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The Baeyer-Villiger monooxygenase (BVMO) produced by Penicillium lilacinum AM111, in

contrast to other enzymes of this group known in the literature, is able to process 3�-

hydroxy-5-ene steroid substrates. Transformation of DHEA and pregnenolone yielded, as a

sole or main product, 3�-hydroxy-17a-oxa-d-homo-androst-5-en-17-one, a new metabolite

of these substrates; pregnenolone was transformed also to testololactone. Testololactone

was the only product of oxidation of androstenedione by P. lilacinum AM111.

Investigations of the time evolution of reaction progress have indicated that the substrates

stimulate activity of BVMO(s) of P. lilacinum AM111.

© 2008 Elsevier Inc. All rights reserved.
iotransformation

HEA

regnenolone

aeyer-Villiger oxidation

teroidal lactones

zymes that catalyze the Baeyer-Villiger reaction by insertion
enicillium lilacinum

. Introduction

ecent years have brought, along with intensive research
n the role and biological activity of DHEA (3�-hydroxy-
ndrost-5-en-17-one) and pregnenolone, many studies on
heir metabolism and the role and activity of the metabolites,
ncluding those which are not sex hormones [1–11]. DHEA
erivatives with oxygen function at C-7, mainly 7�- and 7�-
ydroxy-DHEA, were identified in many mammalian organs
nd tissues (e.g. brain, liver, skin) [1–8,12,13]. 7�-Hydroxy-
HEA was often found as the main metabolite product of
icrobiological transformations of DHEA [14–22].
In an effort to obtain new metabolites of DHEA and preg-

enolone, different from any known derivatives with oxygen

unction at the C-7, screening tests were carried out and the
train Penicillium lilacinum AM111 was selected for further stud-
es.

∗ Corresponding author. Tel.: +48 71 3205252; fax: +48 71 3284124.
E-mail address: alina.swizdor@up.wroc.pl (A. Świzdor).

039-128X/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
oi:10.1016/j.steroids.2008.07.008
Literature reports indicate that the strains of genus Penicil-
lium are able to carry out transformations of steroid substrates
by means of reduction, hydroxylation or Baeyer-Villiger oxi-
dation [23–32]. Penicillium decumbens strain has been used
for the reduction of double bonds, particularly the conver-
sion of 4-en-3-oxosteroids to 5�-3-ones [24,25]. In view of the
fact that P. decumbens is one of only a few microorganisms
known to perform this conversion, it occupies a central role
in the metabolism of steroids. Some studies focused on 15�-
hydroxylation of 3-ethyl-gone-4-en-3,17-dione catalyzed by
Penicillium raistrickii [26,27]. Various strains of genus Penicillium
carry out Baeyer-Villiger oxidation [26–32].

Baeyer-Villiger monooxygenases (BVMOs) are flavoen-
of an oxygen atom next to a keto function thus converting
ketones to corresponding esters or lactones. BVMOs are pro-
duced by numerous bacteria (e.g. of the genera Actinetobacter,

mailto:alina.swizdor@up.wroc.pl
dx.doi.org/10.1016/j.steroids.2008.07.008
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Arthobacter, Nocardia, Rhodococcus, Streptomyces) and fungi (e.g.
of the genera Aspergillus, Culvularia, Fusarium, Penicillium) [33].
The strain P. lilacinum was the source of the first isolated
BVMO responsible for oxidation of androstenedione to testolo-
lactone [28]. BVMOs carry out Baeyer-Villiger degradation of
17�-acetyl side chain of C-21 substrates and ring D oxidation
of androstenedione [33]. Substrates of the reactions described
above were usually 4-en-3-oxo steroids.

DHEA and pregnenolone were subjected to transformation
by fungus Penicillium citreo-viride, which was shown to convert
androstenedione and progesterone to testololactone [31]. In
a culture of this strain, DHEA was oxidized to testololactone,
while pregnenolone was not transformed.

2. Experimental

2.1. Materials

2.1.1. Substrates
DHEA, pregnenolone, androstenedione, and progesterone
standard were purchased from Sigma–Aldrich Chemical Co.
The microorganism P. lilacinum AM111 used in this study was
obtained from the collection of the Institute of Biology and
Botany, Medical University of Wrocław. Originally, the AM111
strain was isolated from synthetic fibres.

2.2. Conditions of cultivation and transformation

Fungi were incubated on 3% glucose and 1% aminobac, in
300 ml Erlenmeyer flasks with 100 ml of medium. After cul-
tivation at 25 ◦C for three days on a rotary shaker, 20 mg of the
substrate, dissolved in 1 ml of acetone, was added. Transfor-

mation of the substrate was carried out in 5 flasks under the
same conditions. The reaction progress was monitored by TLC
and GC. Each test was carried out in at least three independent,
parallel experiments.

Table 1 – Composition of crude mixture obtained in transforma

Substrate Rt (min) Compounds present in mi

DHEA (1) 4.38 DHEA (1)
8.04 3�-Hydroxy-17a-oxa-d-homo-andro

Androstenedione (3) 5.44 Androstenedione (3)
9.40 Testololactone (5)

Pregnenolone (2) 6.43 Pregnenolone (2)
7.80 Progesterone (6)b

4.38 DHEA (1)b

5.44 Androstenedione (3)b

8.04 3�-Hydroxy-17a-oxa-d-homo-andro
9.40 Testololactone (5)

a Determined by GC analysis.
b Identified in GC and TLC on the basis of standards.
0 8 ) 1441–1445

2.3. Isolation and identification of the products

The products of transformation were extracted from the
mixtures three times with 20 ml of chloroform. Transforma-
tion products were separated by column chromatography
on silica gel with ethyl acetate/methylene chloride/acetone
(3:1:1) as eluent. TLC was carried out with Merck Kiesel-
gel 60 F254 plates using the same eluent. In order to
develop the image, the plates were sprayed with solu-
tion of methanol in concentrated sulphuric acid (1:1) and
heated to 120 ◦C for 3 min. GC analysis was performed using
Hewlett Packard 5890A Series II GC instrument (FID, car-
rier gas H2 at flow rate of 2 ml min−1) with a HP-1 column
cross-linked Methyl Siloxane, 30 m × 0.53 mm × 1.5 �m film
thickness. Applied temperature program: 190 ◦C/1 min, gra-
dient 4 ◦C/min to 235 ◦C/5 min and 30 ◦C/min to 300 ◦C/3 min;
injector and detector temperature was 300 ◦C. Retention times
of the identified compounds are given in Table 1. Infrared
spectra were recorded in KBr discs on a Mattson IR 300
Spectrometer. The NMR spectra were measured in CDCl3
and recorded on a DRX 300 MHz Bruker Avance spectrometer
with TMS as internal standard. Optical rotation measure-
ments were carried out on Autopol IV automatic polarimeter
(Rudolph).

2.4. Biotransformations of DHEA (1) by P. lilacinum
AM111

After 36 h incubation of 100 mg DHEA in P. lilacinum AM111
culture, 92 mg of 3�-hydroxy-17a-oxa-d-homo-androst-5-en-
17-one (4) have been isolated (Fig. 1).

2.4.1. 3ˇ-Hydroxy-17a-oxa-d-homo-androst-5-en-17-one
(4)
mp 227–230 ◦C; [˛]20

D = −93.9 (c 0.1 in CHCl3); IR �max(cm−1):
3446, 1716, 1653, 1215; 1H NMR: ı (ppm): 0.96 (s, 19-H ), 1.30 (s,
3

18-H3), 2.59 (m, 16�-H), 2.68 (m, 16�-H), 3.52 (m, Wh = 26.74 Hz,
3�-H), 5.33 (t, 6-H), 13C NMR: ı (ppm): 171.5 (C-17), 140.6 (C-5),
120.8 (C-6), 71.5 (C-3), 83.2 (C-13), 49.0 (C-9), 46.7 (C-14), 41.9
(C-4), 38.9 (C-12), 36.9 (C-1), 36.6 (C-10), 34.4 (C-2), 31.5 (C-7),

tion by P. lilacinum AM111

xture (%)a Time of substrate incubation

6 (h) 12 (h) 24 (h) 30 (h)

93 66 14 –
st-5-en-17-one (4) 7 34 86 100

98 85 30 3
2 15 70 96

85 75 58 51
15 9 – –

– 5.5 7 2
– 9.5 12 7

st-5-en-17-one (4) – – 15 23
– – 3 12



s t e r o i d s 7 3 ( 2 0 0 8 ) 1441–1445 1443

F (2) an
t or 5

3
(

2
l

A
t
s
e
i
t

2
m
2
1

H
1
(
3
(

2
l

A
P
i

ig. 1 – Baeyer-Villiger oxidation of DHEA (1), pregnenolone
ransformations: via DHEA or via progesterone to lactones 4

1.1 (C-8), 28.8 (C-16), 21.9 (C-11), 20.1 (C-18), 19.9 (C-15), 19.3
C-19).

.5. Biotransformations of pregnenolone (2) by P.
ilacinum AM111

fter a three-day transformation of 100 mg of pregnenolone (2)
he following ingredients were isolated: 28 mg of an unreacted
ubstrate, 42 mg of 3�-hydroxy-17a-oxa-d-homo-androst-5-
n-17-one (4) and 15 mg of testololactone (5) (Fig. 1). No
ncrease in the transformation rate was observed for incuba-
ion period longer than three days.

.5.1. 2.5.1.Testololactone (5)
p 209–210 ◦C; [˛]20

D = +46.2 (c 0.16 CHCl3), literature [27] mp
07–209 ◦C; [˛]20

D = +43; IR �max (cm−1): 1716, 1666, 1614, 1214;
H NMR ı (ppm): 1.16 (s, 19-H3), 1.35 (s, 18-H3), 2.59 (m, 16�-
), 2.68 (m, 16�-H), 5.75 (s, 4-H); 13C NMR: ı (ppm): 199.2 (C-3),
71.1 (C-17), 169.2 (C-5), 124.1 (C-4), 82.7 (C-13), 52.5 (C-9), 45.7
C-14), 39.1 (C-12), 38.4 (C-10), 38.0 (C-8), 35.5 (C-1), 33.8 (C-2),
2.4 (C-6), 30.5 (C-7), 28.6 (C-16), 21.9 (C-11), 20.1 (C-18), 19.9
C-15), 17.44 (C-19).

.6. Biotransformations of androstenedione (3) by P.
ilacinum AM111
fter two-day incubation of 100 mg of androstenedione (3) in
. lilacinum AM111 culture, 90 mg of testololactone (5) were
solated (Fig. 1).
d androstenedione (3); Pathways of pregnenolone
.

3. Results and discussion

The structures of the obtained products were determined by
means of the IR, 1H NMR and 13C NMR spectra. Assumed struc-
tures were confirmed by comparison of the chemical shifts
of selected, diagnostic signals in the NMR spectra of the sub-
strate and the products with the literature data. Resonance
signals in both 1H NMR and 13C NMR spectra of 4 were consis-
tent with the formation of the ring D lactone. Downfield shift
(35.7 ppm) of the C-13 resonance signal with respect to the sub-
strate is consistent with insertion of an oxygen atom adjacent
to this position on the ring D. This is coupled with the down-
field shift in the 18-methyl resonance signal of ıH 0.43 ppm
and ıC 6.6 ppm. Absence of signal of the 17-carbonyl group at
ıC = 221 ppm and presence of a signal at ıC = 171.5 ppm are con-
sistent with D lactone formation [34]. Proton NMR signals at
ı: 3.52(m) and 5.33(t), in analogy to the spectrum of DHEA (1),
indicate the presence of 3�-OH group and double bond at C-5
in the product. The band at 1716 cm−1 in the IR spectrum of
the product 4 confirms the �-lactone structure, and the band
at 3446 cm−1 indicates that the hydroxyl group is present. The
spectral data of 5 were in agreement with those reported in
the literature [30,31,35].

The strain P. lilacinum AM111 produces the Baeyer-Villiger

monooxygenase(s), which is able to carry out ring D oxidation
and degradation of 17�-acetyl side chain of 3�-hydroxy-
5-ene as well as 4-en-3-oxo steroid substrates. DHEA (1)
was oxidized to 3�-hydroxy-17a-oxa-d-homo-androst-5-en-
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17-one (4) as the sole product, while androstenedione (3)
was converted, with high yield, into testololactone (5). Trans-
formation of pregnenolone (2), apart from 3�-hydroxy-17a-
oxa-d-homo-androst-5-en-17-one (4), led to small amounts of
testololactone (Fig. 1). Analysis of the reaction mixture compo-
sition as function of time indicates that the steroid substrate
induces activity of the enzymes responsible for the ring D oxi-
dation as well as for the degradation of 17�-acetyl side chain
(Table 1).

After 6 h transformation of DHEA the content of hydroxy-
lactone 4 in the reaction mixture was 7%, and after additional
6 h reached 34%. Androstenedione was converted respectively
into 2% and 15% of testololactone.

Among the products of the transformation of pregnenolone
(2), apart from 4 and 5, also progesterone (6), DHEA (1),
and androstenedione (3) were isolated. The time evolution of
the transformation of this substrate indicates that the com-
pound undergoes oxidation reactions of the Baeyer-Villiger
type along two pathways: through DHEA (1) to hydroxylactone
4 or, after conversion to progesterone (6), through androstene-
dione (3) to testololactone (5) (Table 1, Fig. 1). Oxidation of 2
and 6 likely proceeds according to the following sequence of
reactions: oxidative esterification of 17�-acetyl chain to 17�-
acetoxy-3�-hydroxy-androst-5-ene or testosterone acetate,
ester bond hydrolysis leading to 17�-alcohols, subsequently
oxidized to 17-oxo products (DHEA or androstenedione),
which undergo D-ring Baeyer-Villiger oxidation yielding D-
ring lactones 4 and 5. Among the products resulting from the
transformation of 2, only progesterone (6), androstenedione
(3), and DHEA (1) were identified in the reaction mixture. In
accord with the literature examples of progesterone to testolo-
lactone oxidation, testosterone acetate was not identified due
to its fast hydrolysis catalyzed by the active esterase present
in the culture [36]; testosterone was also usually not identified
[31].

The mixture of products after 6 h incubation of preg-
nenolone (2) contained, apart from the substrate, only
progesterone (6) (ca. 15%) (Table 1). Only after 12 h of the
elapsed reaction time, DHEA (1) and androstenedione (3) were
identified – products of the elimination of the 17�-acetyl side
chain and subsequent oxidation of the 17�-OH group. Higher
content of androstenedione (3) in the mixture, as compared
to DHEA (1), indicates that progesterone (6) is oxidized faster
than pregnenolone (2). 3�-Hydroxy-17a-oxa-d-homo-androst-
5-en-17-one (4) is identified in the reaction mixture earlier
and in larger amount than testololactone (5), which suggests
that the BVMO responsible for the ring D oxidation prefers the
3�-hydroxy-5-ene substrate. This assumption is supported by
the observed faster oxidation of DHEA (1) in comparison with
androstenedione (3) (Table 1).

The composition of the mixture of pregnenolone (2)
transformation products indicates that from the moment of
identification of Baeyer-Villiger oxidation products in the mix-
ture, the amount of 4-ene-3-oxo products does not increase;
their total content, in the investigated incubation period, is
close to 15%, i.e. the amount of progesterone in the initial stage

of the transformation (Table 1). It is probable that the oxidation
of the 17�-OH group, one of the stages in the cycle of reactions
leading from pregnenolone to 3�-hydroxy-17a-oxa-d-homo-
androst-5-en-17-one (4) and progesterone to testololactone
0 8 ) 1441–1445

(5), is competitive with respect to the oxidation of 3�-hydroxyl
group, the first stage of the pregnenolone (2) transformation
to progesterone (6).

The compound obtained by us, 3�-hydroxy-17a-oxa-d-
homo-androst-5-en-17-one (4), is a new metabolite of DHEA
(1) and pregnenolone (2). The literature examples of micro-
biological oxidation of Baeyer-Villiger type of both substrates
led to testololactone (5) [29,31]. One of the strains of the genus
Penicillium – P. citreo-viride oxidized DHEA (1) to testololactone
(5), while it did not exhibit any enzymatic activity towards
pregnenolone (2) [31]. The strain P. lilacinum AM111 used by us
synthesizes BVMO(s) which, differently from other enzymes of
this group known in the literature, accepts both 3�-hydroxy-
5-ene substrates: DHEA (1) and pregnenolone (2).

Steroidal lactones possess useful biological properties,
such as anticancer, antiandrogenic, and antihypercholes-
terolemic activity [37–40]. The results obtained in this study
indicate that the strain of P. lilacinum AM111 is a promis-
ing fungus that may be used in commercial processes, and
which offers a potential new route to novel biologically active
steroids.
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