of oxide and hydroxide species. Unlike dense Al₂O₃, MgO or Mg(OH)₂ layer is relative loose so H₂ can penetrate through to react with underlying Mg. In addition, during ball milling, oxide and hydroxide layers on Mg will be destroyed and fresh Mg surfaces are always produced. Based upon thermodynamic calculation (Table S2), MgO is more stable than MgH₂ (ΔG^{o}_r of MgO: -565.95 kJ/mol, ΔG^{o}_r of MgH₂: -35.09 kJ/mol). In this work, MgH₂ formed in reaction (7) is highly reductive, converting Na₂B₄O₇ to NaBH₄ and forming stable MgO in the end.

The formation of methane is likely due to the reaction between Na_2CO_3 and MgH_2 .^[16] H_2 was not in the overall reaction (eqn 9) but was observed by MS, which is due to the nature of gas-solid reaction between H_2 and Mg, where it is hard to achieve 100 % conversion.

To further elucidate the reaction mechanism, the ball milled products were characterized by solid-state ¹¹B magic-angle spinning (MAS) NMR (Figure 2c). After 10 min of ball milling, only $[B_4O_5(OH)_4]^{2-}$ is detected (Figure 2c(2)). The resonance observed at ~-13.4 ppm in Figure 2c(3) after 30 min milling demonstrates the formation of intermediate H_2BOH .^[11, 17] The reaction transformation of $[B_4O_5(OH)_4]^{2-}$ is therefore proposed as shown in Figure 2d. The unit of $[B_4O_5(OH)_4]^{2-}$ contains two BO₄ tetrahedra and two BO₃ triangles as showed in Figure 2d(1). The B-O bond (average bond length: 1.3683 Å) in BO₃ triangles is stronger

RESEARCH ARTICLE

Figure 3. (a) XRD patterns and (b) FTIR spectra of the products obtained after ball milling Mg, Na₂B₄O₇·10H₂O, and Na₂CO₃ mixtures (in 18:1:1 molar ratio) at 1000 CPM for different durations; (c) Yields of NaBH₄ with reactants in different molar ratios at 1000 CPM for different durations; (d) Yields of NaBH₄ and (e) XRD patterns of the products obtained after ball milling Mg and Na₂B₄O₇·10H₂O in different molar ratios (Na₂B₄O₇·10H₂O and Na₂CO₃ were fixed at 1:1 molar ratio) for 20h at 1000 CPM and 1200 CPM, respectively; (f) XRD patterns of the products obtained via ball milling Mg, Na₂B₄O₇·10H₂O, and Na₂CO₃ in a molar ratio of 24.75:1:1 at 1000 CPM for different durations.

than the one (average bond length: 1.4418 Å) in BO₄ tetrahedra.^[18] Thus, the B-O in BO₄ tetrahedra preferentially breaks, and B forms bond with the H in MgH₂ and the O forms

bond with Mg. It is reasonable to assume that three intermediates are formed (Figure 2d(2-4)). Thermodynamically, Mg is more likely to bond with oxygen to form a more stable compound, MgO

RESEARCH ARTICLE

 $(\Delta G_{f^0} \text{ of } MgO: -569.3 \text{ kJ/mol oxygen}; \Delta G_{f^0} \text{ of } B_2O_3: -398.1 \text{ kJ/mol oxygen}).^{[19]}$ Therefore, B-O and Mg-H in the B-O-Mg-H intermediate break and the B-H and MgO are formed (Figure 2d(2,4)). The breaking of the (B)-O-H (O bonded with sp² boron) in Figure 2d(5) results into formation of intermediate "H₂BOH", which is detected in NMR spectra (Figure 2c(3)). According to the literature, ^[11] B in "H₂BOH" is Lewis acidic and could accept H⁻ from MgH₂. As a result, "BH₄⁻" and MgO are generated. In addition, "OH⁻" bonded with sp³ boron (Figure 2d(3,4)) is substituted by H⁻ in MgH₂ forming "BH₄⁻", which agrees with previous studies.^[10b]

Yield of NaBH₄

Efforts have been made to optimize the yield of NaBH₄ by ball milling CO2 treated hydrolytic products (a mixture of Na₂B₄O₇·10H₂O and Na₂CO₃) with Mg. Figure 3a shows the XRD patterns of the products obtained by ball milling Mg, Na₂B₄O₇·10H₂O, and Na₂CO₃ in a 18:1:1 molar ratio for different durations. After 2.5 h of ball milling, the diffraction peaks of starting materials disappear, along with the appearance of strong diffraction peaks of MgO. Although the diffraction peaks of NaBH₄ are invisible, the typical B-H bands (2200-2400 and 1125 cm⁻¹) are detectable by FTIR (Figure 3b(1)), which indicates the formation of NaBH4 after 2.5h ball milling. As milling time increases to 10h, the diffraction peaks assigned to Fe₂B become visible (Figure 3a(3)). With further increase in milling time, the diffraction peaks of Fe₂B become stronger while the characteristic FTIR bands of NaBH₄ become weaker. The FTIR results indicate that the yield of NaBH₄ firstly increases and then decreases with the milling time (Figure 3b). Iodometric analysis was carried to quantify NaBH₄ after its isolation from the ball-milled product. The relationship between the yield and milling time is consistent with FTIR results (Figure 3b, c), reflecting the fact that NaBH₄ was decomposed after long-time ball-milling. This is likely due to the reaction between NaBH4 and Fe (peeling off the balls and jar after long-time ball-milling), as evidenced by the formation of more Fe₂B as milling time increases (Figure 3a). The highest yield among the five durations for the mixture with 18:1:1 molar ratio is about 17.4% after 5 h of ball milling (Figure 3c).

The impact of Mg loading on the yield was also studied (Figure 3d). For 20h milling, the yield increased when more Mg was used, and it was ~46.9% for a molar ratio of 20.25:1:1 (Mg: Na₂B₄O₇·10H₂O: Na₂CO₃), and reached the maximum of 75.7% for a ratio of 24.75:1:1. The highest yield of 78.9% was obtained after 30 h of ball milling for the sample with 24.75:1:1 mole ratio (Figure 3c), which is higher than the NaBO₂·2H₂O-Mg system reported previously (68.55%, Table S1).[10b] There are a few possible reasons for this improvement in yield. Firstly, from the calculation, reaction (9) is thermodynamically more favorable than reaction (10) due to its larger ΔG°_{r} value (Table S3). Secondly, Na₂CO₃ in Na₂B₄O₇·10H₂O-Na₂CO₃-Mg system may work as a dispersant to prevent the materials (especially Mg) sticking onto the walls of the jar and balls, resulting in better ball-milling efficiency and favorable yield. Thirdly, comparing to NaBO₂, Na₂B₄O₇ has a higher reactivity for recycling to NaBH₄.^[3b] Lastly, the speed of 1000 CPM leads to better yield than 1200 CPM, the reason of which will be discussed later.^[10b] For this particular batch, the yield after 5 h (38.0%) is already much higher than that with 18:1:1, and the XRD diffraction peaks of NaBH₄ are clearly visible (Figure 3f). Yields can be improved by increasing the

WILEY-VCH

amount of Mg used, which is consistent with previous studies. ^[6-7, 19-20] With a high loading of Mg, powders do not stick to the jar and balls, resulting in better the ball-milling efficiency. In addition, more Mg leads to better contact among all the reactants resulting in favorable yield. Limited by the ball mill machine, only two milling speeds, 1000 and 1200 CPM, were tried, which proves that ball mill speed, i.e. energy, does impact the yield. Although the energy is higher at 1200 CPM, we fail to obtain better yields under any circumstances, especially for a low molar ratio (Figure 3d). This is because more Fe peels off the balls and jar for small amount of Mg at high speed and promotes NaBH₄ decomposition (Figure 3e).

We have also found that when $Na_2B_4O_7 \cdot 10H_2O$ and $Na_2B_4O_7 \cdot 5H_2O$ were ball milled simultaneously with Na_2CO_3 and Mg in a molar ratio of 0.6:0.4:1:22, NaBH₄ was also successfully synthesized (Figure S10). Mg can also be replaced by Al or Ca to synthesize NaBH₄ (Figure S11). More research is needed to optimize the yields of NaBH₄ from these reactions.

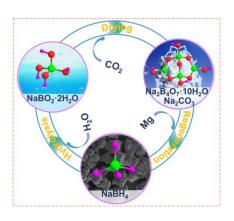
Conclusion

In summary, we present a closed pathway for utilizing NaBH₄ for hydrogen storage. The regeneration of NaBH₄ can be achieved by ball milling its CO2 treated hydrolytic product (Na₂B₄O₇·10H₂O and Na₂CO₃) and Mg under ambient condition, with the yield being among the highest reported so far. This process outperforms the literature methods in several key aspects. First of all, the current yield is the best among the reported literatures [5-6, 7, 10b, 13, 21] (Table S1). Secondly, the direct use of Na₂B₄O₇·10H₂O avoids high temperatures (over 600°C ^[8a]) required to dehydrate Na₂B₄O₇·10H₂O. Thirdly, this process does not need expensive MgH₂, which is usually obtained by hightemperature reaction between Mg and H₂. When comparing this method with reported process using MgH₂, Na₂CO₃ and Na₂B₄O₇,^[6a] the cost of the raw materials in this method is reduced by 24-fold (Table S4). This indicates a promising pathway for large-scale application of NaBH4 as a hydrogen carrier.

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2018YFB15-02100), Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. NSFC51621001), National Natural Science Foundation of China Projects (No. 51771075) and Natural Science Foundation of Guangdong Province of China (2016A030312011). Z.H. acknowledges support under the Australian Research Council's Discovery Projects funding scheme (project number DP170101773). Shao acknowledges support from Macau Science and Technology Development Fund (FDCT) (Project No.: 0062/2018/A2 and 118/2016/A3).

Keywords: borohydride • hydrolysis • hydrogen • hydrogen storage • regeneration


 a) A. F. Dalebrook, W. Gan, M. Grasemann, S. Moret, G. Laurenczy, *Chem. Commun.* 2013, 49, 8735-8751; b) I. P. Jain, *Int. J. Hydrogen Energy* 2009, 34, 7368-7378; c) L. Schlapbach, A. Züttel, *Nature* 2001, 414, 353-358.

RESEARCH ARTICLE

- a) Y. Kojima, Y. Kawai, H. Nakanishi, S. Matsumoto, *J. Power Sources* 2004, 135, 36-41; b) R. B. Biniwale, S. Rayalu, S. Devotta, M. Ichikawa, *Int. J. Hydrogen Energy* 2008, 33, 360-365; c) E. Y. Marreroalfonso, A. M. Beaird, T. A. Davis, M. A. Matthews, *Ind. Eng. Chem. Res.* 2009, 48, 3703-3712..
- a) M. A. Budroni, S. Garroni, G. R. C. Mulas, M. Rustici, *J. Phys. Chem.* C 2017, 121, 4891-4898; b) E. H. Park, S. U. Jeong, U. H. Jung, S. H. Kim, J. Lee, S. W. Nam, T. H. Lim, Y. J. Park, Y. H. Yu, *Int. J. Hydrogen Energy* 2007, 32, 2982-2987.
- [4] F. Schubert, K. Lang, W. Schlabacher, DE Pat. 1067005, 1959.
- [5] İ. Kayacan, Ö. M. Doğan, B. Z. Uysal, Int. J. Hydrogen Energy 2011, 36, 7410-7415.
- [6] a) Z. P. Li, N. Morigazaki, B. H. Liu, S. Suda, *J. Alloys Compd.* 2003, 349, 232-236; b) C. Çakanyıldırım, M. Gürü, *Energy Sources* 2012, 34, 1104-1113.
- a) C. L. Hsueh, C. H. Liu, B. H. Chen, C. Y. Chen, Y. C. Kuo, K. J. Hwang, J. R. Ku, *Int. J. Hydrogen Energy* 2009, *34*, 1717-1725; b) L. Kong, X. Cui, H. Jin, J. Wu, H. Du, T. Xiong, *Energy Fuels* 2009, *23*, 5049-5054;
 c) W. Chen, L. Z. Ouyang, J. W. Liu, X. D. Yao, H. Wang, Z. W. Liu, M. Zhu, *J. Power Sources* 2017, *359*, 400-407.
- [8] a) A. Ekmekyapar, A. Ahmet Baysar, A. Künkül, *Ind. Eng. Chem. Res.* **1997**, 36, 3487-3490; b) A. M. Beaird, P. Li, H. S. Marsh, W. Al-Saidi, J. K. Johnson, M. A. Matthews, C. T. Williams, *Ind. Eng. Chem. Res.* **2011**, 50, 7746-7752.
- [9] a) T. T. Le, C. Pistidda, J. Puszkiel, C. Milanese, S. Garroni, T. Emmler, G. Capurso, G. Gizer, T. Klassen, M. Dornheim, *Metals* 2019, 9, 1061; b)
 H. Zhong, L. Z. Ouyang, J. W. Liu, C. H. Peng, X. K. Zhu, W. H. Zhu, F. Fang, M. Zhu, *J. Power Sources* 2018, 390, 71-77; c) M. J. Huang, H. Zhong, L. Z. Ouyang, C. H. Peng, X. K. Zhu, W. H. Zhu, F. Fang, M. Zhu, *J. Alloys Compd.* 2017, 729, 1079-1085.
- a) L. Z. Ouyang, H. Zhong, Z. M. Li, Z. J. Cao, H. Wang, J. W. Liu, X. K.
 Zhu, M. Zhu, *J. Power Sources* **2014**, *269*, 768-772; b) L. Ouyang, W.
 Chen, J. Liu, M. Felderhoff, H. Wang, M. Zhu, *Adv. Energy Mater.* **2017**, 7, 1700299; c) H. Zhong, L. Z. Ouyang, J. S. Ye, J. W. Liu, H. Wang, X.
 D. Yao, M. Zhu, *Energy Storage Materials* **2017**, *7*, 222-228.
- [11] C. Lang, Y. Jia, J. Liu, H. Wang, L. Ouyang, M. Zhu, X. Yao, Int. J. Hydrogen Energy 2017, 42, 13127-13135.
- [12] J. Huang, Y. Yan, A. Remhof, Y. Zhang, D. Rentsch, Y. S. Au, P. E. D. Jongh, F. Cuevas, L. Ouyang, M. Zhu, *Dalton Trans.* **2016**, *45*, 3687-3690.
- [13] Y. Kojima, T. Haga, Int. J. Hydrogen Energy 2003, 28, 989-993.
- [14] I. Waclawska, J. Therm. Anal. **1995**, 43, 261-269.
- [15] P. Tessier, E. Akiba, J. Alloys Compd. 1999, 293-295, 400-402.
- [16] a) E. Mukhina, A. Kolesnikov, V. Kutcherov, *Scientific reports* **2017**, 7, 5749; b) J. Y. Chen, L. J. Jin, J. P. Dong, H. F. Zheng, G. Y. Liu, *Chin. Chem. Lett.* **2008**, *19*, 475-478.
- [17] A. C. Stowe, W. J. Shaw, J. C. Linehan, B. Schmid, T. Autrey, *Phys. Chem. Chem. Phys.* 2007, *9*, 1831-1836.
- [18] Y. Wang, S. Pan, X. Hou, L. Gang, D. Jia, Solid State Sci. 2015, 42, 1726-1730.
- [19] Z. P. Li, B. H. Liu, N. Morigasaki, S. Suda, J. Alloys Compd. 2003, 354, 243-247.
- [20] Ç. Çakanyıldırım, M. Gürü, Renewable Energy 2010, 35, 1895-1899.
- [21] a) Ç. Çakanyildirim, M. Gürü, *Energy Sources, Part A Recovery, Util. Environ. Eff.* **2011** 33, 1912-1920; b) B. H. Liu, Z. P. Li, J. K. Zhu, *J. Alloys Compd.* **2009**, 476, L16-L20.

RESEARCH ARTICLE

Entry for the Table of Contents

We report a facile method to regenerate NaBH₄ with high yield and low cost from its hydrolytic product NaBO₂. This method expects to effectively close the loop of NaBH₄ hydrolysis and regeneration and therefore enables a wide deployment of NaBH₄ for hydrogen storage.

Yongyang Zhu, Liuzhang Ouyang*, Hao Zhong, Jiangwen Liu, Hui Wang, Huaiyu Shao*, Zhenguo Huang*, and Min Zhu

Closing the loop for hydrogen storage: Facile regeneration of NaBH₄ from its hydrolytic product