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Abstract: A new series of pyrazoline derivatives 1b–12b was designed, synthesized and
evaluated for antiproliferative activity against three cancer cell lines (HepG-2, Hela and
A549). Additionally, NIH/3T3 cell cytotoxicity were tested and the structure activity
relationships (SARs) were also determined. Among these new derivatives, the compounds
3-(4-fluorophenyl)-5-(3,4,5-trimethoxythiophenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (1b)
and 3-(4-chlorophenyl)-5-(3,4,5-trimethoxythiphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide
(2b) showed the best activity against HepG-2 cells, with IC50 values of 6.78 µM
and 16.02 µM, respectively. They also displayed potent activity against Hela cells;
meanwhile, 3-(4-chlorophenyl)-5-(3-bromo-4-hydroxy-5-methoxythiophenyl)-4,5-dihydro-1H
-pyrazole-1-carbothioamide (5b) and 3-(4-bromo-phenyl)-5-(3-bromo-4-hydroxy-5-methoxythiophenyl)
-4,5-dihydro-1H-pyrazole-1-carbothioamide (6b) were also identified as promising anticancer agents
against A549 cells owing to their notable inhibitory effect, compared with cisplatin (IC50 = 29.48 µM).
Furthermore, it was also found that compounds 1b and 2b had low cytotoxicity against NIH/3T3
cells and further mechanistic studies revealed that 1b arrested HepG-2 cells cycle at the G2/M
phase at high concentrations and induced apoptosis in HepG-2 cells. Moreover, 1b upregulated
protein expression level of cleaved caspase-3, cleaved PARP, Bax and p53 and downregulated protein
expression level of Bcl-2 in dose-dependent way in HepG-2 cells. Thus, this study indicates that
compound 1b might be a promising antitumor drug candidate.
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1. Introduction

Cancer is considered to be one of the most serious health problems worldwide and is also one
of the leading causes of mortality [1–3]. Still, the successful treatment of cancer remains a challenge
in the 21st century, and there is a need to search for newer and safer anticancer agents that possess
a broader spectrum of cytotoxicity to tumor cells [4]. In the past few years, apart from the utility of
surgical operations and irradiation, chemotherapy still remains an important option to treat cancer in
clinical settings [5].

A potential solution is to explore innovative natural scaffolds to treat cancer. Medicinal chemists
have carried out considerable research on pyrazoline derivatives due to their diverse therapeutic
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applications, extending from central nervous system activity to antimicrobial applications. The most
predominant biological activity is observed for a class of antimicrobial agents [6–8]. Furthermore,
a considerable amount of research has reported that pyrazole-based heterocycles show promising
activity against cancer cell lines, including A549 human lung adenocarcinoma cell lines [9–13].

Recently, 2H-pyrazoles have been identified as a novel class of potent antitumor agents. A series of
2H-pyrazolyl-1-carbothioamides showed good inhibitory activity against the proliferation of HepG-2
cells, Hela cells and A549 cancer cells. Structure-activity relationship (SAR) studies revealed that the
activity of pyrazoline and its derivatives is dependent on the presence of the nitrogen heterocyclic
moiety [14], which is a structural subunit that is known to have a variety of pharmacological properties
and widespread medical biological activities [15]. On the other hand, most 2H-pyrazole derivatives are
chiral molecules, providing a greater degree of variability in conformation and substitutions, leading
to better biological activity [16].

SAR analysis showed that the 2H-pyrazole scaffold is the crucial pharmacophore for achieving
good inhibitory activity, and the substitutions at the 3, 4 and 5-positions of the phenyl ring significantly
increased inhibitory activity [17]. Various pyrazole and pyrazoline derivatives have been identified
as inhibitors of cyclin-dependent kinase [18] heat shock proteins [19], vascular endothelium growth
factors [20] and P-glycoprotein [21]. Pyrazoloacridine was identified as a DNA topoisomerase inhibitor
via high-throughput screening in clinical research and inhibited malignancy, induced apoptosis in
myeloma and leukemia cells and displayed preclinical activity in myeloma and leukemia cells both
in vitro and in vivo [22].

Based on the knowledge above, we developed a series of new pyrazoline derivatives that exhibited
promising antitumor activity. It was envisioned that the substitutions of these pharmacophores might
lead to the development of some novel compounds with effective antitumor activity. Herein, we report
the synthesis of pyrazoline derivatives and evaluation of these compounds as potent antiproliferative
and apoptosis inducing agents.

2. Results and Discussion

2.1. Chemistry

The general strategies for the synthesis of the target compounds are illustrated in Scheme 1.
Intermediate a was prepared via a Claisen-Schmidt condensation reaction [23]. NaOH was used
as a catalyst in the reaction to obtain 1,3-diaryl prop-2-en-1-ones (chalcones) [24]. Their further
condensation with thiosemicarbazides in alcoholic media led to the formation of compounds 1b–12b.
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All of the new compounds were characterized on the basis of complementary spectroscopic
(1H-NMR, 13C-NMR, IR and HRMS) and analytical (HPLC) data. The physicochemical properties and
spectral data of the synthesized compounds are presented in Table 1.

Table 1. Characterization data of compounds 1b–12b.

Compounds R2 R3 R4 R5 R6 Mol. Formula

1b OCH3 OCH3 OCH3 H F C19H20FN3O3S
2b OCH3 OCH3 OCH3 H Cl C19H20ClN3O3S
3b OCH3 OCH3 OCH3 H Br C19H20BrN3O3S
4b OCH3 OCH3 OCH3 H CH3 C20H23N3O3S
5b Br OH OCH3 H Cl C17H15BrClN3O2S
6b Br OH OCH3 H Br C17H15Br2N3O2S
7b Br OH OCH3 OH H C17H16BrN3O3S
8b OCH3 OH OCH3 OH H C18H19N3O4S
9b Br OH OCH2CH3 OH H C16H15N3OS
10b OCH3 OCH3 OCH2CH3 OH H C19H21N3O4S
11b OCH3 OCH3 OCH3 H OCH3 C20H23N3O4S
12b Br OH OCH3 H CH3 C18H18BrN3O2S

All of the synthetic compounds gave satisfactory mass spectroscopic data, which were in full
accordance with their depicted structures.

2.2. Antiproliferative Activity

The antiproliferative activity of 1b–12b against three human cancer cell lines (include HepG-2
human hepatoma cell line, Hela human cervical carcinoma cell line and A549 human lung
adenocarcinoma cell line) and NIH/3T3 mouse embryonic fibroblast cells were evaluated by the
MTT assay (Table 2). Some of them displayed a potent inhibitory activity against HepG-2 cells and
Hela cells. The most potent was compound 1b, with an IC50 of 6.78 µM, which is lower than that of
cis-DPP. However, the compounds were not very sensitive to A549 cells, with IC50 values ranging from
40 µM to 100 µM. For Hela cells, the antiproliferative activity of some of the derivatives were similar
to that of cis-DDP. The pyrazoline derivatives also displayed time-dependent and dose-dependent
trends. We selected compound 1b and cis-DDP to generate growth-inhibitory curves (Figure 1) against
HepG-2 cells and Hela cells. Most pyrazoline derivatives showed cytotoxic selectivity between tumor
and normal mouse embryonic fibroblast cells to some extent, with IC50 values ranging from 23.52 µM
to 100 µM against NIH/3T3 normal cells. These results confirmed previous reports [25] that some
pyrazoline derivatives have less cytotoxicity to normal cells.

Table 2. Antiproliferative activity of the synthesized compounds (IC50 µM).

Compounds
(IC50 µM) 1

HepG-2 Hela A549 NIH/3T3 Cell Line SI 3

1b 6.78 ± 1.44 7.63 ± 1.35 >100 >100 >14.75
2b 16.02 ± 2.55 9.37 ± 1.47 >50 >100 >6.24
3b 35.55 ± 2.56 16.93 ± 1.99 >100 >100 >2.81
4b >50 >50 >100 >100 -
5b 33.06 ± 3.54 15.78 ± 2.33 44.12 ± 3.02 26.28 ± 1.81 0.79
6b 52.99 ± 2.81 20.20 ± 1.54 50.99 ± 2.11 23.52 ± 1.39 0.44
7b >50 11.44 ± 2.64 >50 >100 -
8b >50 >50 >100 >100 -
9b 32.25 ± 2.83 7.74 ± 1.63 >100 >100 >3.10
10b >50 22.31 ± 2.78 >100 >100 -
11b >50 >50 >100 >100 -
12b 19.69 ± 2.45 14.82 ± 2.33 50.04 ± 3.10 27.11 ± 2.02 1.38

cis-DDP 2 7.57 ± 0.98 5.28 ± 0.66 29.48 ± 3.30 4.88 ± 1.93 0.64
1 Each experiment was independently performed three times; 2 cis-DDP stands for cisplatin (II), which was used as
a positive control; 3 SI: selectivity index. It was calculated as: SI = IC50, NIH/3T3/IC50, HepG-2.
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Figure 1. Inhibitory effects of compound 1b and cis-DDP on HepG-2 cells and Hela cells after 24 h and
48 h.

In some cases against the selected tumor cell lines, among the derivatives 1b–12b, when the
substitutions of R2, R3 and R4 were the same (1b, 2b, 3b, 4b, 10b and 11b) and R6 was changed
between F, Cl, Br, OCH3 and CH3 in each group or R5 was replaced with OH, the inhibitory activity of
these compounds with different substituents on the B ring increased in the following order: 1b > 2b
> 3b > 4b, 10b > 11b. Compounds 5b, 6b, 7b and 12b with a R2 group Br, R3 of OH and R4 of OCH3

showed stronger activity than the corresponding pyrazoline with a R3 and R5 of OH groups (8b).
Between alkyl substituents, electron-withdrawing and electron-donating groups at R6, the former one
(1b, 2b, 3b and 10b) was favorable. For example, 1b has the same substituents at R2, R3 and R4 (OCH3)
as 2b, 3b, 4b, 10b and 11b, but a different R6 group. Compound 1b has an R6 of F, a strong electron
withdrawing group and showed slightly lower IC50 values of 6.78 and 7.63 µM against HepG-2 and
Hela tumor cells, respectively. On the other hand, 1b exhibited low cytotoxicity against A549 cell line
and less cytotoxicity to normal cells. A patent has been filed our new compounds [26].

In terms of their anticancer potential, compounds 1b, 2b and 3b can be considered to be selective
cytotoxic agents against HepG-2 and Hela cells due to their low cytotoxicity against NIH/3T3 cells.

Among these compounds, compound 9b, which bears ethyoxyl groups on its phenyl moieties,
showed the highest cytotoxicity against Hela cells, with an IC50 value of 7.74 µM, which was very
similar to the positive control cisplatin (IC50 = 5.28 µM). However, compound 7b, which carries
a methoxyl substituent at R4 on phenyl ring A, showed low cytotoxicity against HepG-2 cells
(IC50 > 50 µM) and Hela cells (IC50 = 11.44 µM). These results noted the importance of the ethyoxyl
group at R4 for anticancer activity against HepG-2 and Hela cell lines. It was also found that with a Br
group at substituent R2, OH at R3 and OCH3 at R4 on phenyl ring A, the selective antiproliferative
activities of most compounds were lower. For example, the selective antiproliferative activities
of compounds 5b, 6b, 7b and 12b are all moderate. From these compounds, we also determined
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that when the substituent R6 on the phenyl ring B is an electron-donating group, such as OCH3,
the antiproliferative activity of the agents can be improved.

Our comparative study demonstrated that compounds 1b and 2b can be identified as the most
promising anticancer agents owing to their antiproliferative effect on HepG-2 and Hela cancer cells
and non-toxic potential against NIH/3T3 cells. Further studies are required to evaluate the mechanism
for the anticancer activities of compounds 1b and 2b.

To assess the antiproliferative effect of compound 1b (Figure 2), we analyzed clonogenicity of
HepG-2 cells after the treatment with 1b for 48 h. As shown in Figure 2, treatment with 1b significantly
reduced cell viability in a dose-dependent fashion in HepG-2 cells.
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Figure 2. (a) Representative images of plate colony formation of HepG-2 cells after treatment with 1b
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n = 3; ** p < 0.01.

2.3. Influence of 1b on the HepG-2 Cell Cycle

Cell cycle arrest is an important sign for inhibition of proliferation and the series of events that
take place in a cell leading to its division and replication. Some pyrazoline derivatives exhibited cell
cycle arrest properties [27]. Compound 1b was chosen for intensive mechanism study on HepG-2
cells because of its highest selectivity index (SI) value of 14.5. After the inhibitory effect of 1b on cell
proliferation was observed, we next assessed the effect on the cell cycle distribution of HepG-2 cells by
flow cytometry (Figure 3). Treatment of HepG-2 cells with 1b at 2.5, 5 and 10 µmol/L concentrations
resulted in an increase of the percentage of cells at the G2/M phase to 25.06%, 56.15% and 71.25%,
respectively. This represented a remarkable difference from 9.97% in the control group (p < 0.05).
There was a concomitant decrease of cells in the other phases of the cell cycle (G1 and S), as shown in
Figure 3. These findings confirmed that compound 1b could influence HepG-2 cell cycle progression
at low micromolar concentrations in a dose-dependent manner.
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2.4. Induction of Apoptosis by 1b 
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apoptotic cells was monitored using flow cytometry. A biparametric cytofluorimetric analysis was 
performed using propidium iodide (PI), which stains DNA and only enters dead cells, and 
fluorescent immunolabeling of the protein annexin-V, which binds to phosphatidyl serine (PS) in a 
highly selective manner [28]. The total percentage of apoptotic cells (early and late, Q2 + Q3) was 
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Figure 3. (a) Effects of compound 1b on the cell cycle progression of HepG-2 cells were determined
by flow cytometry analysis. HepG-2 cells were treated with different concentrations of compound 1b
for 24 h. The percentage of cells in each cycle phase is indicated (left red for G1, center shadow for S,
light red for G2); (b) Cell cycle distribution of HepG-2 cells. Compared with the corresponding control
group, ** p < 0.01, (n = 3).

2.4. Induction of Apoptosis by 1b

To examine the potency of the cancer cell apoptosis effect of 1b on HepG-2 cells, the number of
apoptotic cells was monitored using flow cytometry. A biparametric cytofluorimetric analysis was
performed using propidium iodide (PI), which stains DNA and only enters dead cells, and fluorescent
immunolabeling of the protein annexin-V, which binds to phosphatidyl serine (PS) in a highly selective
manner [28]. The total percentage of apoptotic cells (early and late, Q2 + Q3) was 2.921% when treated
with vehicle alone. In comparison with the control group, 1.33-, 2.26-, and 3.53-fold percentages of
apoptotic cells were observed when different concentrations (2.5, 5 and 10 µmol/L) of 1b were added
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to HepG-2 cells. As shown in Figure 4, compound 1b caused significant induction of apoptosis in a
dose-dependent manner in HepG-2 cells and resulted in 3.889%, 6.581% and 10.309% apoptotic cells.
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2.5. Analysis of Targeted Cellular Pathways

To explore the mechanisms underlying apoptosis of compound 1b in HepG-2 cells,
the characteristics of apoptosis including p53, caspase 3 and PARP cleavage were examined. As shown
in Figure 4, compound 1b dramatically increased the levels of p53 and cleaved Casp-3, which can
cleave essential structural proteins and liberates the DNase to digest chromosomal DNA and cause
cell death. Consistently, PARP was cleaved into fragmentation of 89 kDa. The features of apoptosis
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appeared to occur in a dose-dependent manner. Furthermore, we measured the effect of 1b on
expression of anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bax in HepG-2 cells. Western blot
analysis showed an increase in expression of protein Bax, and a decrease in expression of protein Bcl-2
(Figure 5).
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The progress of the reaction was monitored by TLC (petroleum ether: ethyl acetate (3:1 v/v) as 

Figure 5. (a) HepG-2 cells were treated with compound 1b at the indicated concentrations (0, 2.5, 5 and
10 µM) for 24 h. The levels of Bcl-2, Bax, PARP, p53 and cleaved caspase-3 were determined by western
blot analysis; (b) Data are showed as the mean values ± SD from three independent experiments.
Data were analyzed by Student’s t-test. * p < 0.05, ** p < 0.01 vs. control cells.

3. Materials and Methods

3.1. General Information

All reagents were commercially available and used without further purification unless otherwise
noted. The melting points were determined using a WRS-1B digital melting point apparatus
(Weiss-Gallenkamp, Loughborough, UK) by an open capillary method and are reported uncorrected.
Thin-layer chromatography (TLC) was performed on silica gel F254 plates with visualization by UV
light or iodine vapor. The 1H-NMR spectra of DMSO-d6 solutions (tetramethylsilane as an internal
standard) were recorded on an AVANCE II-400 (400 MHz) spectrometer (Bruker, Karlsruhe, Germany).
The 13C-NMR spectra were measured at 150 MHz on a Bruker AVANCE III spectrometer. The purity
of all compounds were confirmed to be higher than 95% through analytical HPLC performed with
a 1200 HPLC System (Agilent, Palo alto, CA, USA) (Supporting Information, Table S5). The IR
spectra were recorded on an iS5 FT-IR spectrophotometer (Nicolet, Thermo, Waltham, MA, USA)
as KBr pellets or thin films. Mass spectra were obtained with an API 4000 Spectrometer (SCIEX,
Los Angeles, CA, USA). High resolution mass spectra (HRMS) were obtained on a Q ExactiveTM

(Thermo ScientificTM, Waltham, MA, USA). Chalcones were prepared from substituted aldehydes and
substituted acetophenones according to the procedure reported in the literature [24].

3.2. Chemistry: General Procedure for the Synthesis of Chalcones

A mixture of substituted aldehyde (0.05 mol), substituted acetophenone (0.05 mol) and 10%
aqueous sodium hydroxide (10 mL) in ethanol (30 mL) was stirred at room temperature for 24–48 h.
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The progress of the reaction was monitored by TLC (petroleum ether: ethyl acetate (3:1 v/v) as eluents).
Upon completion, the reaction mixture was poured onto crushed ice. The precipitated solid was
filtered, washed with water and dried. The products were crystallized from ethanol.

3.3. General Procedure for the Synthesis of 3,5-Disubstituted-4,5-dihydro-1H-pyrazole-1-carbothioamides
1b–12b

A mixture of thiosemicarbazide (0.01 mol), chalcone (0.01 mol) and sodium hydroxide (0.025
mol) was added in ethanol (25 mL). After the mixture was refluxed for 12 h, and after completion
of the reaction, the solution was poured into ice water. The resulting precipitate was filtered and
recrystallized from ethanol.

3-(4-Fluorophenyl)-5-(34,5-trimethoxythiophenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (1b). Light
yellow solid (yield 24.91%), m.p.: 154.2–154.5 ◦C. IR (KBr, ν in cm−1): 3389.05 (N-H), 3264.36 (N-H),
3162.87 (ArC-H), 2938.20 (C-H), 1595.34 (C=N), 1508.34 (C=C), 1234.15 (C-O), 1125.87 (C=S). 1H-NMR
(ppm) δ: 8.08 (s, 1H, NH2), 8.01 (s, 1H, NH2), 7.95 (dd, 2H, J = 4.0 and 4.0 Hz, Ar-H), 7.31 (t, 2H,
J = 8.0 Hz, Ar-H), 6.42 (s, 2H, Ar-H), 5.87 (dd, 1H, J = 4.0 and 12.0 Hz, pyrazoline 5-H), 3.87 (dd, 1H,
J = 12.0 and 16.0 Hz, pyrazoline 4-Hcis), 3.19 (dd, 1H, J = 3.6 and 16.0 Hz, pyrazoline 4-Htrans), 3.71 (s,
6H, OCH3), 3.63 (s, 3H, OCH3). 13C-NMR (ppm) δ: 176.45, 164.23, 162.58, 154.18, 152.92, 138.66, 136.36,
129.56, 129.50, 127.54, 127.52, 115.80, 115.66, 102.52, 63.06, 59.87 (2C), 55.79, 42.48. MS (ESI) (m/z): 390.1
[M + H]+. HRMS: m/z [M + H]+ calcd for C19H21N3O3FS: 390.1282; found: 390.1277.

3-(4-Chlorophenyl)-5-(3,4,5-trimethoxythiophenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (2b). Light
white solid (yield 29.81%), m.p.: 169.3–172.1 ◦C. IR (KBr, ν in cm−1): 3412.80 (N-H), 3264.79 (N-H),
3145.37 (ArC-H), 2930.39 (C-H), 1588.19 (C=N), 1459.93 (C=C), 1242.58 (C-O), 1126.07 (C=S). 1H-NMR
(ppm) δ: 8.11 (s, 1H, NH2), 8.00 (s, 1H, NH2), 7.90 (d, 2H, J = 8.0 Hz, Ar-H), 7.53 (d, 2H, J = 8.0 Hz,
Ar-H), 6.42 (s, 2H, Ar-H), 5.87 (dd, 1H, J = 4.0 and 12.0 Hz, pyrazoline 5-H), 3.86 (dd, 1H, J = 8.0 and
16.0 Hz, pyrazoline 4-Hcis), 3.19 (dd, 1H, J = 4.0 and 16.0 Hz, pyrazoline 4-Htrans), 3.71 (s, 6H, OCH3),
3.62 (s, 3H, OCH3). 13C-NMR (ppm) δ: 176.54, 154.01, 152.92 (2C), 138.61, 136.36, 135.11, 129.84, 128.84
(2C), 128.72 (2C), 102.52 (2C), 63.13, 59.87 (2C), 55.80, 42.31. MS (ESI) (m/z): 406.1, 408.1 [M + H]+.
HRMS: m/z [M + H]+ calcd for C19H21N3O3ClS: 406.0987; found: 406.0979.

3-(4-Bromophenyl)-5-(3,4,5-trimethoxythiophenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (3b). White
solid (yield 24.55%), m.p.: 271.2–273.0 ◦C. IR (KBr, ν in cm−1): 3411.01 (N-H), 3266.14 (N-H), 3145.76
(ArC-H), 1587.83 (C=N), 1462.14 (C=C), 1247.93 (C-O), 1123.65 (C=S). 1H-NMR (ppm) δ: 8.11 (s, 1H,
NH2), 8.00 (s, 1H, NH2), 7.83 (d, 2H, J = 8.0 Hz, Ar-H), 7.67 (d, 2H, J = 8.0 Hz, Ar-H), 6.41 (s, 2H,
Ar-H), 5.87 (dd, 1H, J = 4.0 and 12.0 Hz, pyrazoline 5-H), 3.86 (dd, 1H, J = 8.0 and 16.0 Hz, pyrazoline
4-Hcis), 3.71 (s, 6H, OCH3), 3.62 (s, 3H, OCH3), 3.19 (dd, 1H, J = 4.0 and 16.0 Hz, pyrazoline 4-Htrans).
13C-NMR (ppm) δ: 177.06, 154.61, 153.41 (2C), 132.14 (2C), 130.69 (2C), 129.56 (2C), 124.45 (2C), 103.09
(2C), 63.63, 60.39 (2C), 56.34, 42.77. MS (ESI) (m/z): 450.1, 452.2 [M + H]+. HRMS: m/z [M + H]+ calcd
for C19H20N3O3BrS: 450.0487; found: 450.0468.

3-(4-Methylphenyl)-5-(3,4,5-trimethoxythiophenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (4b). Light
yellow solid (yield 62.75%), m.p.: 182.5–184.3 ◦C. IR (KBr, ν in cm−1): 3431.26 (N-H), 3264.45 (N-H),
3137.44 (ArC-H), 1584.57 (C=N), 1466.08 (C=C), 1241.98 (C-O), 1127.06 (C=S). 1H-NMR (ppm) δ: 8.05
(s, 1H, NH2), 7.89 (s, 1H, NH2), 7.78 (d, 2H, J = 8.0 Hz, Ar-H), 7.21 (d, 2H, J = 8.0 Hz, Ar-H), 6.47 (s, 2H,
Ar-H), 5.86 (dd, 1H, J = 4.0 and 12.0 Hz, pyrazoline 5-H), 3.85 (dd, 1H, J = 12.0 and 16.0 Hz, pyrazoline
4-Hcis), 3.18 (dd, 1H, J = 4.0 and 20.0 Hz, pyrazoline 4-Htrans), 3.71 (s, 6H, OCH3), 3.62 (s, 3H, OCH3),
2.35 (s, 3H, CH3). 13C-NMR (ppm) δ: 176.77, 155.70, 153.40 (2C), 141.00 (2C), 139.21 (2C), 129.74 (2C),
127.66 (2C), 103.05 (2C), 63.34, 60.39 (2C), 56.32, 42.95, 21.53. MS (ESI) (m/z): 386.0 [M + H]+. HRMS:
m/z [M + Na]+ calcd for C20H23N3O3S: 408.1358; found: 408.1338.

3-(4-Chlorophenyl)-5-(3-bromo-4-hydroxy-5-methoxythiophenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide
(5b). White solid (yield 14.40%), m.p.: 214.0–217.8 ◦C. IR (KBr, ν in cm−1): 3422.81 (O-H), 3405.51



Molecules 2017, 22, 1635 10 of 14

(N-H), 3253.05 (N-H), 3152.44 (ArC-H), 1595.04 (C=N), 1473.05 (C=C), 1235.36 (C-O), 1176.17 (C=S).
1H-NMR (ppm) δ: 9.41 (s, 1H, OH), 8.11 (s, 1H, NH2), 8.00 (s, 1H, NH2), 7.90 (d, 2H, J = 8.0 Hz, Ar-H),
7.54 (d, 2H, J = 12.0 Hz, Ar-H), 6.79 (s, 1H, Ar-H), 6.71 (s, 1H, Ar-H), 5.84 (dd, 1H, J = 4.0 and 12.0 Hz,
pyrazoline 5-H), 3.84 (dd, 1H, J = 12.0 and 20.0 Hz, pyrazoline 4-Hcis), 3.19 (dd, 1H, J = 4.0 and 20.0 Hz,
pyrazoline 4-Htrans), 3.78 (s, 3H, OCH3). 13C-NMR (DMSO-d6, ppm) δ: 176.89, 154.46, 148.95, 143.20,
135.65, 135.33, 130.34 (2C), 129.36, 129.25, 120.97 (2C), 109.62, 109.48, 62.91, 56.65, 42.71. MS (ESI) (m/z):
440.3, 441.9 [M + H]+. HRMS: m/z [M + Na]+ calcd for C17H15ClN3O2S: 461.9634; found: 461.9631.

3-(4-Bromophenyl)-5-(3-bromo-4-hydroxy-5-methoxythiophenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide
(6b). White solid (yield 22.46%), m.p.: 228.2–228.6 ◦C. IR (KBr, ν in cm−1): 3422.81 (O-H), 3408.02
(N-H), 3252.81 (N-H), 3152.79 (ArC-H), 1592.59 (C=N), 1496.38 (C=C), 1275.39 (C-O), 1173.55 (C=S).
1H-NMR (ppm) δ: 9.39 (s, 1H, OH), 8.11 (s, 1H, NH2), 7.99 (s, 1H, NH2), 7.83 (d, 2H, J = 8.0 Hz, Ar-H),
7.67 (d, 2H, J = 8.0 Hz, Ar-H), 6.79 (d, 1H, J = 4.0 Hz, Ar-H), 6.71 (d, 1H, J = 4.0 Hz, Ar-H), 5.83 (dd,
1H, J = 4.0 and 12.0 Hz, pyrazoline 5-H), 3.84 (dd, 1H, J = 12.0 and 20.0 Hz, pyrazoline 4-Hcis), 3.78 (s,
3H, OCH3), 3.19 (dd, 1H, J = 4.0 and 20.0 Hz, pyrazoline 4-Htrans). 13C-NMR (ppm) δ: 176.79, 155.60,
148.79, 144.20, 138.22, 132.12(2C), 131.24(2C), 130.25, 125.46, 124.19, 113.16, 111.17, 62.62, 56.67, 42.81.
MS (ESI) (m/z): 484.1, 485.9 [M + H]+. HRMS: m/z [M + Na]+ calcd for C17H15Br2N3O2S: 507.9107;
found: 507.9097.

3-(2-Hydroxyphenyl)-5-(3-bromo-4-hydroxy-5-methoxythiophenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide
(7b). White solid (yield 47.24%), m.p.: 263.9–264.5 ◦C. IR (KBr, ν in cm−1): 3414.47 (N-H), 3315.95
(N-H), 3187.99 (ArC-H), 1609.38 (C=N), 1485.98 (C=C), 1249.05 (C-O), 1165.33 (C=S). 1H-NMR (ppm) δ:
9.76 (s, 1H, OH), 9.41 (s, 1H, OH), 8.11 (s, 1H, NH2), 8.06 (s, 1H, NH2), 7.65 (d, 1H, J = 8.0 Hz, Ar-H),
7.34 (t, 1H, J = 8.0 Hz, Ar-H), 6.93 (m, 2H, Ar-H), 6.81 (s, 1H, Ar-H), 6.72 (s, 1H, Ar-H), 5.83 (dd, 1H,
J = 4.0 and 12.0 Hz, pyrazoline 5-H), 3.93 (dd, 1H, J = 12.0 and 20.0 Hz, pyrazoline 4-Hcis), 3.28 (dd, 1H,
J = 4.0 and 20.0 Hz, pyrazoline 4-Htrans), 3.79 (s, 3H, OCH3). 13C-NMR (ppm) δ: 176.46, 157.03, 156.86,
148.96, 143.17, 135.36, 132.58, 130.06, 120.83, 120.00, 117.34, 116.63, 109.62, 109.42, 61.75, 56.64, 44.57.
MS (ESI) (m/z): 422.2, 424.1 [M + H]+. HRMS: m/z [M + Na]+ calcd for C17H16BrN3O3S: 443.9973;
found: 443.9968.

3-(2-Hydroxyphenyl)-5-(3-methoxy-4-hydroxy-5-methoxythiophenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide
(8b). Yellow solid (yield 21.78%), m.p.: 230.2–230.6 ◦C. IR (KBr, ν in cm−1): 3430.11 (N-H), 3322.13
(N-H), 3178.46 (ArC-H), 2991.86 (C-H), 1609.15 (C=N), 1589.30 (C=C), 1248.53 (C-O), 1118.29 (C=S).
1H-NMR (ppm) δ: 9.77 (s, 1H, OH), 8.29 (s, 1H, OH), 8.06 (s, 1H, NH2), 8.03 (s, 1H, NH2), 7.64 (d, 1H, J
= 8.0 Hz, Ar-H), 7.33 (t, 1H, J = 8.0 Hz, Ar-H), 6.93 (m, 2 H, Ar-H), 6.39 (s, 2H, Ar-H), 5.82 (dd, 1H,
J = 4.0 and 12.0 Hz, pyrazoline 5-H), 3.91 (dd, 1H, J = 12.0 and 20.0 Hz, pyrazoline 4-Hcis), 3.27 (dd, 1H,
J = 4.0 and 20.0 Hz, pyrazoline 4-Htrans), 3.69 (s, 6H, OCH3). 13C-NMR (ppm) δ: 176.61, 157.02, 156.97,
148.47, 135.23, 133.49, 132.49, 130.03 (2C), 119.98 (2C), 117.29, 116.73, 103.55, 62.41 (2C), 56.53, 44.69. MS
(ESI) (m/z): 374.1[M + H]+. HRMS: m/z [M + Na]+ calcd for C18H19N3O4S: 396.0984; found: 396.0972.

3-(2-Hydroxyphenyl)-5-(3-ethyoxyl-4-hydroxy-5-bromothiophenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide
(9b). White solid (yield 12.49%), m.p.: 240.9–241.1 ◦C. IR (KBr, ν in cm−1): 3425.40 (N-H), 3320.10
(N-H), 3176.22 (ArC-H), 1598.08 (C=N), 1476.57 (C=C), 1251.80 (C-O), 1131.23 (C=S). 1H-NMR (ppm) δ:
9.75 (s, 1H, OH), 9.20 (s, 1H, OH), 8.11 (s, 1H, NH2), 8.05 (s, 1H, NH2), 7.65 (d, 1H, J = 4.0 Hz, Ar-H),
7.33 (m, 1H, Ar-H), 6.92 (m, 2H, Ar-H), 6.78 (s, 1H, Ar-H), 6.73 (s, 1H, Ar-H) , 5.81 (dd, 1H, J = 4.0 and
12.0 Hz, pyrazoline 5-H), 4.03 (q, 2H, J = 8.0Hz, CH2), 3.92 (dd, 1H, J = 12.0 and 20.0 Hz, pyrazoline
4-Hcis), 3.27 (dd, 1H, J = 4.0 and 16.0 Hz, pyrazoline 4-Htrans), 1.33 (t, 3H, J = 8.0 Hz, CH3). 13C-NMR
(ppm) δ: 176.44, 157.02, 156.87, 147.96, 143.44, 135.38, 132.57, 130.07, 120.91, 120.00, 117.34, 116.62,
110.67, 109.72, 65.05, 61.72, 44.54, 14.99. MS (ESI) (m/z): 436.1, 438.0 [M + H]+. HRMS: m/z [M + Na]+

calcd for C18H18BrN3O3S: 460.0129; found: 460.0108.

3-(2-Hydroxyphenyl)-5-(3,4,5-trimethoxythiophenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (10b). Yellow
solid (yield 23.86%), m.p.: 204.8 ◦C. IR (KBr, ν in cm−1): 3436.42 (N-H), 3331.30 (N-H), 3181.19 (ArC-H),
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2995.29 (C-H), 2927.28 (C-H), 1594.63 (C=N), 1481.56 (C=C), 1239.70 (C-O), 1121.91 (C=S). 1H-NMR
(ppm) δ: 9.77 (s, 1H, OH), 8.11 (s, 1H, NH2), 8.07 (s, 1H, NH2), 7,65 (d, 1H, J = 8.0 Hz, Ar-H), 7.33 (t, 1H,
J = 8.0 Hz), 6.92 (m, 2H, Ar-H), 6.43 (s, 2H, Ar-H), 5.86 (dd, 1H, J = 4.0 and 8.0 Hz, pyrazoline 5-H), 3.95
(dd, 1H, J = 12.0 and 20.0 Hz, pyrazoline 4-Hcis), 3.27 (dd, 1H, J = 4.0 and 16.0 Hz, pyrazoline 4-Htrans),
3.71 (s, 6H, OCH3), 3.63 (s, 3H, OCH3). 13C-NMR (ppm) δ: 176.67, 157.03, 156.93, 153.43, 139.10, 136.91,
132.53, 130.05 (2C), 119.98 (2C), 117.30, 116.69, 103.04, 62.49, 60.40 (2C), 56.33, 44.66. MS (ESI) (m/z):
388.0 [M + H]+. HRMS: m/z [M + Na]+ calcd for C19H21N3O4S: 410.1140; found: 410.1124.

3-(2-Methoxyphenyl)-5-(3,4,5-trimethoxythiophenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (11b). White
solid (yield 44.44%), m.p.: 226.1–228.9 ◦C. IR (KBr, ν in cm−1): 3500.60 (N-H), 3282.19 (N-H), 3113.39
(ArC-H), 2994.50 (C-H), 2934.30 (C-H), 1598.93 (C=N), 1571.10 (C=C), 1241.93 (C-O), 1126.11 (C=S).
1H-NMR (ppm) δ: 7.99 (s, 1H, NH2), 7.86 (s, 1H, NH2), 7.82 (d, 2H, J = 8.0 Hz, Ar-H), 7.01 (d, 2H,
J = 8.0 Hz, Ar-H), 6.42 (s, 2H, Ar-H), 5.85 (dd, 1H, J = 4.0 and 12.0 Hz, pyrazoline 5-H), 3.86 (dd, 1H,
J = 4.0 and 16.0 Hz, pyrazoline 4-Hcis), 3.17 (dd, 1H, J = 4.0 and 20.0 Hz, pyrazoline 4-Htrans), 3.81 (s, 3H,
OCH3), 3.71 (s, 6H, OCH3), 3.62 (s, 3H, OCH3). 13C-NMR (ppm) δ: 176.56, 161.69, 155.54, 153.40, 139.25,
136.87, 129.38 (2C), 123.82 (2C), 114.63 (2C), 103.07 (2C), 63.29, 60.39 (2C), 56.32, 55.87, 43.01. MS(ESI)
(m/z): 402.1 [M + H]+. HRMS: m/z [M + Na]+ calcd for C20H23N3O4S: 424.1301; found: 424.1281.

3-(4-Methylphenyl)-5-(3-bromo-4-hydroxy-5-methoxythiophenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide
(12b). White solid (yield 23.02%), m.p.: 195.1–196.3 ◦C. IR (KBr, ν in cm−1): 3424.54 (O-H), 3409.33
(N-H), 3252.12 (N-H), 3153.99 (ArC-H), 2934.30 (C-H), 1598.93 (C=N), 1591.93 (C=C), 1275.77 (C-O),
1171.64 (C=S). 1H-NMR (ppm) δ: 9.44 (s, 1H, OH), 8.01 (s, 1H, NH2), 7.87 (s, 1H, NH2), 7.76 (d, 2H,
J = 8.0 Hz, Ar-H), 7.27 (d, 2H, J = 8.0 Hz, Ar-H), 6.79 (s, 1H, Ar-H), 6.69 (s, 1H, Ar-H), 5.82 (dd, 1H,
J = 4.0 and 12.0 Hz, pyrazoline 5-H), 3.83 (dd, 1H, J = 8.0 and 16.0 Hz, pyrazoline 4-Hcis), 3.16 (dd,
1H, J = 4.0 and 20.0 Hz, pyrazoline 4-Htrans), 3.77 (s, 1H, OCH3), 2.34 (s, 3H, CH3). 13C-NMR (ppm)
δ: 176.59, 155.64, 148.94, 143.13, 141.03, 135.43, 129.76, 128.60, 127.62, 120.90 (2C), 109.61, 109.44,
62.61, 56.64, 42.84, 21.53. MS (ESI) (m/z): 420.0, 422.0 [M + H]+. HRMS: m/z [M + Na]+ calcd for
C18H18BrN3O2S: 444.0170; found: 444.0150.

3.4. Biological Assays

3.4.1. MTT Assay and Clonogenic Survival Assay

A MTT assay was developed to monitor mammalian cell survival and proliferation in vitro [29].
HepG-2 cells, Hela and A549 cells from the China Center for Type Culture Collection (CCTCC, Wuhan,
China) were cultivated in RPMI-1640 medium supplemented with 10% fetal bovine serum (v/v),
100 U/mL penicillin, and 50 mg/mL streptomycin. Cells (5 × 103 cell/well) at the log phase of
their growth cycle were added to each well of a 96-well plate and incubated for 24 h at 37 ◦C in
a humidified atmosphere of 5% CO2. Then, cells were treated with or without test compounds at
different concentrations. After 48 h, 5 mg/mL MTT solution (20 µL per well) was added. Cells
were incubated at 37 ◦C. After 4 h, the MTT solution was removed and DMSO was added to each
well (150 µL). Eight to twelve minutes later, the optical density (OD) values were measured at room
temperature at a wavelength of 595 nm on a FilterMax F3/F5 Microplate Reader (Molecular Devices,
Sydney, Australia). In this experiment, 5 mg/mL of cisplatin was used as the positive control and 0.1%
DMSO was used as the negative reference. Each assay was carried out at least three times. The results
are summarized in Table 2.

Additionally, we used plate colony formation assay to evaluate the colony formation ability of
HepG-2 cells. The cells were seeded in the complete medium in 6-well plate at 600 cells per well.
After attachment, cells were exposed to different concentrations of compound 1b. After 7 days, the cells
were fixed with paraformaldehyde for 20 min and stained with 1% crystal violet solution for 30 min to
observe colonies.
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3.4.2. Flow Cytometric Analysis of Cell Cycle Distribution

For flow cytometric analysis of the DNA content, HepG-2 cells (2.0 × 105 cells/well) in exponential
growth were plated in 6-well plates and incubated for 24 h and then incubated with different
concentrations (2.5, 5 and 10 µmol/L) of compound 1b at 37 ◦C for 24 h. After 24 h treatment,
cells were collected, centrifuged, and fixed with ice-cold ethanol (70%) overnight 4 ◦C. The cells were
washed twice with PBS and then treated with lysis buffer containing RNase A (Sigma, St. Louis, MO,
USA), which was kept in a lukewarm bath at 37 ◦C, for 30 min, sequentially, and stained with PI and
kept in the dark for 30 min [30]. Then, the samples were analyzed by a flow cytometer (FACSCalibur,
BD AccuriTM C6 BD Instruments Inc., New York, NY, USA). Each experiment was performed in
triplicate. DNA histograms were analyzed using Mod Fit (version 3.2) for Windows (Verity Software
House, New York, NY, USA).

3.4.3. Cellular Apoptosis

HepG-2 cells (2.0 × 105 cells/well) were plated in a 6-well plate and allowed to adhere. After 24 h,
the medium was replaced with fresh culture medium containing compound 1b at final concentrations
of 2.5, 5, and 10 µmol/L at 37 ◦C. After 24 h, the cells were harvested and staining solution was
added (containing 5 µL Annexin V-FITC and 5 µL PI) [31]. The cells were then incubated for 15 min
at 20–25 ◦C in the dark. The samples were then detected in a FACScalibur BD AccuriTM C6 flow
cytometer. Analyses were performed by the software supplied with the instrument.

3.4.4. Western Blot Analysis

HepG-2 cells (1.0 × 106 cells/well) were seeded in six-well plates. After treatment with compound
1b for 24 h, the preparation of total protein samples from the culture cells for immunoblotting was
carried out as previously described [32]. For gel electrophoresis (Novex®NuPAGE®SDS-PAG, Thermo,
Waltham, MA, USA), 30–50 µg of protein was used per well. Then the proteins were separated by
SDS-PAGE and electroblotted to nitrocellulose membrane. The membrane was incubated with the
following indicated antibody: Bcl-2, Bax, caspase-3, p53, PARP and β-actin (Cell Signaling Technology,
Beverly, MA, USA) for 12 h at 4 ◦C. The antibodies were used in 500 to 1000 5% BSA-TBS-T. The blots
were washed four times and then incubated with horseradish peroxidase-conjugated secondary
antibody (Santa Cruz Biotechnology Laboratories. Santa Cruz, CA, USA) for 1.5 h at room temperature.
β-Actin antibody was used for equal loading.

4. Conclusions

In summary, a series of pyrazoline derivatives 1b–12b was synthesized. Most of the target
compounds showed antiproliferative activity to some extent against HepG-2 cells, Hela cells, A549 cells
and NIH/3T3 mouse embryonic fibroblast cells. It was found that 1b and 2b with the same
substitutions at the R2, R3 and R4 positions were the most active against Hela cells, with IC50 values of
7.63 and 9.37 µM, respectively. Compound 1b displayed the most potent activity against HepG-2 cells,
with an IC50 of 6.78 µM, which was comparable to that of the positive control cisplatin. Furthermore,
we also showed that compound 2b had good selectivity between tumor and normal cells to a certain
extent, with IC50 values of 16.02, 9.37, 50 and beyond 100 µM against HepG-2, Hela, A549 and
NIH/3T3 cells, respectively. A preliminary SAR study was also concluded based on the obtained
biological evaluation data. We observed that compound 1b was a potent inducer of apoptosis in
HepG-2 cells and caused an accumulation of cells in the G2/M phase of the cell cycle. At the same
time, the promising compound 1b decreased the level of Bcl-2 and increased the level of p53, cleaved
PARP, Bax and active-caspase-3, which was consistent with the result of flow cytometry analysis in
inducing apoptosis. Compounds 5b, 6b and 12b also attracted our attention. This suggested that
the scaffold of 2,3,4-trisubstituted phenyl ring A and 2H-pyrazoline moiety could be used as a lead
structure for further optimization to find more potent antitumor agents.
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